Beutler E, Grabowski GA. Gaucher disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill; 2001. p. 3635–68.
Google Scholar
Knudson AG. Inborn errors of sphingolipid metabolism. Am J Clin Nutr. 1961;9:55–62.
Article
CAS
Google Scholar
Khan A, Stimpson P, Karmolinski A, Patel N. Middle-ear involvement in type I Gaucher’s disease—a unique case. J Laryngol Otol. 2013;127:1226–9.
Article
CAS
Google Scholar
Potnis KC, Flueckinger LB, DeArmey SM, Alcalay RN, Cooney JW, Kishnani PS. Corticobasal syndrome in a man with Gaucher disease type 1: Expansion of the understanding of the neurological spectrum. Mol Genet Metab Rep. 2018;17:69–72.
Article
Google Scholar
D’Amore S, Page K, Donald A, Taiyari K, Tom B, Deegan P, et al. In-depth phenotyping for clinical stratification of Gaucher disease. Orphanet J Rare Dis. 2021;16:431.
Article
Google Scholar
Biegstraaten M, Schaik IN, Aerts JMFG, Hollak CEM. “Non-neuronopathic” Gaucher disease reconsidered. Prevalence of neurological manifestations in a Dutch cohort of type I Gaucher disease patients and a systematic review of the literature. J Inherit Metab Dis. 2008;31:337–49.
Article
CAS
Google Scholar
Chérin P, Rose C, de Roux-Serratrice C, Tardy D, Dobbelaere D, Grosbois B, et al. The neurological manifestations of Gaucher disease type 1: the French Observatoire on Gaucher disease (FROG). J Inherit Metab Dis. 2010;33:331–8.
Article
Google Scholar
Roshan Lal T, Sidransky E. The spectrum of neurological manifestations associated with Gaucher disease. Diseases. 2017;5:10.
Article
Google Scholar
Daykin EC, Ryan E, Sidransky E. Diagnosing neuronopathic Gaucher disease: New considerations and challenges in assigning Gaucher phenotypes. Mol Genet Metab. 2021;132:49–58.
Article
CAS
Google Scholar
Horowitz M, Wilder S, Horowitz Z, Reiner O, Gelbart T, Beutler E. The human glucocerebrosidase gene and pseudogene: Structure and evolution. Genomics. 1989;4:87–96.
Article
CAS
Google Scholar
Ericksonss AH, Ginnsl EI, Barrangerl JA. Biosynthesis of the Lysosomal Enzyme Glucocerebrosidase. J Biol Chem. 1985;260:14319–24.
Article
Google Scholar
Reczek D, Schwake M, Schröder J, Hughes H, Blanz J, Jin X, et al. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell. 2007;131:770–83.
Article
CAS
Google Scholar
Fukuda M. Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking. J Biol Chem. 1991;266:21327–30.
Article
CAS
Google Scholar
Fujita H, Takata Y, Kono A, Tanaka Y, Takahashi T, Himeno M, et al. Isolation and sequencing of a cDNA clone encoding the 85 kDa human lysosomal sialoglycoprotein (hLGP85) in human metastatic pancreas islet tumor cells. Biochem Biophys Res Commun. 1992;184:604–11.
Article
CAS
Google Scholar
Vaccaro AM, Tatti M, Ciaffoni F, Salvioli R, Barca A, Scerch C. Effect of saposins A and C on the enzymatic hydrolysis of liposomal glucosylceramide. J Biol Chem. 1997;272:16862–7.
Article
CAS
Google Scholar
Salvioli R, Tatti M, Ciaffoni F, Vaccaro AM. Further studies on the reconstitution of glucosylceramidase activity by Sap C and anionic phospholipids. FEBS Lett. 2000;472:17–21.
Article
CAS
Google Scholar
Abdul-Hammed M, Breiden B, Schwarzmann G, Sandhoff K. Lipids regulate the hydrolysis of membrane bound glucosylceramide by lysosomal β-glucocerebrosidase. J Lipid Res. 2017;58:563–77.
Article
CAS
Google Scholar
Atrian S, López-Viñas E, Gómez-Puertas P, Chabás A, Vilageliu L, Grinberg D. An evolutionary and structure-based docking model for glucocerebrosidase-saposin C and glucocerebrosidase-substrate interactions - relevance for Gaucher disease. Proteins. 2008;70:882–91.
Article
CAS
Google Scholar
Burns PB, Rohrich RJ, Chung KC. The Levels of Evidence and their role in Evidence-Based Medicine. Plast Reconstr Surg. 2011;128:305.
Article
CAS
Google Scholar
Hollak CEM, van Weely S, van Oers MHJ, Aerts JMFG. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest. 1994;93:1288–92.
Article
CAS
Google Scholar
van Dussen L, Hendriks EJ, Groener JEM, Boot RG, Hollak CEM, Aerts JMFG. Value of plasma chitotriosidase to assess non-neuronopathic Gaucher disease severity and progression in the era of enzyme replacement therapy. J Inherit Metab Dis. 2014;37:991–1001.
Article
Google Scholar
Stirnemann J, Vigan M, Hamroun D, Heraoui D, Rossi-Semerano L, Berger MG, et al. The French Gaucher’s disease registry: Clinical characteristics, complications and treatment of 562 patients. Orphanet J Rare Dis. 2012;7:77.
Article
Google Scholar
Deegan PB, Moran MT, McFarlane I, Schofield JP, Boot RG, Aerts JMFG, et al. Clinical evaluation of chemokine and enzymatic biomarkers of Gaucher disease. Blood Cells Mol Dis. 2005;35:259–67.
Article
CAS
Google Scholar
Raskovalova T, Deegan PB, Mistry PK, Pavlova E, Yang R, Zimran A, et al. Accuracy of chitotriosidase activity and CCL18 concentration in assessing type I Gaucher disease severity. A systematic review with meta-analysis of individual participant data. Haematologica. 2020;105:437–45.
Article
Google Scholar
Dimitriou E, Moraitou M, Cozar M, Serra-Vinardell J, Vilageliu L, Grinberg D, et al. Gaucher disease: Biochemical and molecular findings in 141 patients diagnosed in Greece. Mol Genet Metab Rep. 2020;24:100614.
Article
CAS
Google Scholar
Boot RG, Renkema GH, Verhock M, Strijland A, Bliek J, de Meulemeester TMAMO, et al. The human chitotriosidase gene—Nature of inherited enzyme deficiency. J Biol Chem. 1998;273:25680–5.
Grace ME, Balwani M, Nazarenko I, Prakash-Cheng A, Desnick RJ. Type 1 Gaucher disease: Null and hypornorphic novel chitotriosidase mutations - Implications for diagnosis and therapeutic monitoring. Hum Mutat. 2007;28:866–73.
Article
CAS
Google Scholar
Arndt S, Hobbs A, Sinclaire I, Lane AB. Chitotriosidase deficiency: A mutation update in an African population. JIMD Rep. 2013;10:11–6.
Article
Google Scholar
Lee P, Waalen J, Crain K, Smargon A, Beutler E. Human chitotriosidase polymorphisms G354R and A442V associated with reduced enzyme activity. Blood Cells Mol Dis. 2007;39:353–60.
Article
CAS
Google Scholar
Mavrikiou G, Petrou P, Georgiou T, Drousiotou A. Chitotriosidase deficiency in the Cypriot population: identification of a novel deletion in the CHIT1 gene. Clin Biochem. 2016;49:885–9.
Article
CAS
Google Scholar
Csongrádi A, Altorjay IT, Fülöp G, Enyedi A, Enyedi EE, Hajnal P, et al. Chitotriosidase gene polymorphisms and mutations limit the determination of chitotriosidase expression in sarcoidosis. Clin Chim Acta. 2021;513:50–6.
Article
Google Scholar
Guo Y, He W, Boer AM, Wevers RA, de Bruijn AM, Groener JEM, et al. Elevated plasma chitotriosidase activity in various lysosomal storage disorders. J Inherit Metab Dis. 1995;18:717–22.
Article
CAS
Google Scholar
Michelakakis H, Dimitriou E, Labadaridis I. The expanding spectrum of disorders with elevated plasma chitotriosidase activity: an update. J Inherit Metab Dis. 2004;27:705–6.
Article
CAS
Google Scholar
Brinkman J, Wijburg FA, Hollak CE, Groener JE, Verhoek M, Scheij S, et al. Plasma chitotriosidase and CCL18: early biochemical surrogate markers in type B Niemann-Pick disease. J Inherit Metab Dis. 2005;28:13–20.
Article
CAS
Google Scholar
Vedder AC, Cox-Brinkman J, Hollak CEM, Linthorst GE, Groener JEM, Helmond MTJ, et al. Plasma chitotriosidase in male Fabry patients: a marker for monitoring lipid-laden macrophages and their correction by enzyme replacement therapy. Mol Genet Metab. 2006;89:239–44.
Article
CAS
Google Scholar
Boot RG, Hollak CEM, Verhoek M, Alberts C, Jonkers RE, Aerts JM. Plasma chitotriosidase and CCL18 as surrogate markers for granulomatous macrophages in sarcoidosis. Clin Chim Acta. 2010;411:31–6.
Article
CAS
Google Scholar
Iyer A, van Eijk M, Silva E, Hatta M, Faber W, Aerts JMFG, et al. Increased chitotriosidase activity in serum of leprosy patients: Association with bacillary leprosy. Clin Immunol. 2009;131:501–9.
Article
CAS
Google Scholar
Boven LA, van Meurs M, van Zwam M, Wierenga-Wolf A, Hintzen RQ, Boot RG, et al. Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain. 2006;129:517–26.
Article
Google Scholar
Boot RG, van Achterberg TAE, van Aken BE, Renkema GH, Jacobs MJHM, Aerts JMFG, et al. Strong induction of members of the chitinase family of proteins in atherosclerosis: Chitotriosidase and human cartilage gp-39 expressed in lesion macrophages. Arterioscler Thromb Vasc Biol. 1999;19:687–94.
Article
CAS
Google Scholar
Labadaridis J, Dimitriou E, Costalos C, Aerts J, van Weely S, Donker- Koopman WE, et al. Serial chitotriosidase activity estimations in neonatal systemic candidiasis. Acta Paediatr. 1998;87:605.
Article
CAS
Google Scholar
vom Dahl S, Harzer K, Rolfs A, Albrecht B, Niederau C, Vogt C, et al. Hepatosplenomegalic lipidosis: What unless Gaucher? Adult cholesteryl ester storage disease (CESD) with anemia, mesenteric lipodystrophy, increased plasma chitotriosidase activity and a homozygous lysosomal acid lipase -1 exon 8 splice junction mutation. J Hepatol. 1999;31:741–6.
Article
Google Scholar
Moran MT, Schofield JP, Hayman AR, Shi G-P, Young E, Cox TM. Pathologic gene expression in Gaucher disease: up-regulation of cysteine proteinases including osteoclastic cathepsin K. Blood. 2000;96:1969–78.
Article
CAS
Google Scholar
Boot RG, Verhoek M, de Fost M, Hollak CEM, Maas M, Bleijlevens B, et al. Marked elevation of the chemokine CCL18/PARC in Gaucher disease: A novel surrogate marker for assessing therapeutic intervention. Blood. 2004;103:33–9.
Article
CAS
Google Scholar
Reape TJ, Rayner K, Manning CD, Gee AN, Barnette MS, Burnand KG, et al. Expression and cellular localization of the CC chemokines PARC and ELC in human atherosclerotic plaques. Am J Pathol. 1999;154:365–74.
Article
CAS
Google Scholar
Struyf S, Schutyser E, Gouwy M, Gijsbers K, Proost P, Benoit Y, et al. PARC/CCL18 Is a plasma CC chemokine with increased levels in childhood acute lymphoblastic leukemia. Am J Pathol. 2003;163:2065–75.
Article
CAS
Google Scholar
Dimitriou E, Verhoek M, Altun S, Karabatsos F, Moraitou M, Youssef J, et al. Elevated plasma chemokine CCL18/PARC in β-thalassemia. Blood Cells Mol Dis. 2005;35:328–31.
Article
CAS
Google Scholar
Dekker N, van Dussen L, Hollak CEM, Overkleeft H, Scheij S, Ghauharali K, et al. Elevated plasma glucosylsphingosine in Gaucher disease: relation to phenotype, storage cell markers, and therapeutic response. Blood. 2011;118:e118–27.
Article
Google Scholar
Beasley J, McCaw P, Zhang H, Young SP, Stiles AR. Combined analysis of plasma or serum glucosylsphingosine and globotriaosylsphingosine by UPLC-MS/MS. Clin Chim Acta. 2020;511:132–7.
Article
CAS
Google Scholar
Keatinge M, Bui H, Menke A, Chen YC, Sokol AM, Bai Q, et al. Glucocerebrosidase 1 deficient Danio rerio mirror key pathological aspects of human Gaucher disease and provide evidence of early microglial activation preceding alpha-synuclein-independent neuronal cell death. Hum Mol Genet. 2015;24:6640–52.
Article
CAS
Google Scholar
Lelieveld LT, Mirzaian M, Kuo CL, Artola M, Ferraz MJ, Peter REA, et al. Role of β-glucosidase 2 in aberrant glycosphingolipid metabolism: Model of glucocerebrosidase deficiency in zebrafish. J Lipid Res. 2019;60:1851–67.
Article
CAS
Google Scholar
Dahl M, Smith EMK, Warsi S, Rothe M, Ferraz MJ, Aerts JMFG, et al. Correction of pathology in mice displaying Gaucher disease type 1 by a clinically-applicable lentiviral vector. Mol Ther Methods Clin Dev. 2021;20:312–23.
Article
CAS
Google Scholar
Murugesan V, Chuang WL, Liu J, Lischuk A, Kacena K, Lin H, et al. Glucosylsphingosine is a key biomarker of Gaucher disease. Am J Hematol. 2016;91:1082–9.
Article
CAS
Google Scholar
Rolfs A, Giese AK, Grittner U, Mascher D, Elstein D, Zimran A, et al. Glucosylsphingosine is a highly sensitive and specific biomarker for primary diagnostic and follow-up monitoring in gaucher disease in a non-jewish, caucasian cohort of gaucher disease patients. PLoS ONE. 2013;8:e79732.
Article
Google Scholar
Revel-Vilk S, Fuller M, Zimran A. Value of glucosylsphingosine (Lyso-Gb1) as a biomarker in gaucher disease: a systematic literature review. Int J Mol Sci. 2020;21:7159.
Article
CAS
Google Scholar
van Eijk M, Ferra MJ, Boot RG, Aerts JMFG. Lyso-glycosphingolipids: Presence and consequences. Essays Biochem. 2020;64:565–78.
Article
Google Scholar
Gaspar P, Kallemeijn WW, Strijland A, Scheij S, van Eijk M, Aten J, et al. Action myoclonus-renal failure syndrome: diagnostic applications of activity-based probes and lipid analysis. J Lipid Res. 2014;55:138–45.
Article
CAS
Google Scholar
Motta M, Tatti M, Furlan F, Celato A, di Fruscio G, Polo G, et al. Clinical, biochemical and molecular characterization of prosaposin deficiency. Clin Genet. 2016;90:220–9.
Article
CAS
Google Scholar
Ferraz MJ, Marques ARA, Gaspar P, Mirzaian M, van Roomen C, Ottenhoff R, et al. Lyso-glycosphingolipid abnormalities in different murine models of lysosomal storage disorders. Mol Genet Metab. 2016;117:186–93.
Article
CAS
Google Scholar
Lieberman J, Beutler E. Elevation of serum angiotensin-converting enzyme in Gaucher’s disease. N Engl J Med. 1976;294:1442–4.
Article
CAS
Google Scholar
Silverstein E, Pertschuk LP, Friedland J. Immunofluorescent detection of angiotensin-converting enzyme (ACE) in Gaucher cells. Am J Med. 1980;69:408–10.
Article
CAS
Google Scholar
Cabrera-Salazar MA, O’Rourke E, Henderson N, Wessel H, Barranger JA. Correlation of surrogate markers of Gaucher disease. Implications for long-term follow up of enzyme replacement therapy. Clin Chim Acta. 2004;344:101–7.
Article
CAS
Google Scholar
Aerts JMF, Hollak CEM. Plasma and metabolic abnormalities in Gaucher’s disease. Baillieres Clin Haematol. 1997;10:691–709.
Article
CAS
Google Scholar
Šumarac Z, Suvajdžì N, Ignjatoviz̀ S, Majkí-Singh N, Janí D, Petakov M, et al. Biomarkers in Serbian patients with Gaucher disease. Clin Biochem. 2011;44:950–4.
Danilov SM, Tikhomirova VE, Metzger R, Naperova IA, Bukina TM, Goker-Alpan O, et al. ACE phenotyping in Gaucher disease. Mol Genet Metab. 2018;123:501–10.
Article
CAS
Google Scholar
van der Lienden MJC, Gaspar P, Boot R, Aerts JMFG, van Eijk M. Glycoprotein non-metastatic protein B: an emerging biomarker for lysosomal dysfunction in macrophages. Int J Mol Sci. 2018;20:66.
Article
Google Scholar
Beneteau-Burnat B, Baudin B. Angiotensin-converting enzyme: Clinical applications and laboratory investigations on serum and other biological fluids. Crit Rev Clin Lab Sci. 1991;28:337–56.
Article
CAS
Google Scholar
Danilov SM, Jain MS, Petukhov PA, Goldman C, DiSanto-Rose M, Vancavage R, et al. Novel ACE mutations mimicking sarcoidosis by increasing blood ACE levels. Transl Res. 2021;230:5–20.
Article
CAS
Google Scholar
Nesterovitch AB, Hogarth KD, Adarichev VA, Vinokour EI, Schwartz DE, Solway J, et al. Angiotensin I-converting enzyme mutation (Trp1197Stop) causes a dramatic increase in blood ACE. PLoS ONE. 2009;4.
Struthers AD, MacFadyen R, Fraser C, Robson J, Morton JJ, Junot C, et al. Nonadherence with angiotensin-converting enzyme inhibitor therapy: a comparison of different ways of measuring it in patients with chronic heart failure. J Am Coll Cardiol. 1999;34:2072–7.
Article
CAS
Google Scholar
Tuchman LR, Suna H, Carr JJ. Elevation of serum acid phosphatase in Gaucher’s disease. J Mt Sinai Hosp N Y. 1956;23:227–9.
CAS
Google Scholar
Lam WKW, Ted D, Li C-Y, Yam LT. Biochemical properties of tartrate-resistant acid phosphatasein serum of adultsand children. Clin Chem. 1978;24:1105.
Article
CAS
Google Scholar
Kramer G, Wegdam W, Donker-Koopman W, Ottenhoff R, Gaspar P, Verhoek M, et al. Elevation of glycoprotein nonmetastatic melanoma protein B in type 1 Gaucher disease patients and mouse models. FEBS Open Bio. 2016;6:902–13.
Article
CAS
Google Scholar
Murugesan V, Liu J, Yang R, Lin H, Lischuk A, Pastores G, et al. Validating glycoprotein non-metastatic melanoma B (gpNMB, osteoactivin), a new biomarker of Gaucher disease. Blood Cells Mol Dis. 2018;68:47–53.
Article
CAS
Google Scholar
Saville JT, McDermott BK, Chin SJ, Fletcher JM, Fuller M. Expanding the clinical utility of glucosylsphingosine for Gaucher disease. J Inherit Metab Dis. 2020;43:558–63.
Article
CAS
Google Scholar
Pacheco N, Uribe A. Enzymatic analysis of biomarkers for the monitoring of Gaucher patients in Colombia. Gene. 2013;521:129–35.
Article
CAS
Google Scholar
Rodrigues MDB, de Oliveira AC, Müller KB, Martins AM, D’Almeida V. Chitotriosidase determination in plasma and in dried blood spots: a comparison using two different substrates in a microplate assay. Clin Chim Acta. 2009;406:86–8.
Article
CAS
Google Scholar
Chaves RG, Coelho JC, Michelin-Tirelli K, Michelin-Tirelli K, Freitas Maurıcio T, de Freitas Maia Chaves E, et al. Successful screening for Gaucher disease in a high-prevalence population in tabuleirodo norte (Northeastern Brazil): A cross-sectional study. J Inherit Metab Dis. 2011;1:73–8.
Aguilera B, Ghauharali-van der Vlugt K, Helmond MTJ, Out JMM, Donker-Koopman WE, Groener JEM, et al. Transglycosidase Activity of Chitotriosidase: improved enzymatic assay for the human macrophage chitinase. J Biol Chem. 2003;278:40911–6.
Schoonhoven A, Rudensky B, Elstein D, Zimran A, Hollak CEM, Groener JE, et al. Monitoring of Gaucher patients with a novel chitotriosidase assay. Clin Chim Acta. 2007;381:136–9.
Article
CAS
Google Scholar
van Breemen MJ, Bleijlevens B, de Koster CG, Aerts JMFG. Limitations in quantitation of the biomarker CCL18 in Gaucher disease blood samples by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. Biochim Biophys Acta Proteins Proteom. 2006;1764:1626–32.
Article
Google Scholar
Polo G, Burlina AP, Ranieri E, Colucci F, Rubert L, Pascarella A, et al. Plasma and dried blood spot lysosphingolipids for the diagnosis of different sphingolipidoses: a comparative study. Clin Chem Lab Med. 2019;57:1863–74.
Article
CAS
Google Scholar
Dinur T, Bauer P, Beetz C, Kramp G, Cozma C, Iurașcu M-I, et al. Gaucher disease diagnosis using Lyso-Gb1 on dry blood spot samples: time to change the paradigm? Int J Mol Sci. 2022;23:1627.
Article
CAS
Google Scholar
Brady RO, Kanfer J, Shapiro D. The metabolism of glucocerebrosides. I purification and properties of a glucocerebroside-cleaving enzyme from spleen tissue. J Biol Chem. 1965;240:39–43.
Beutler E. Gaucher disease: new molecular approaches to diagnosis and treatment. Science. 1992;256:794–9.
Article
CAS
Google Scholar
Patrick AD. A deficiency of Glucocerebrosidase in Gaucher’s disease. Biochem J. 1965;97:17C-24C.
Article
CAS
Google Scholar
Bodamer OA, Hung C. Laboratory and genetic evaluation of Gaucher disease. Wien Med Wochenschr. 2010;160:600–4.
Article
Google Scholar
Hannon HW. Blood collection on filter paper for Newborn screening programs; approved standard. 6th ed. Wayne: Clinical and Laboratory Standards Institute; 2013.
Google Scholar
Gasparotto N, Tomanin R, Frigo AC, Niizawa G, Pasquini E, Blanco M, et al. Rapid diagnostic testing procedures for lysosomal storage disorders: alpha-glucosidase and beta-galactosidase assays on dried blood spots. Clin Chim Acta. 2009;402:38–41.
Article
CAS
Google Scholar
Adam BW, Hall EM, Sternberg M, Lim TH, Flores SR, O’Brien S, et al. The stability of markers in dried-blood spots for recommended newborn screening disorders in the United States. Clin Biochem. 2011;44:1445–50.
Article
CAS
Google Scholar
Elbin CS, Olivova P, Marashio CA, Cooper SK, Cullen E, Keutzer JM, et al. The effect of preparation, storage and shipping of dried blood spots on the activity of five lysosomal enzymes. Clin Chim Acta. 2011;412:1207–12.
Article
CAS
Google Scholar
Reuser AJ, Verheijen FW, Bali D, van Diggelen OP, Germain DP, Hwu WL, et al. The use of dried blood spot samples in the diagnosis of lysosomal storage disorders—current status and perspectives. Mol Genet Metab. 2011;104:144–8.
Article
CAS
Google Scholar
Ceci R, de Francesco PN, Mucci JM, Cancelarich LN, Fossati CA, Rozenfeld PA. Reliability of enzyme assays in dried blood spots for diagnosis of 4 lysosomal storage disorders. Adv Biol Chem. 2011;01:58–64.
Article
CAS
Google Scholar
Chamoles NA, Blanco M, Gaggioli D, Casentini C. Gaucher and Niemann-Pick diseases—enzymatic diagnosis in dried blood spots on filter paper: retrospective diagnoses in newborn-screening cards. Clin Chim Acta. 2002;317:191–7.
Article
CAS
Google Scholar
Moat SJ, George RS, Carling RS. Use of dried blood spot specimens to monitor patients with inherited metabolic disorders. Int J Neonatal Screen. 2020;26(6):26.
Article
Google Scholar
Lukacs Z, Keil A, Peters V, Kohlschütter A, Hoffmann GF, Cantz M, et al. Towards quality assurance in the determination of lysosomal enzymes: a two-centre study. J Inherit Metab Dis. 2003;26:571–81.
Article
CAS
Google Scholar
Sanders KA, Gavrilov DK, Oglesbee D, Raymond KM, Tortorelli S, Hopwood JJ, et al. A comparative effectiveness study of newborn screening methods for four lysosomal storage disorders. Int J Neonatal Screen. 2020;6:44.
Article
Google Scholar
Bender F, Burin MG, Tirelli KM, Medeiros F, de Bitencourt FH, Civallero G, et al. Newborn screening for lysosomal disorders in Brazil: a pilot study using customized fluorimetric assays. Genet Mol Biol. 2020;43:e20180334.
Article
CAS
Google Scholar
Huang Y, Jia X, Tang C, Liu S, Sheng H, Zhao X, et al. High risk screening for Gaucher disease in patients with splenomegaly and/or thrombocytopenia in China: 55 cases identified. Clin Chim Acta. 2020;506:22–7.
Article
CAS
Google Scholar
Burlina AB, Polo G, Rubert L, Gueraldi D, Cazzorla C, Duro G, et al. Implementation of second-tier tests in newborn screening for lysosomal disorders in North Eastern Italy. Int J Neonatal Screen. 2019;5:24.
Article
Google Scholar
Wasserstein MP, Caggana M, Bailey SM, Desnick RJ, Edelmann L, Estrella L, et al. The New York pilot newborn screening program for lysosomal storage diseases: report of the First 65,000 Infants. Genet Med. 2019;21:631–40.
Article
CAS
Google Scholar
Kang L, Zhan X, Gu X, Zhang H. Successful newborn screening for Gaucher disease using fluorometric assay in China. J Hum Genet. 2017;62:763–8.
Article
CAS
Google Scholar
Tortorelli S, Turgeon CT, Gavrilov DK, Oglesbee D, Raymond KM, Rinaldo P, et al. Simultaneous testing for 6 lysosomal storage disorders and x-adrenoleukodystrophy in dried blood spots by tandem mass spectrometry. Clin Chem. 2016;62:1248–54.
Article
CAS
Google Scholar
Elliott S, Buroker N, Cournoyer JJ, Potier AM, Trometer JD, Elbin C, et al. Pilot study of newborn screening for six lysosomal storage diseases using Tandem Mass Spectrometry. Mol Genet Metab. 2016;118:304–9.
Article
CAS
Google Scholar
Stroppiano M, Calevo MG, Corsolini F, Cassanello M, Cassinerio E, Lanza F, et al. Validity of β-d-glucosidase activity measured in dried blood samples for detection of potential Gaucher disease patients. Clin Biochem. 2014;47:1293–6.
Article
CAS
Google Scholar
Kolodny EH, Mumford RA. Human leukocyte acid hydrolases: Characterization of eleven lysosomal enzymes and study of reaction conditions for their automated analysis. Clin Chim Acta. 1976;70:247–57.
Article
CAS
Google Scholar
Roos D, Loos JA. Changes in the carbohydrate metabolism of mitogenicellay stimulated human peripheral lymphocytes I. Stimulation by phytohaemagglutinin. Biochim Biophys Acta Gen Subj. 1970;222:565–82.
Article
CAS
Google Scholar
Peters SP, Lee RE, Glew RH. A microassay for Gaucher’s disease. Clin Chim Acta. 1975;60:391–6.
Article
CAS
Google Scholar
Karatas M, Dogan S, Spahiu E, Ašić A, Bešić L, Turan Y. Enzyme kinetics and inhibition parameters of human leukocyte glucosylceramidase. Heliyon. 2020;6.
Skoog WA, Beck WS. Studies on the fibrinogen, dextran and phytohemagglutinin methods of isolating leukocytes. Blood. 1956;11:436–54.
Article
CAS
Google Scholar
Coelho JC, Giugliani R. Fibroblasts of skin fragments as a tool for the investigation of genetic diseases: technical recommendations. Genet Mol Biol. 2000;23:269–71.
Article
Google Scholar
Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
Article
CAS
Google Scholar
Wenger DA, Clark C, Sattler M, Wharton C. Synthetic substrate beta-glucosidase activity in leukocytes: a reproducible method for the identification of patients and carriers of Gaucher’s disease. Clin Genet. 1978;13:145–53.
Article
CAS
Google Scholar
Olivova P, Cullen E, Titlow M, Kallwass H, Barranger J, Zhang K, et al. An improved high-throughput dried blood spot screening method for Gaucher disease. Clin Chim Acta. 2008;398:163–4.
Article
CAS
Google Scholar
Chiao YB, Glew RH, Driven W, Lee RE. Comparison of various β-glucosidase assays used to diagnose Gaucher’s disease. Clin Chim Acta. 1980;105:41–50.
Article
CAS
Google Scholar
Daniels LB, Glew RH, Diven WF, Lee RE, Radin NS. An improved fluorometric leukocyte β-glucosidase assay for Gaucher’s disease. Clin Chim Acta. 1981;115:369–75.
Article
CAS
Google Scholar
Shapira E, Blitzer MG, Africk DK, Miller JB. Biochemical genetics: a laboratory manual. 1st ed. Oxford: Oxford University Press; 1989.
Google Scholar
Magalhães J, SáMiranda MC, Pinto R, Lemos M, Poenaru L. Sodium taurocholate effect on β-glucosidase activity: a new approach for identification of Gaucher disease using the synthetic substrate and leucocytes. Clin Chim Acta. 1984;141:111–8.
Article
Google Scholar
Michelin K, Wajner A, Goulart LDS, Fachel ÂA, Pereira MLS, de Mello AS, et al. Biochemical study on β-glucosidase in individuals with Gaucher’s disease and normal subjects. Clin Chim Acta. 2004;343:145–53.
Article
CAS
Google Scholar
Sista RS, Wang T, Wu N, Graham C, Eckhardt A, Bali D, et al. Rapid assays for Gaucher and Hurler diseases in dried blood spots using digital microfluidics. Mol Genet Metab. 2013;109:218–20.
Article
CAS
Google Scholar
Sista RS, Wang T, Wu N, Graham C, Eckhardt A, Winger T, et al. Multiplex newborn screening for Pompe, Fabry, Hunter, Gaucher, and Hurler diseases using a digital microfluidic platform. Clin Chim Acta. 2013;424:12–8.
Article
CAS
Google Scholar
Camargo Neto E, Schulte J, Pereira J, Bravo H, Sampaio-Filho C, Giugliani R. Neonatal screening for four lysosomal storage diseases with a digital microfluidics platform: Initial results in Brazil. Genet Mol Biol. 2018;41:414–6.
Article
Google Scholar
Hopkins P v., Campbell C, Klug T, Rogers S, Raburn-Miller J, Kiesling J. Lysosomal storage disorder screening implementation: findings from the first six months of full population pilot testing in Missouri. J Pediatr 2015;166:172–7.
Millington D, Norton S, Singh R, Sista R, Srinivasan V, Pamula V. Digital microfluidics comes of age: high-throughput screening to bedside diagnostic testing for genetic disorders in newborns. Expert Rev Mol Diagn. 2018;18:701–12.
Article
CAS
Google Scholar
Li Y, Scott CR, Chamoles NA, Ghavami A, Pinto BM, Turecek F, et al. Direct multiplex assay of lysosomal enzymes in dried blood spots for newborn screening. Clin Chem. 2004;50:1785–96.
Article
CAS
Google Scholar
Zhang XK, Elbin CS, Chuang WL, Cooper SK, Marashio CA, Beauregard C, et al. Multiplex enzyme assay screening of dried blood spots for lysosomal storage disorders by using tandem mass spectrometry. Clin Chem. 2008;54:1725–8.
Article
CAS
Google Scholar
Gelb MH, Turecek F, Scott CR, Chamoles NA. Direct multiplex assay of enzymes in dried blood spots by tandem mass spectrometry for the newborn screening of lysosomal storage disorders. J Inherit Metab Dis. 2006;29:397–404.
Article
CAS
Google Scholar
Wolf P, Alcalay RN, Liong C, Cullen E, Pauciulo MW, Nichols WC, et al. Tandem mass spectrometry assay of β-glucocerebrosidase activity in dried blood spots eliminates false positives detected in fluorescence assay. Mol Genet Metab. 2018;123:135–9.
Article
CAS
Google Scholar
Orsini JJ, Martin MM, Showers AL, Bodamer OA, Zhang XK, Gelb MH, et al. Lysosomal storage disorder 4+1 multiplex assay for newborn screening using tandem mass spectrometry: application to a small-scale population study for five lysosomal storage disorders. Clin Chim Acta. 2012;413:1270–3.
Article
CAS
Google Scholar
Stirnemann J, Belmatoug N, Camou F, Serratrice C, Froissart R, Caillaud C, et al. A review of Gaucher disease pathophysiology, clinical presentation and treatments. Int J Mol Sci. 2017;18:441.
Article
Google Scholar
Baris HN, Cohen IJ, Mistry PK. Gaucher disease: The metabolic defect, pathophysiology, phenotypes and natural history. Pediatr Endocrinol Rev. 2014;12:72–81.
Google Scholar
Fateen E, Abdallah ZY. Twenty- five years of biochemical diagnosis of Gaucher disease: the Egyptian experience. Heliyon. 2019;5:e02574.
Article
Google Scholar
Butcher BA, Gopalan V, Lee RE, Richards TC, Waggoner AS, Glew RH. Use of 4-heptylumbelliferyl-β-d-glucoside to identify Gaucher’s disease heterozygotes. Clin Chim Acta. 1989;184:235–42.
Article
CAS
Google Scholar
Mistry P, Germain DP. Phenotype variations in Gaucher disease. Rev Med Int. 2006;27(Suppl 1):S3-10.
Article
Google Scholar
Essabar L, Meskini T, Lamalmi N, Ettair S, Erreimi N, Mouane N. Gaucher’s disease: report of 11 cases with review of literature. Pan Afr Med J. 2015;20.
Blau N, Duran M, Gibson KM. Laboratory guide to the methods in biochemical genetics. 1st ed. Heidelberg: Springer; 2008.
Book
Google Scholar
Martins AM, Valadares ER, Porta G, Coelho J, Filho JS, Dudeque Pianovski MA, et al. Recommendations on Diagnosis, Treatment, and Monitoring for Gaucher Disease. J Pediatr. 2009;155.
Verma J, Thomas DC, Sharma S, Jhingan G, Singh A, Hsiao KJ, et al. Inherited metabolic disorders: quality management for laboratory diagnosis. Clin Chim Acta. 2015;447:1–7.
Article
CAS
Google Scholar
Erndim. http://cms.erndimqa.nl/Home/Lysosomal-Enzymes.aspx. Accessed 18 January 2022.
Yu C, Sun Q, Zhou H. Enzymatic screening and diagnosis of lysosomal storage diseases. N Am J Med Sci (Boston). 2013;06:186.
Article
Google Scholar
Fowler B, Burlina A, Kozich V, Vianey-Saban C. Quality of analytical performance in inherited metabolic disorders: the role of ERNDIM. J Inherit Metab Dis. 2008;31:680–9.
Article
CAS
Google Scholar
Hong CM, Ohashi T, Yu XJ, Weiler S, Barranger JA. Sequence of two alleles responsible for Gaucher disease. DNA Cell Biol. 1990;9:233–41.
Article
CAS
Google Scholar
Latham TE, Theophilus BDM, Grabowski GA, Smith FI. Heterogeneity of mutations in the acid β-glucosidase gene of Gaucher disease patients. DNA Cell Biol. 1991;10:15–21.
Article
CAS
Google Scholar
Filocamo M, Mazzotti R, Stroppiano M, Seri M, Giona F, Parenti G, et al. Analysis of the glucocerebrosidase gene and mutation profile in 144 Italian gaucher patients. Hum Mutat. 2002;20:234–5.
Article
Google Scholar
Koprivica V, Stone DL, Park JK, Callahan M, Frisch A, Cohen IJ, et al. Analysis and classification of 304 mutant alleles in patients with type 1 anti type 3 gaucher disease. Am J Hum Genet. 2000;66:1777–86.
Article
CAS
Google Scholar
Alfonso P, Cenarro A, Pérez-Calvo JI, Giralt M, Giraldo P, Pocoví M. Mutation prevalence among 51 unrelated Spanish patients with Gaucher disease: identification of 11 novel mutations. Blood Cells Mol Dis. 2001;27:882–91.
Article
CAS
Google Scholar
Miocić S, Filocamo M, Dominissini S, Montalvo ALE, Vlahovicek K, Deganuto M, et al. Identification and functional characterization of five novel mutant alleles in 58 Italian patients with Gaucher disease type 1. Hum Mutat. 2005;25:100.
Article
Google Scholar
Erdos M, Hodanova K, Taskó S, Palicz A, Stolnaja L, Dvorakova L, et al. Genetic and clinical features of patients with Gaucher disease in Hungary. Blood Cells Mol Dis. 2007;39:119–23.
Article
CAS
Google Scholar
Emre S, Gürakan F, Yüce A, Rolf A, Scott R, Özen H. Molecular analysis of Turkish Gaucher disease patients: identification of novel mutations in glucocerebrosidase (GBA) gene. Eur J Med Genet. 2008;51:315–21.
Article
Google Scholar
Mattošová S, Chandoga J, Hlavatá A, Šaligová J, Maceková D. Spectrum of GBA mutations in patients with gaucher disease from Slovakia: identification of five novel mutations. Isr Med Assoc J. 2015;17:166–70.
Google Scholar
Jeong SY, Park SJ, Kim HJ. Clinical and genetic characteristics of Korean patients with Gaucher disease. Blood Cells Mol Dis. 2011;46:11–4.
Article
CAS
Google Scholar
Ortiz-Cabrera N v., Gallego-Merlo J, Vélez-Monsalve C, de Nicolas R, Mas SF, Ayuso C, et al. Nine-year experience in Gaucher disease diagnosis at the Spanish reference center Fundación Jiménez Díaz. Mol Genet Metab Rep. 2016;9:79–85.
Feng Y, Huang Y, Tang C, Hu H, Zhao X, Sheng H, et al. Clinical and molecular characteristics of patients with Gaucher disease in Southern China. Blood Cells Mol Dis. 2018;68:30–4.
Article
CAS
Google Scholar
Sheth J, Bhavsar R, Mistri M, Pancholi D, Bavdekar A, Dalal A, et al. Gaucher disease: Single gene molecular characterization of one-hundred Indian patients reveals novel variants and the most prevalent mutation. BMC Med Genet. 2019;20.
Lepe-Balsalobre E, Santotoribio JD, Nuñez-Vazquez R, García-Morillo S, Jiménez-Arriscado P, Hernández-Arévalo P, et al. Genotype/phenotype relationship in Gaucher disease patients. Novel mutation in glucocerebrosidase gene. Clin Chem Lab Med. 2020;58:2017–24.
Duran R, McNeill A, Mehta A, Hughes D, Cox T, Deegan P, et al. Novel pathogenic mutations in the glucocerebrosidase locus. Mol Genet Metab. 2012;106:495–7.
Article
CAS
Google Scholar
Hruska KS, LaMarca ME, Scott CR, Sidransky E. Gaucher disease: Mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum Mutat. 2008;29:567–83.
Article
CAS
Google Scholar
Giraldo P, Pocoví M, Pérez-Calvo J, Rubio-Félix D, Giralt M. Report of the Spanish Gaucher’s disease registry: clinical and genetic characteristics. Haematologica. 2000;85:792–9.
CAS
Google Scholar
Cherif W, ben Turkia H, ben Rhouma F, Riahi I, Chemli J, Kefi R, et al. Gaucher disease in Tunisia: High frequency of the most common mutations. Blood Cells Mol Dis. 2009;43:161–2.
Bronstein S, Karpati M, Peleg L. An update of Gaucher mutations distribution in the Ashkenazi Jewish population: prevalence and country of origin of the Mutation R496H. Isr Med Assoc J. 2014;16:683–5.
Google Scholar
Orenstein M, Barbouth D, Bodamer OA, Weinreb NJ. Patients with type 1 Gaucher disease in South Florida, USA: Demographics, genotypes, disease severity and treatment outcomes. Orphanet J Rare Dis. 2014;9.
Grabowski GA, Zimran A, Ida H. Gaucher disease types 1 and 3: Phenotypic characterization of large populations from the ICGG Gaucher Registry. Am J Hematol. 2015;90(Suppl 1):S12–8.
Article
Google Scholar
Horowitz M, Tzuri G, Eyal N, Berebi A, Kolodny EH, Brady RO, et al. Prevalence of nine mutations among Jewish and non-Jewish Gaucher disease patients. American J Hum Genet. 1993;53:930.
Google Scholar
Beutler E, Gelbart T. Gaucher disease mutations in non-Jewish patients. Br J Haematol. 1993;85:401–5.
Article
CAS
Google Scholar
Hatton CE, Cooper A, Whitehouse C, Wraith JE. Mutation analysis in 46 British and Irish patients with Gaucher’s disease. Arch Dis Child. 1997;77:17–22.
Article
CAS
Google Scholar
Beutler E, Gelbart T. Erroneous assignment of Gaucher disease genotype as a consequence of a complete gene deletion. Hum Mutat. 1994;4:212–6.
Article
CAS
Google Scholar
Cozar M, Bembi B, Dominissini S, Zampieri S, Vilageliu L, Grinberg D, et al. Molecular characterization of a new deletion of the GBA1 gene due to an inter Alu recombination event. Mol Genet Metab. 2011;102:226–8.
Article
CAS
Google Scholar
Zampieri S, Cattarossi S, Bembi B, Dardis A. GBA analysis in next-generation era: pitfalls, challenges, and possible solutions. J Mol Diagn. 2017;19:733–41.
Article
CAS
Google Scholar
den Heijer JM, Cullen VC, Quadri M, Schmitz A, Hilt DC, Lansbury P, et al. A large-scale full GBA1 gene screening in Parkinson’s disease in the Netherlands. Mov Disord. 2020;35:1667–74.
Article
Google Scholar
den Heijer JM, Schmitz A, Lansbury P, Cullen VC, Hilt DC, Bonifati V, et al. False negatives in GBA1 sequencing due to polymerase dependent allelic imbalance. Sci Rep. 2021;11.
Málaga DR, Brusius-Facchin AC, Siebert M, Pasqualim G, Pereira MLS, de Souza CFM, et al. Sensitivity, advantages, limitations, and clinical utility of targeted next-generation sequencing panels for the diagnosis of selected lysosomal storage disorders. Genet Mol Biol. 2019;42:197–206.
Article
Google Scholar
Lee CY, Yen HY, Zhong AW, Gao H. Resolving misalignment interference for NGS-based clinical diagnostics. Hum Genet. 2021;140:477–92.
Article
Google Scholar
Muñoz G, García-Seisdedos D, Ciubotariu C, Piris-Villaespesa M, Gandía M, Martín-Moro F, et al. Early detection of lysosomal diseases by screening of cases of idiopathic splenomegaly and/or thrombocytopenia with a next-generation sequencing gene panel. JIMD Rep. 2020;51:53–61.
Article
Google Scholar
Zanetti A, D’Avanzo F, Bertoldi L, Zampieri G, Feltrin E, de Pascale F, et al. Setup and validation of a targeted next-generation sequencing approach for the diagnosis of lysosomal storage disorders. J Mol Diagn. 2020;22:488–502.
Article
CAS
Google Scholar
Zampieri S, Cattarossi S, Pavan E, Barbato A, Fiumara A, Peruzzo P, et al. Accurate molecular diagnosis of Gaucher disease using clinical exome sequencing as a first-tier test. Int J Mol Sci. 2021;22:5538.
Article
CAS
Google Scholar
Spataro N, Roca-Umbert A, Cervera-Carles L, Vallès M, Anglada R, Pagonabarraga J, et al. Detection of genomic rearrangements from targeted resequencing data in Parkinson’s disease patients. Mov Disord. 2017;32:165–9.
Article
CAS
Google Scholar
Drelichman G, Fernández Escobar N, Soberon B, Basack N, Frabasil J, Schenone A, et al. Long-read single molecule real-time (SMRT) sequencing of GBA1 locus in Gaucher disease national cohort from Argentina reveals high frequency of complex allele underlying severe skeletal phenotypes: Collaborative study from the Argentine Group for Diagnosis and Treatment of Gaucher Disease. Mol Genet Metab Rep. 2021;29.
Amico G, Grossi S, Vijzelaar R, Lanza F, Mazzotti R, Corsolini F, et al. MLPA-based approach for initial and simultaneous detection of GBA deletions and recombinant alleles in patients affected by Gaucher Disease. Mol Genet Metab. 2016;119:329–37.
Article
CAS
Google Scholar
Schnabel D, Schröder M, Sandhoff K. Mutation in the sphingolipid activator protein 2 in a patient with a variant of Gaucher disease. FEBS Lett. 1991;284:57–9.
Article
CAS
Google Scholar
Rafi MA, de Gala G, Zhang X ling, Wenger DA. Mutational analysis in a patient with a variant form of Gaucher disease caused by SAP-2 deficiency. Somat Cell Mol Genet. 1993;19:1–7.
Christomanou H, Chabás A, Pámpols T, Guardiola A. Activator protein deficient Gaucher’s disease. A second patient with the newly identified lipid storage disorder. Klin Wochenschr. 1989;67:999–1003.
Vaccaro AM, Motta M, Tatti M, Scarpa S, Masuelli L, Bhat M, et al. Saposin C mutations in Gaucher disease patients resulting in lysosomal lipid accumulation, saposin C deficiency, but normal prosaposin processing and sorting. Hum Mol Genet. 2010;19:2987–97.
Article
CAS
Google Scholar
Kang L, Zhan X, Ye J, Han L, Qiu W, Gu X, et al. A rare form of Gaucher disease resulting from saposin C deficiency. Blood Cells Mol Dis. 2018;68:60–5.
Article
CAS
Google Scholar
Tylki-Szymańska A, Czartoryska B, Vanier MT, Poorthuis BJMH, Groener JAE, Ługowska A, et al. Non-neuronopathic Gaucher disease due to saposin C deficiency. Clin Genet. 2007;72:538–42.
Article
Google Scholar
Hiraiwa M, Martin BM, Kishimoto Y, Conner GE, Tsuji S, O’Brien JS. Lysosomal proteolysis of prosaposin, the precursor of saposins (sphingolipid activator proteins): its mechanism and inhibition by ganglioside. Arch Biochem Biophys. 1997;341:17–24.
Article
CAS
Google Scholar
Vielhaber G, Hurwitz R, Sandhoff K. Biosynthesis, processing, and targeting of sphingolipid activator protein (SAP) precursor in cultured human fibroblasts. Mannose 6-phosphate receptor-independent endocytosis of SAP precursor. J Biol Chem. 1996;271:32438–46.
Article
CAS
Google Scholar
Motta M, Camerini S, Tatti M, Casella M, Torreri P, Crescenzi M, et al. Gaucher disease due to saposin C deficiency is an inherited lysosomal disease caused by rapidly degraded mutant proteins. Hum Mol Genet. 2014;23:5814–26.
Article
CAS
Google Scholar