Feillet F, van Spronsen FJ, MacDonald A, Trefz FK, Demirkol M, Giovannini M, et al. Challenges and pitfalls in the management of phenylketonuria. Pediatrics. 2010;126(2):333–41.
Article
Google Scholar
Pilotto A, Blau N, Leks E, Schulte C, Deuschl C, Zipser C, et al. Cerebrospinal fluid biogenic amines depletion and brain atrophy in adult patients with phenylketonuria. J Inherit Metab Dis. 2019;42(3):398–406.
Article
CAS
Google Scholar
Schuck PF, Malgarin F, Cararo JH, Cardoso F, Streck EL, Ferreira GC. Phenylketonuria pathophysiology: on the role of metabolic alterations. Aging Dis. 2015;6(5):390–9.
Article
Google Scholar
van Vliet D, van der Goot E, Bruinenberg VM, van Faassen M, de Blaauw P, Kema IP, et al. Large neutral amino acid supplementation as an alternative to the phenylalanine-restricted diet in adults with phenylketonuria: evidence from adult Pah-enu2 mice. J Nutr Biochem. 2018;53:20–7.
Article
Google Scholar
Veyrat-Durebex C, Debeissat C, Blasco H, Patin F, Henique H, Emond P, et al. Hyperphenylalaninemia correlated with global decrease of antioxidant genes expression in white blood cells of adult patients with phenylketonuria. JIMD Rep. 2017;37:73–83.
Article
Google Scholar
Stepien KM, Heaton R, Rankin S, Murphy A, Bentley J, Sexton D, et al. Evidence of oxidative stress and secondary mitochondrial dysfunction in metabolic and non-metabolic disorders. J Clin Med. 2017;6(7).
Article
Google Scholar
Mutze U, Beblo S, Kortz L, Matthies C, Koletzko B, Bruegel M, et al. Metabolomics of dietary fatty acid restriction in patients with phenylketonuria. PLoS One. 2012;7(8):e43021.
Article
Google Scholar
Gramer G, Haege G, Langhans CD, Schuhmann V, Burgard P, Hoffmann GF. Long-chain polyunsaturated fatty acid status in children, adolescents and adults with phenylketonuria. Prostaglandins Leukot Essent Fatty Acids. 2016;109:52–7.
Article
CAS
Google Scholar
Montoya Parra GA, Singh RH, Cetinyurek-Yavuz A, Kuhn M, MacDonald A. Status of nutrients important in brain function in phenylketonuria: a systematic review and meta-analysis. Orphanet J Rare Dis. 2018;13(1):101.
Article
Google Scholar
Jiménez B, Holmes E, Heude C, Tolson RF, Harvey N, Lodge SL, et al. Quantitative lipoprotein subclass and low molecular weight metabolite analysis in human serum and plasma by (1) H NMR spectroscopy in a multilaboratory trial. Anal Chem. 2018;90(20):11962–71.
Article
Google Scholar
Wurtz P, Wang Q, Soininen P, Kangas AJ, Fatemifar G, Tynkkynen T, et al. Metabolomic profiling of statin use and genetic inhibition of HMG-CoA reductase. J Am Coll Cardiol. 2016;67(10):1200–10.
Article
CAS
Google Scholar
van Vliet D, van Wegberg AMJ, Ahring K, Bik-Multanowski M, Blau N, Bulut FD, et al. Can untreated PKU patients escape from intellectual disability? A systematic review. Orphanet J Rare Dis. 2018;13(1):149.
Article
Google Scholar
Hermida-Ameijeiras A, Crujeiras V, Roca I, Calvo C, Leis R, Couce ML. Arterial stiffness assessment in patients with phenylketonuria. Medicine. 2017;96(51):e9322.
Article
Google Scholar
Monsonis Centelles S, Hoefsloot HCJ, Khakimov B, Ebrahimi P, Lind MV, Kristensen M, et al. Toward reliable lipoprotein particle predictions from NMR spectra of human blood: an interlaboratory ring test. Anal Chem. 2017;89(15):8004–12.
Article
CAS
Google Scholar
Castillo M, Zafra MF, Garcia-Peregrin E. Inhibition of brain and liver 3-hydroxy-3-methylglutaryl-CoA reductase and mevalonate-5-pyrophosphate decarboxylase in experimental hyperphenylalaninemia. Neurochem Res. 1988;13(6):551–5.
Article
CAS
Google Scholar
Shefer S, Tint GS, Jean-Guillaume D, Daikhin E, Kendler A, Nguyen LB, et al. Is there a relationship between 3-hydroxy-3-methylglutaryl coenzyme a reductase activity and forebrain pathology in the PKU mouse? J Neurosci Res. 2000;61(5):549–63.
Article
CAS
Google Scholar
Couce ML, Vitoria I, Aldamiz-Echevarria L, Fernandez-Marmiesse A, Roca I, Llarena M, et al. Lipid profile status and other related factors in patients with hyperphenylalaninaemia. Orphanet J Rare Dis. 2016;11(1):123.
Article
Google Scholar
Huang YW, Jian ZH, Chang HC, Nfor ON, Ko PC, Lung CC, et al. Vegan diet and blood lipid profiles: a cross-sectional study of pre and postmenopausal women. BMC Womens Health. 2014;14:55.
Article
Google Scholar
Yokoyama Y, Levin SM, Barnard ND. Association between plant-based diets and plasma lipids: a systematic review and meta-analysis. Nutr Rev. 2017;75(9):683–98.
Article
Google Scholar
Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell. 2015;161(1):161–72.
Article
CAS
Google Scholar
Horton JD, Cohen JC, Hobbs HH. PCSK9: a convertase that coordinates LDL catabolism. J Lipid Res. 2009;50(Suppl):S172–7.
Article
Google Scholar
McNutt MC, Kwon HJ, Chen C, Chen JR, Horton JD, Lagace TA. Antagonism of secreted PCSK9 increases low density lipoprotein receptor expression in HepG2 cells. J Biol Chem. 2009;284(16):10561–70.
Article
CAS
Google Scholar
Perry TL, Hansen S, Tischler B, Bunting R, Diamond S. Glutamine depletion in phenylketonuria – a possible cause of the mental defect. N Engl J Med. 1970;282(14):761–6.
Article
CAS
Google Scholar
Perry TL. Phenylketonuria and glutamine. N Engl J Med. 1970;282(26):1490.
CAS
PubMed
Google Scholar
Surtees R, Blau N. The neurochemistry of phenylketonuria. Eur J Pediatr. 2000;159(Suppl 2):S109–13.
Article
CAS
Google Scholar
Trefz F, Maillot F, Motzfeldt K, Schwarz M. Adult phenylketonuria outcome and management. Mol Genet Metab. 2011;104(Suppl):S26–30.
Article
CAS
Google Scholar
Burgard P, Bremer HJ, Buhrdel P, Clemens PC, Monch E, Przyrembel H, et al. Rationale for the German recommendations for phenylalanine level control in phenylketonuria 1997. Eur J Pediatr. 1999;158(1):46–54.
Article
CAS
Google Scholar
van Spronsen FJ, van Wegberg AM, Ahring K, Belanger-Quintana A, Blau N, Bosch AM, et al. Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol. 2017;5(9):743–56.
Article
Google Scholar
van Wegberg AMJ, MacDonald A, Ahring K, Belanger-Quintana A, Blau N, Bosch AM, et al. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis. 2017;12(1):162.
Article
Google Scholar
Hennermann JB, Roloff S, Gellermann J, Vollmer I, Windt E, Vetter B, et al. Chronic kidney disease in adolescent and adult patients with phenylketonuria. J Inherit Metab Dis. 2013;36(5):747–56.
Article
CAS
Google Scholar
Burton BK, Jones KB, Cederbaum S, Rohr F, Waisbren S, Irwin DE, et al. Prevalence of comorbid conditions among adult patients diagnosed with phenylketonuria. Mol Genet Metab. 2018;125(3):228–34.
Article
CAS
Google Scholar
Clark RV, Walker AC, O'Connor-Semmes RL, Leonard MS, Miller RR, Stimpson SA, et al. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans. J Appl Physiol. 2014;116(12):1605–13.
Article
CAS
Google Scholar
Azabdaftari A, van der Giet M, Schuchardt M, Hennermann JB, Plockinger U, Querfeld U. The cardiovascular phenotype of adult patients with phenylketonuria. Orphanet J Rare Dis. 2019;14(1):213.
Article
Google Scholar
Blasco H, Veyrat-Durebex C, Bertrand M, Patin F, Labarthe F, Henique H, et al. A multiplatform metabolomics approach to characterize plasma levels of phenylalanine and tyrosine in phenylketonuria. J Inherit Metab Dis Rep. 2017;32:69–79.
CAS
Google Scholar
Trefz KF, Muntau AC, Kohlscheen KM, Altevers J, Jacob C, Braun S, et al. Clinical burden of illness in patients with phenylketonuria (PKU) and associated comorbidities - a retrospective study of German health insurance claims data. Orphanet J Rare Dis. 2019;14(1):181.
Article
CAS
Google Scholar