Fishwick KJ, Li RA, Halley P, Deng P, Storey KG. Initiation of neuronal differentiation requires PI3-kinase/TOR signalling in the vertebrate neural tube. Dev Biol. 2010;338(2):215–25.
Article
CAS
Google Scholar
Han J, Wang B, Xiao Z, Gao Y, Zhao Y, Zhang J, et al. Mammalian target of rapamycin (mTOR) is involved in the neuronal differentiation of neural progenitors induced by insulin. Mol Cell Neurosci. 2008;39(1):118–24.
Article
CAS
Google Scholar
Dai J, Bercury KK, Macklin WB. Interaction of mTOR and Erk1/2 signaling to regulate oligodendrocyte differentiation: signaling regulating oligodendrocyte differentiation. Glia. 2014;62(12):2096–109.
Article
Google Scholar
Wong ST, Athos J, Figueroa XA, Pineda VV, Schaefer ML, Chavkin CC, et al. Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron. 1999;23(4):787–98.
Article
CAS
Google Scholar
Parsons RG, Gafford GM, Helmstetter FJ. Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons. J Neurosci. 2006;26(50):12977–83.
Article
CAS
Google Scholar
Stoica L, Zhu PJ, Huang W, Zhou H, Kozma SC, Costa-Mattioli M. Selective pharmacogenetic inhibition of mammalian target of Rapamycin complex I (mTORC1) blocks long-term synaptic plasticity and memory storage. Proc Natl Acad Sci USA. 2011;108(9):3791–6.
Article
CAS
Google Scholar
Gafford GM, Parsons RG, Helmstetter FJ. Memory accuracy predicts hippocampal mTOR pathway activation following retrieval of contextual fear memory: mTOR and Memory Accuracy. Hippocampus. 2013;23(9):842–7.
Article
CAS
Google Scholar
Jewell JL, Russell RC, Guan KL. Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol. 2013;14(3):133–9.
Article
CAS
Google Scholar
Malagelada C, Ryu EJ, Biswas SC, Jackson-Lewis V, Greene LA. RTP801 is elevated in Parkinson brain substantia Nigral neurons and mediates death in cellular models of Parkinson’s disease by a mechanism involving mammalian target of rapamycin inactivation. J Neurosci. 2006;26(39):9996–10005.
Article
CAS
Google Scholar
Swiech L, Perycz M, Malik A, Jaworski J. Role of mTOR in physiology and pathology of the nervous system. Biochim Biophys Acta BBA Proteins Proteomics. 2008;1784(1):116–32.
Article
CAS
Google Scholar
Meng XF, Yu JT, Song JH, Chi S, Tan L. Role of the mTOR signaling pathway in epilepsy. J Neurol Sci. 2013;332(1–2):4–15.
Article
CAS
Google Scholar
Bockaert J, Marin P. mTOR in brain physiology and pathologies. Physiol Rev. 2015;95(4):1157–87.
Article
CAS
Google Scholar
Baybis M, Yu J, Lee A, Golden JA, Weiner H, McKhann G, et al. mTOR cascade activation distinguishes tubers from focal cortical dysplasia. Ann Neurol. 2004;56(4):478–87.
Article
CAS
Google Scholar
Ljungberg MC, Bhattacharjee MB, Lu Y, Armstrong DL, Yoshor D, Swann JW, et al. Activation of mammalian target of rapamycin in cytomegalic neurons of human cortical dysplasia. Ann Neurol. 2006;60(4):420–9.
Article
CAS
Google Scholar
Lipton JO, Sahin M. The neurology of mTOR. Neuron. 2014;84(2):275–91.
Article
CAS
Google Scholar
van Kranenburg M, Hoogeveen-Westerveld M, Nellist M. Preliminary functional assessment and classification of DEPDC5 variants associated with focal epilepsy. Hum Mutat. 2015;36(2):200–9.
Article
Google Scholar
Møller RS, Weckhuysen S, Chipaux M, Marsan E, Taly V, Bebin EM, et al. Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy. Neurol Genet. 2016;2(6):e118.
Article
Google Scholar
Baldassari S, Picard F, Verbeek NE, van Kempen M, Brilstra EH, Lesca G, et al. The landscape of epilepsy-related GATOR1 variants. Genet Med. 2019;21(2):398–408.
Article
CAS
Google Scholar
Iffland PH, Baybis M, Barnes AE, Leventer RJ, Lockhart PJ, Crino PB. DEPDC5 and NPRL3 modulate cell size, filopodial outgrowth, and localization of mTOR in neural progenitor cells and neurons. Neurobiol Dis. 2018;114:184–93.
Article
CAS
Google Scholar
Ishida S, Picard F, Rudolf G, Noé E, Achaz G, Thomas P, et al. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat Genet. 2013;45(5):552–5.
Article
CAS
Google Scholar
Marsan E, Ishida S, Schramm A, Weckhuysen S, Muraca G, Lecas S, et al. Depdc5 knockout rat: a novel model of mTORopathy. Neurobiol Dis. 2016;89:180–9.
Article
CAS
Google Scholar
Dawson RE, Nieto Guil AF, Robertson LJ, Piltz SG, Hughes JN, Thomas PQ. Functional screening of GATOR1 complex variants reveals a role for mTORC1 deregulation in FCD and focal epilepsy. Neurobiol Dis. 2020;134:104640.
Article
CAS
Google Scholar
Baulac S, Ishida S, Marsan E, Miquel C, Biraben A, Nguyen DK, et al. Familial focal epilepsy with focal cortical dysplasia due to DEPDC 5 mutations: FCD and DEPDC5 Mutations. Ann Neurol. 2015;77(4):675–83.
Article
CAS
Google Scholar
Hu S, Knowlton RC, Watson BO, Glanowska KM, Murphy GG, Parent JM, et al. Somatic Depdc5 deletion recapitulates electroclinical features of human focal cortical dysplasia type IIA: Somatic Depdc5 deletion. Ann Neurol. 2018;84(1):140–6.
Article
CAS
Google Scholar
Ribierre T, Deleuze C, Bacq A, Baldassari S, Marsan E, Chipaux M, et al. Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes focal cortical dysplasia–associated epilepsy. J Clin Investig. 2018;128(6):2452–8.
Article
Google Scholar
Ishida S, Zhao D, Sawada Y, Hiraoka Y, Mashimo T, Tanaka K. Dorsal telencephalon-specific Nprl2 - and Nprl3 -knockout mice: novel mouse models for GATORopathy. Hum Mol Genet. 2021;ddab337.
De Fusco A, Cerullo MS, Marte A, Michetti C, Romei A, Castroflorio E, et al. Acute knockdown of Depdc5 leads to synaptic defects in mTOR-related epileptogenesis. Neurobiol Dis. 2020;139:104822.
Article
Google Scholar
Swaminathan A, Hassan-Abdi R, Renault S, Siekierska A, Riché R, Liao M, et al. Non-canonical mTOR-independent role of DEPDC5 in regulating GABAergic network development. Curr Biol. 2018;28(12):1924-1937.e5.
Article
CAS
Google Scholar
Briggs SW, Galanopoulou AS. Altered GABA signaling in early life epilepsies. Neural Plast. 2011;2011:1–16.
Article
Google Scholar
Kang JQ. Defects at the crossroads of GABAergic signaling in generalized genetic epilepsies. Epilepsy Res. 2017;137:9–18.
Article
CAS
Google Scholar
Ruffolo G, Cifelli P, Roseti C, Thom M, van Vliet EA, Limatola C, et al. A novel GABAergic dysfunction in human Dravet syndrome. Epilepsia. 2018;59(11):2106–17.
Article
CAS
Google Scholar
Stern WM, Sander JW, Rothwell JC, Sisodiya SM. Impaired intracortical inhibition demonstrated in vivo in people with Dravet syndrome. Neurology. 2017;88(17):1659–65.
Article
CAS
Google Scholar
Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 2009;459(7247):663–7.
Article
CAS
Google Scholar
Sanchez-Carpintero R, Urrestarazu E, Cieza S, Alegre M, Artieda J, Crespo-Eguilaz N, et al. Abnormal brain gamma oscillations in response to auditory stimulation in Dravet syndrome. Eur J Paediatr Neurol. 2020;24:134–41.
Article
Google Scholar
Violante IR, Patricio M, Bernardino I, Rebola J, Abrunhosa AJ, Ferreira N, et al. GABA deficiency in NF1: a multimodal [11 C]-flumazenil and spectroscopy study. Neurology. 2016;87(9):897–904.
Article
CAS
Google Scholar
Lefaucheur JP, André-Obadia N, Poulet E, Devanne H, Haffen E, Londero A, et al. Recommandations françaises sur l’utilisation de la stimulation magnétique transcrânienne répétitive (rTMS): règles de sécurité et indications thérapeutiques. Neurophysiol Clin. 2011;41(5–6):221–95.
Article
Google Scholar
Morin-Parent F, Champigny C, Lacroix A, Corbin F, Lepage JF. Hyperexcitability and impaired intracortical inhibition in patients with fragile-X syndrome. Transl Psychiatry. 2019;9(1):312.
Article
Google Scholar
Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2012;123(5):858–82.
Article
CAS
Google Scholar
Chang WH, Fried PJ, Saxena S, Jannati A, Gomes-Osman J, Kim YH, et al. Optimal number of pulses as outcome measures of neuronavigated transcranial magnetic stimulation. Clin Neurophysiol. 2016;127(8):2892–7.
Article
Google Scholar
Mescher M, Merkle H, Kirsch J, Garwood M, Gruetter R. Simultaneousin vivo spectral editing and water suppression. NMR Biomed. 1998;11(6):266–72.
Article
CAS
Google Scholar
Harris AD, Puts NAJ, Edden RAE. Tissue correction for GABA-edited MRS: considerations of voxel composition, tissue segmentation, and tissue relaxations: tissue correction for GABA-edited MRS. J Magn Reson Imaging. 2015;42(5):1431–40.
Article
Google Scholar
Ethridge LE, White SP, Mosconi MW, Wang J, Pedapati EV, Erickson CA, et al. Neural synchronization deficits linked to cortical hyper-excitability and auditory hypersensitivity in fragile X syndrome. Mol Autism. 2017;8(1):22.
Article
Google Scholar
Ethridge LE, De Stefano LA, Schmitt LM, Woodruff NE, Brown KL, Tran M, et al. Auditory EEG biomarkers in fragile X syndrome: clinical relevance. Front Integr Neurosci. 2019;9(13):60.
Article
Google Scholar
Moloney PB, Cavalleri GL, Delanty N. Epilepsy in the mTORopathies: opportunities for precision medicine. Brain Commun. 2021;3(4):fcab222.
Article
Google Scholar
Hughes J, Dawson R, Tea M, McAninch D, Piltz S, Jackson D, et al. Knockout of the epilepsy gene Depdc5 in mice causes severe embryonic dysmorphology with hyperactivity of mTORC1 signalling. Sci Rep. 2017;7(1):12618.
Article
Google Scholar
Iffland PH, Carson V, Bordey A, Crino PB. GATOR opathies: the role of amino acid regulatory gene mutations in epilepsy and cortical malformations. Epilepsia. 2019;60(11):2163–73.
Article
CAS
Google Scholar
Levy LM, Degnan AJ. GABA-based evaluation of neurologic conditions: MR spectroscopy. AJNR Am J Neuroradiol. 2013;34(2):259–65.
Article
CAS
Google Scholar
He C, Liu P, Wu Y, Chen H, Song Y, Yin J. Gamma-aminobutyric acid (GABA) changes in the hippocampus and anterior cingulate cortex in patients with temporal lobe epilepsy. Epilepsy Behav. 2021;115:107683.
Article
Google Scholar
Gong T, Liu Y, Chen Y, Lin L, Lin Y, Wang G. Focal corticarl dysplasia in epilepsy is associated with GABA increase. NeuroImage Clin. 2021;31:102763.
Article
Google Scholar
Truccolo W, Ahmed OJ, Harrison MT, Eskandar EN, Cosgrove GR, Madsen JR, et al. Neuronal ensemble synchrony during human focal seizures. J Neurosci. 2014;34(30):9927–44.
Article
CAS
Google Scholar
Makeig S, Debener S, Onton J, Delorme A. Mining event-related brain dynamics. Trends Cogn Sci. 2004;8(5):204–10.
Article
Google Scholar
Bishop DVM, Anderson M, Reid C, Fox AM. Auditory Development between 7 and 11 Years: An Event-Related Potential (ERP) Study. PLoS ONE. 2011;6(5):e18993.
Article
CAS
Google Scholar
Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev. 1999;29(2–3):169–95.
Article
CAS
Google Scholar
Pedapati EV, Schmitt LM, Ethridge LE, Liu R, Smith E, Sweeney JA, et al. Neocortical localization and thalamocortical modulation of neuronal hyperexcitability in fragile X syndrome. Neurology; 2021. https://doi.org/10.1101/2021.05.12.21256925.
Clemens B, Szigeti G, Barta Z. EEG frequency profiles of idiopathic generalised epilepsy syndromes. Epilepsy Res. 2000;42(2–3):105–15.
Article
CAS
Google Scholar
Clemens B. Pathological theta oscillations in idiopathic generalised epilepsy. Clin Neurophysiol. 2004;115(6):1436–41.
Article
Google Scholar
Wu X, Xiao CH. Quantitative pharmaco-EEG of carbamazepine in volunteers and epileptics. Clin Electroencephalogr. 1996;27(1):40–5.
Article
CAS
Google Scholar
Höller Y, Helmstaedter C, Lehnertz K. Quantitative pharmaco-electroencephalography in antiepileptic drug research. CNS Drugs. 2018;32(9):839–48.
Article
Google Scholar
Csicsvari J, Hirase H, Czurkó A, Mamiya A, Buzsáki G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J Neurosci. 1999;19(1):274–87.
Article
CAS
Google Scholar
Amilhon B, Huh CYL, Manseau F, Ducharme G, Nichol H, Adamantidis A, et al. Parvalbumin interneurons of hippocampus tune population activity at theta frequency. Neuron. 2015;86(5):1277–89.
Article
CAS
Google Scholar
Sun MK, Zhao WQ, Nelson TJ, Alkon DL. Theta rhythm of hippocampal CA1 neuron activity: gating by GABAergic synaptic depolarization. J Neurophysiol. 2001;85(1):269–79.
Article
CAS
Google Scholar
Buzsáki G, Lai-Wo SL, Vanderwolf CH. Cellular bases of hippocampal EEG in the behaving rat. Brain Res Rev. 1983;6(2):139–71.
Article
Google Scholar
Buzsáki G. Theta oscillations in the hippocampus. Neuron. 2002;33(3):325–40.
Article
Google Scholar
Chamberland S, Topolnik L. Inhibitory control of hippocampal inhibitory neurons. Front Neurosci. 2012. https://doi.org/10.3389/fnins.2012.00165/abstract.
Article
Google Scholar
Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature. 1995;378(6552):75–8.
Article
CAS
Google Scholar
Buzsáki G, Wang XJ. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35(1):203–25.
Article
Google Scholar
Penttonen M, Kamondi A, Acsády L, Buzsáki G. Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo. Eur J Neurosci. 1998;10(2):718–28.
Article
CAS
Google Scholar
Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci. 2007;8(1):45–56.
Article
CAS
Google Scholar
Antonoudiou P, Tan YL, Kontou G, Upton AL, Mann EO. Parvalbumin and somatostatin interneurons contribute to the generation of hippocampal gamma oscillations. J Neurosci. 2020;40(40):7668–87.
Article
CAS
Google Scholar
Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci. 2005;9(10):474–80.
Article
Google Scholar
Fries P. Rhythms for cognition: communication through coherence. Neuron. 2015;88(1):220–35.
Article
CAS
Google Scholar
Buzsáki G, Schomburg EW. What does gamma coherence tell us about inter-regional neural communication? Nat Neurosci. 2015;18(4):484–9.
Article
Google Scholar
Hughes JR. Gamma, fast, and ultrafast waves of the brain: their relationships with epilepsy and behavior. Epilepsy Behav. 2008;13(1):25–31.
Article
Google Scholar
Sato Y, Wong SM, Iimura Y, Ochi A, Doesburg SM, Otsubo H. Spatiotemporal changes in regularity of gamma oscillations contribute to focal ictogenesis. Sci Rep. 2017;7(1):9362.
Article
Google Scholar
Sirota A, Montgomery S, Fujisawa S, Isomura Y, Zugaro M, Buzsáki G. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron. 2008;60(4):683–97.
Article
CAS
Google Scholar
Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsaki G. Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. J Neurosci. 2012;32(2):423–35.
Article
CAS
Google Scholar
Kitchigina VF. Alterations of coherent theta and gamma network oscillations as an early biomarker of temporal lobe epilepsy and Alzheimer’s disease. Front Integr Neurosci. 2018;27(12):36.
Article
Google Scholar
Liu X, Han F, Fu R, Wang Q, Luan G. Epileptogenic zone location of temporal lobe epilepsy by cross-frequency coupling analysis. Front Neurol. 2021;16(12):764821.
Article
Google Scholar
Buzsáki G. The hippocampo-neocortical dialogue. Cereb Cortex. 1996;6(2):81–92.
Article
Google Scholar