Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep. 2014;3:481.
Article
PubMed
PubMed Central
Google Scholar
Mirza F, Canalis E. Management of endocrine disease: secondary osteoporosis: pathophysiology and management. Eur J Endocrinol. 2015;173:R131-151.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masi L, Agnusdei D, Bilezikian J, Chappard D, Chapurlat R, Cianferotti L, et al. Taxonomy of rare genetic metabolic bone disorders. Osteoporos Int. 2015;26:2529–58.
Article
CAS
PubMed
Google Scholar
de Duve C. Lysosomes, new group of cytooplasmic particles. In: Hayashi T editor Subcellular particles New-York: Ronald Press 1059; 128–159
De Duve C. From cytases to lysosomes. Fed Proc 1064; 23:1045–1049
de Duve C. Lysosomes revisited. Eur J Biochem. 1983;137:391–7.
Article
PubMed
Google Scholar
Duve C. Exploring cells with a centrifuge. Science 1075; 189:186–194
Futerman AH, van Meer G. The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol. 2004;5:554–65.
Article
CAS
PubMed
Google Scholar
Gaucher PCE. De l'epithelioma primitif de la rate, hypertrophie idiopathique de la rate sans leucémie [MD Thesis]. 1882; Paris, France.
Fabry J. Ein beitrag zur Kenntnis der Purpura haemorrhagica nodularis (purpura papulosa haemorrhagica Hebrae). Arch Dermatol Syph. 1898;43:187–200.
Article
Google Scholar
Kruer MC, Steiner RD, Griesemer DA. Lysosomal Storage Disease. 2013; Medscape
Wang RY, Bodamer OA, Watson MS, Wilcox WR; ACMG Work Group on Diagnostic Confirmation of Lysosomal Storage Diseases. Lysosomal storage diseases: diagnostic confirmation and management of presymptomatic individuals. Genet Med 2011; 13:457–484
Dingle JT. The role of lysosomal enzymes in skeletal tissues. J Bone Joint Surg Br. 1973;55:87–95.
Article
CAS
PubMed
Google Scholar
Page-Thomas DP. Lysosomal enzymes in experimental and rheumatoid arthritis. In Lysosomes in Biology and Pathology Edited by JT Dingle and HB Fell Amsterdam, Holland 1969; 2:87–110
Platt FM, Boland B, van der Spoel AC. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol. 2012;199:723–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marcucci G, Zimran A, Bembi B, Kanis J, Reginster JY, Rizzoli R, et al. Gaucher disease and bone manifestations. Calcif Tissue Int. 2014;95:477–94.
Article
CAS
PubMed
Google Scholar
Safary A, Khiavi M, Omidi Y, Rafi MA: Targeted enzyme delivery systems in disorders: an innovative form of therapy for mucopolysaccharidosis. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03135-z
Andria G, Fowler B, Sbatio G (2000) Disorders of sulfur amino acid metabolism. In: J. Fernandes et al (ed) Inborn metabolic diseases. Springer, Berlin, 18:224–231
Miles EW, Kraus JP. Cystathionineβ-synthase: structure, Function, regulation, and location of homocystinuria causing mutations. J Biol Chem. 2004;279:29871–4.
Article
CAS
PubMed
Google Scholar
Reish O, Townsend D, Berry SA, Tsai MY, King RA. Tyrosinase inhibition due to interaction of homocyst(e)ine with copper: the mechanism for reversible hypopigmentation in homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet. 1995;57:127–32.
CAS
PubMed
PubMed Central
Google Scholar
Testai FD, Gorelick PB. Inherited metabolic disorders and stroke part 2: homocystinuria, organic acidurias, and urea cycle disorders. Arch Neurol. 2010;67:148–53.
Article
PubMed
Google Scholar
Yap S. Homocystinuria due to cystathionine β-synthase deficiency. Orphanet encyclopedia, February 2005. http://wwworphanet/data/patho/GB/uk-CbSpdf
Mudd SH, Levy HL, and Kraus JP (2002) in The metabolic and molecular bases of inherited disease (Scriver, C. R., Beaudet, A. L., Valle, D., Sly, W. S., Chiles, D., Kinsler, K. W., and Vogelstein, B., eds) 8th Ed., Vol. 2, pp. 2007–2056, McGraw-Hill, Inc., New York
Kraus JP, Janosik M, Kozich V, Mandell R, Shih V, Sperandeo MP, et al. Cystathionine beta-synthase mutations in homocystinuria. Hum Mutat. 1999;13:362–75.
Article
CAS
PubMed
Google Scholar
Robert K, Maurin N, Vayssettes C, Siauve N, Janel N. Cystathionine beta synthase deficiency affects mouse endochondral ossification. Anat Rec A Discov Mol Cell Evol Biol. 2005;282:1–7.
PubMed
Google Scholar
Kriebitzsch C, Verlinden L, Eelen G, van Schoor NM, Swart K, Lips P, et al. 1,25-dihydroxyvitamin D3 influences cellular homocysteine levels in murine preosteoblastic MC3T3-E1 cells by direct regulation of cystathionine beta-synthase. J Bone Miner Res. 2011;26:2991–3000.
Article
CAS
PubMed
Google Scholar
Saposnik G, Ray JG, Sheridan P, Lonn E. Homocysteine-lowering therapy and stroke risk, severity, and disability: additional findings from the HOPE 2 trial. Stroke. 2009;40:1365–72.
Article
CAS
PubMed
Google Scholar
Majors AK, Pyeritz RE. A deficiency of cysteine impairs fibrillin-1 deposition: implications for the pathogenesis of cystathionine beta-synthase deficiency. Mol Genet Metab. 2000;70:252–60.
Article
CAS
PubMed
Google Scholar
Lim JS, Lee DH. Changes in bone mineral density and body composition of children with well-controlled homocystinuria caused by CBS deficiency. Osteoporos Int. 2013;24:2535–8.
Article
CAS
PubMed
Google Scholar
van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, van der Klift M, de Jonge R, Lindemans J, et al. Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med. 2004;350:2033–41.
Article
PubMed
Google Scholar
Morris AM, Kožich V, Santra S Andria G, Ben-Omran TI, Chakrapani AB, et al. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. J Inherit Metab Dis 2017; 40:49–74
Mistry JB, Bukhari M, Taylor AM. Alkaptonuria. Rare Dis 2013; 1:e27475
Watts RW, Watts RA. Alkaptonuria: a 60-year follow-up. Rheumatology (Oxford). 2007;46:358–9.
Article
CAS
Google Scholar
Fernández-Cañón JM, Granadino B, Beltrán-Valero de Bernabé D, Renedo M, Fernández-Ruiz E, Peñalva MA,et al. The molecular basis of alkaptonuria. Nat Genet 1996; 14:19–24.
Taylor AM, Boyde A, Wilson PJ, Jarvis JC, Jarvis JC, Davidson JS, Hunt JA, et al. The role of calcified cartilage and subchondral bone in the initiation and progression of ochronotic arthropathy in alkaptonuria. Arthritis Rheum. 2011;63:3887–96.
Article
CAS
PubMed
Google Scholar
Catterall JB, Barr D, Bolognesi M, Robert D, Zura RD, Kraus VB. Post-translational aging of proteins in osteoarthritic cartilage and synovial fluid as measured by isomerized aspartate. Arthritis Res Ther. 2009;11:R55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Phornphutkul C, Introne WJ, Perry MB, Bernardini I, Murphey MD, Fitzpatrick DL, et al. Natural history of alkaptonuria. N Engl J Med. 2002;347:2111–21.
Article
CAS
PubMed
Google Scholar
Balint G, Szebenyi B. Hereditary disorders mimicking and/or causing premature osteoarthritis. Baillieres Best Pract Res Clin Rheumatol. 2000;14:219–50.
Article
CAS
PubMed
Google Scholar
Felson DT, Neogi T. Osteoarthritis: is it a disease of cartilage or of bone? Arthritis Rheum. 2004;50:341–4.
Article
PubMed
Google Scholar
Karsdal MA, Leeming DJ, Dam EB, Henriksen K, Alexandersen P, Pastoureau P, et al. Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthritis Cartilage. 2008;16:638–46.
Article
CAS
PubMed
Google Scholar
Aliberti G, Pulignano I, Schiappoli A, Minisola S, Romagnoli E, Proietta M. Bone metabolism in ochronotic patients. J Intern Med. 2003;254:296–300.
Article
CAS
PubMed
Google Scholar
Intronea WY,. Perryb PB, Troendlec J, Tsiloud E, Kaysere Ma, Suwannarate P, et al. A 3-year randomized therapeutic trial of nitisinone in Alkaptonuria. Mol Genet Metab 2001; 103(4): 307–314
Lee YW, Lee DH, Kim ND, Lee ST, Ahn JY, Choi TY, et al. Mutation analysis of PAH gene and characterization of a recurrent deletion mutation in Korean patients with phenylketonuria. Exp Mol Med. 2008;5:533–40.
Article
CAS
Google Scholar
Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30:e57.
Article
PubMed
PubMed Central
Google Scholar
Demirdas S, Coakley KE, Bisschop PH, Hollak CE, Bosch AM, Singh RH. Bone health in phenylketonuria: a systematic review and meta-analysis. Orphanet J Rare Dis. 2015;10:17.
Article
PubMed
PubMed Central
Google Scholar
van Wegberg AMG, MacDonald A, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, et al. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis. 2017;12:162.
Article
PubMed
PubMed Central
Google Scholar
Sadeghi N, Oveisi MR, Jannat B, Jannat B, Hajimahmoodi M, Behzad M, et al. The relationship between bone health and plasma zinc, copper lead and cadmium concentration in osteoporotic women. J Environ Health Sci Eng. 2014;12:125.
Article
PubMed
PubMed Central
CAS
Google Scholar
Turnlund JR. Human whole-body copper metabolism. Am J Clin Nutr. 1998;67:960S-964S.
Article
CAS
PubMed
Google Scholar
Cartwright GE. Copper metabolism in human subjects In: McElroy WD, Glass B, eds Symposium on copper metabolism Baltimore: John Hopkins Press 1950; 274–314.
Scheinberg IH, Sternlieb I. Copper metabolism. Pharmacol Rev. 1960;12:355–81.
CAS
PubMed
Google Scholar
Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY. Function and regulation of human copper-transporting ATPases. Physiol Rev. 2007;87:1011–46.
Article
CAS
PubMed
Google Scholar
Amador E, Domene R, Fuentes C, Carreño JC, Enríquez G. Long-term skeletal findings in Menkes diseases. Pediatr Radiol. 2010;40:1426–9.
Article
PubMed
Google Scholar
Stanley PH, Gwinn JL, Sutcliffe J. The osseus abnormalities in Menkes syndrome. Ann Radiol (Paris). 1976;19:167–72.
CAS
Google Scholar
Kanumakala S, Boneh A, Zacharin M. Pamidronate treatment improves bone mineral density in children with Menkes disease. J Inherit Metab Dis. 2002;25:391–8.
Article
CAS
PubMed
Google Scholar
Ogataa R, Chonga PF, Maeda K. Long surviving classical Menkes disease treated with weekly intravenous copper therapy. J Trace Elem Med Biol. 2019;54:172–4.
Article
CAS
Google Scholar
Esmaeili L, Perez MG, Jafari M, Paquin J, Ispas-Szabo P, Pop V, et al. Copper complexes for biomedical applications: structural insights, antioxidant activity and neuron compatibility. J Inorg Biochem. 2019;192:87–97.
Article
CAS
PubMed
Google Scholar
Teradaa K, Schilskyb ML, Miuraa N, Sugiyama T. ATP7B (WND) protein. Int J Biochem Cell Biol. 1998;30:1063–7.
Article
Google Scholar
Merle U, Schaefer M, Ferenci P, Stremmel W. Clinical presentation, diagnosis and long-term outcome of Wilson’s disease: a cohort study. Gut. 2007;56:115–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiss KH, Van de Moortele M, Gotthardt DN, Pfeiffenberger J, Seessle J, Ullrich E, et al. Bone demineralisation in a large cohort of Wilson disease patients. J Inherit Metab Dis. 2015;38:949–95.
Article
PubMed
Google Scholar
Xie YZ, Zhang XZ, Xu XH, Zhen-xin Z, Yiung-kun F. Radiologic study of 42 cases of Wilson disease. Skeletal Radiol. 1985;13:114–9.
Article
CAS
PubMed
Google Scholar
Hegedus D, Ferencz V, Lakatos PL Meszaros S, Lakatos P, Horvath C, et al. Decreased bone density, elevated serum osteoprotegerin, and beta cross-laps in Wilson disease. J Bone Miner Res 2002; 17:1961–1967.
Kikuyama A, Fukuda K, Mori S, Okada M, Yamaguchi H, Hamanishi C. Hydrogen peroxide induces apoptosis of osteocytes: involvement of calcium ion and caspase activity. Calcif Tissue Int. 2002;71:243–8.
Article
CAS
PubMed
Google Scholar
Michael L. Schilsky: Wilson Disease: diagnosis, treatment, and follow-up. Clin Liver Dis - (2017) https://doi.org/10.1016/j.cld.2017.06.011
Heinz WK, Aftab A, Frederick A. WTX101 in patients newly diagnosed with Wilson disease: final results of a global, prospective phase 2 trial. Amsterdam: EASL; 2017. Late Breaking Abstract.
Brewer GJ, Askari F, Lorincz MT, Carlson M, Schilsky M, Kluin KJ, et al. Treatment of Wilson disease with ammonium tetrathiomolybdate: IV. Comparison of tetrathiomolybdate and trientine ina double-blind study of treatment of the neurologic presentation of Wilson disease. Arch Neurol 2006; 63:521–7.
(2011) Orphan Lung Disease. In: European Respiratory Society Monographs; J-F Cordier Ed 1–341.
Davies JC, Alton EW, Bush A. Cystic fibrosis. BMJ. 2007;335:1255–9.
Article
PubMed
PubMed Central
Google Scholar
Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245:1066–73.
Article
CAS
PubMed
Google Scholar
Bobadilla JL, Macek M Jr, Fine JP, Farrell PM. Cystic fibrosis: a worldwide analysis of CFTR mutations–correlation with incidence data and application to screening. Hum Mutat. 2002;19:575–606.
Article
CAS
PubMed
Google Scholar
Donaldson SH, Boucher RC. Sodium channels and cystic fibrosis. Chest. 2007;132:1631–6.
Article
CAS
PubMed
Google Scholar
Mischler EH, Chesney PJ, Chesney RW, Mazess RB. Demineralization in cystic fibrosis detected by direct photon absorptiometry. Am J Dis Child. 1979;133:632–5.
Article
CAS
PubMed
Google Scholar
Jacquot J, Delion M, Gangloff S, Braux J, Velard F. Bone disease in cystic fibrosis: new pathogenic insights opening novel therapies. Osteoporos Int. 2016;27:1401–12.
Article
CAS
PubMed
Google Scholar
Stalvey MS, Clines KL, Havasi V, McKibbin CR, Dunn LK, Chung WJ, Clines GA. Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease. PLoS One 20013; 13, 8:e80098
Shapiro BJ, Veeraraghavan S. Lung transplantation for cystic fibrosis: an update and practical considerations for referring candidates. Curr Opin Pulm Med. 1999;5:365–70.
Article
CAS
PubMed
Google Scholar
Bronckers A, Kalogeraki L, Jorna HJ, Bervoets TJ, Lyaruu DM, Zandieh-Doulabi B, et al. The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in maturation stage ameloblasts, odontoblasts and bone cells. Bone. 2010;46:1188–96.
Article
CAS
PubMed
Google Scholar
Liang H, Yang L, Ma T, Zhao Y. Functional expression of cystic fibrosis transmembrane conductance regulator in mouse chondrocytes. Clin Exp Pharmacol Physiol. 2010;37:506–8.
Article
CAS
PubMed
Google Scholar
Gimenez A, Le Henaff C, Norez C, Guillaume C, Ravoninjatovo B, Laurent-Maquin D, et al. Deficit of osteoprotegerin release by osteoblasts from a patient with cystic fibrosis. Eur Respir J. 2012;39:780–1.
Article
CAS
Google Scholar
Matsuzaki E, Hiratsuka S, Hamachi T, Takahashi-Yanaga F, Hashimoto Y, Higashi K, et al. Sphingosine-1-phosphate promotes the nuclear translocation of beta-catenin and thereby induces osteoprotegerin gene expression in osteoblast-like cell lines. Bone. 2013;55:315–24.
Article
CAS
PubMed
Google Scholar
Rogan MP, Reznikov LR, Pezzulo AA, Gansemer ND, Samuel M, Prather RS, et al. Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth. Proc Natl Acad Sci USA. 2010;107:20571–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rafeeq MM, Murad HAS. Cystic fibrosis: current therapeutic targets and future approaches. Rafeeq Murad J Transl Med. 2010;15:8.
Google Scholar
Misbahuddin M, Rafeeq and Murad Has. Cystic fibrosis: current therapeutic targets and future approaches. Refeeq Murad J Transl Med 2015; 15:84
Memorial Sloan Kettering Cancer Center
Teti A, Teitelbaum SL. Congenital disorders of bone and blood. Bone. 2019;119:71–81.
Article
PubMed
Google Scholar
Gulen T, Hagglund H, Dahlen B, Nilsson G. Mastocytosis: the puzzling clinical spectrum and challenging diagnostic aspects of an enigmatic disease. J Intern Med. 2016;279:211–28.
Article
CAS
PubMed
Google Scholar
Johnson MR, Verstovsek S, Jorgensen JL, Manshouri T, Luthra R, Jones DM, et al. Utility of the World Heath Organization classification criteria for the diagnosis of systemic mastocytosis in bone marrow. Mod Pathol. 2009;22:50–7.
Article
PubMed
Google Scholar
Nagata H, Worobec AS, Oh CK, B A Chowdhury, S Tannenbaum, Y Suzuki, et al. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologi disorder. Proc Natl Acad Sci USA 1995; 92:10560–10564
Barete S, Assous N, de Gennes C, Grandpeix C, Feger F, Palmerini F, et al. Systemic mastocytosis and bone involvement in a cohort of 75 patients. Ann Rheum Dis. 2010;69:1838–41.
Article
CAS
PubMed
Google Scholar
Vaes M, Benghiat FS, Hermine O (2017) Targeted Treatment Options in Mastocytosis. Frontiers in Medicine Vol. 4, Article 110
Rossini M, Zanotti R, Orsolini G, Tripi G, Viapiana O, Idolazzi L, et al. Prevalence, pathogenesis, and treatment options for mastocytosis-related osteoporosis. Osteoporos Int. 2016;27:2411–21.
Article
CAS
PubMed
Google Scholar
Herman M, Chaudry S. Thalassemia McMaster Pathophysiology Review 2018
Thein SL. Pathophysiology of beta thalassemia--a guide to molecular therapies. Hematology Am Soc Hematol Educ Program 2005; 31–37
De Sanctis V, Stea S, Savarino L, Scialpi V, Traina GC, Chiarelli GM, et al. Growth hormone secretion and bone histomorphometric study in thalassaemic patients with acquired skeletal dysplasia secondary to desferrioxamine. J Pediatr Endocrinol Metab. 1998;11(Suppl 3):827–33.
PubMed
Google Scholar
Voskaridou E, Terpos E. New insights into the pathophysiology and management of osteoporosis in patients with beta thalassaemia. Br J Haematol. 2004;127:127–213.
Article
CAS
PubMed
Google Scholar
Skordis N, Toumba M. Bone disease in thalassaemia major: recent advances in pathogenesis and clinical aspects. Pediatr Endocrinol Rev. 2011;8(Suppl 2):300–6.
PubMed
Google Scholar
Marcucci G, Brandi ML. Rare causes of osteoporosis. Clin Cases Miner Bone Metab. 2015;12:151–6.
PubMed
PubMed Central
Google Scholar
Morabito N, Gaudio A, Lasco A, Atteritano M, Pizzoleo MA, Cincotta M, et al. Osteoprotegerin and RANKL in the pathogenesis of thalassemia induced osteoporosis: new pieces of the puzzle. J Bone Mineral Res. 2004;19:722–7.
Article
CAS
Google Scholar
Mansouritorghabeh H. Clinical and laboratory approaches to hemophilia A. Iran J Med Sci. 2015;40:194–205.
PubMed
PubMed Central
Google Scholar
Mansouritorghabeh H, Rezaieyazdi Z. Bone density status in bleeding disorders: where are we and what needs to be done? J Bone Metab. 2017;24:201–6.
Article
PubMed
PubMed Central
Google Scholar
Oldenburg J. Optimal treatment strategies for hemophilia: achievements and limitations of current prophylactic regimens. Blood. 2015;125:2038–44.
Article
CAS
PubMed
Google Scholar
Gallacher SJ, Deighan C, Wallace AM, Cowan RA, Fraser WD, Fenner JA, et al. Association of severe haemophilia A with osteoporosis: a densitometric and biochemical study. Q J Med. 1994;87:181–6.
CAS
PubMed
Google Scholar
Iorio A, Fabbriciani G, Marcucci M, Brozzetti M, Filipponi P. Bone mineral density in haemophilia patients. A meta-analysis. Thromb Haemost. 2010;103:596–603.
Article
CAS
PubMed
Google Scholar
Booth J, Lu M, Gallo D, Ito D, ValentinO LV. Increased risk of adverse bone health outcomes in people with bleeding disorders. Blood. 2016;128:250.
Article
Google Scholar
Hathaway WE, Christian MJ, Clarke SL, Hasiba U. Comparison of continuous and intermittent Factor VIII concentrate therapy in hemophilia A. Am J Hematol. 1984;17(1):85–8.
Article
CAS
PubMed
Google Scholar
Fomi ME, Togarrati PP, Muenc MM. Progress and challenges in the development of a cell-based therapy for hemophilia A. J Thromb Haemost. 1988;12(12):1954–2196.
Article
CAS
Google Scholar
Dolana G, Bensonb G, Duffyc A. Haemophilia B: Where are we now and what does the future hold? Blood Rev 2018; 52–66
Khawaji M, Akesson K, Berntorp E. Long-term prophylaxis in severe haemophilia seems to preserve bone mineral density. Haemophilia. 2009;15:261–6.
Article
CAS
PubMed
Google Scholar
Kawar N, Alrayyes S, Compton AA, Aljewari H, Baghdan D, Yang B, Goreishi R, Mohama S. Sickle cell disease; An overview of the disease and its systemic effects. Diseases of Month https://doi.org/10.1016/j.disamonth.2018.12.008
Almeida A, Roberts I. Bone involvement in sickle cell disease. Br J Haematol. 2005;129:482–90.
Article
PubMed
Google Scholar
Osunkwo I. An update on the recent literature on sickle cell bone disease. Wolters Kluwer Health | Lippincott Williams & Wilkins (2013)
Sarrai M, Duroseau H, D‘Augustine J, Moktan S, Bellevue R. Bone mass density in adults with sickle cell disease. Br J Haematol. 2007; 136: 666–672
Khemani K, Katoch D, Krishnamurti L. Curative therapies for sickle cell disease. Ochsner Journal. 2019;19:131–7.
Article
PubMed
PubMed Central
Google Scholar
Arora R, Aggarwal S, Deme S. Ghosal hematodiaphyseal dysplasia—a concise review including an illustrative patient. Skeletal Radiol. 2015;44:447–545.
Article
PubMed
Google Scholar
Geneviève D, Proulle V, Isidor B, Bellais S, Serre V, Djouadi F, Picard C, Vignon-Savoye C, Bader-Meunier B, Blanche S, de Vernejoul M-C, Legeai-Mallet L, Fischer A-M, Le Merrer M, Dreyfus M, Gaussem P, Munnich A, Cormier-Daire V. Thromboxane synthase mutations in an increased bone density disorder (Ghosal syndrome). Nat Genet. 2008;40:284–6.
Article
PubMed
CAS
Google Scholar
Sharma R, Schwartz JE, Nalepa G. Chronic pancytopenia and increased bone density due to TBXAS1 deficiency. Blood. 2016;128:1503.
Article
Google Scholar
Sharma R, Potchanant ES, Schwartz JE, Nalepa G. Chronic steroid-response pancytopenia and increased bone density due to thromboxane synthase deficiency. Pediatr Blood Cancer. 2018;65:e26777.
Article
CAS
Google Scholar
Borzutzky ML, Reyes V, Figueroa C, García C, Cavieres M. Osteoporosis in children with severe congenital neutropenia: bone mineral density and treatment with bisphosphonates. J Pediatr Hematol Oncol. 2006;28:205–9.
Article
PubMed
Google Scholar
Rosenberg PS, Alter BP, Bolyard AA, Bonilla MA, Boxer LA, Cham B, et al. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood. 2006;107:4628–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elhasid R, Hofbauer LC, Ish-Shalom S, Ben-Arush M, Koc O, Rowe JW. Familial severe congenital neutropenia associated with infantile osteoporosis: a new entity. Am J Hematol. 2003;72:34–7.
Article
CAS
PubMed
Google Scholar
Writing Group of the Histiocyte Society. Histiocytosis syndromes in children. Lancet 1987; i: 208–209
Favara BE, Feller AC, Pauli M, Jaffe ES, Weiss LM, Arico M. Contemporary classification of histiocytic disorders. The WHO Committee On Histiocytic/Reticulum Cell Proliferations. Reclassification Working Group of the Histiocyte Society. Med Pediatr Oncol 1997; 29:157–166
Shahlaee AH (2008) Histiocytic disorders In Arceci RJ, Hann IM, Smith OP, editors Pediatric Hematology 3rd ed Hoboken, NJ: Wiley 340–35
Lian C, Lu Y. Shen S Langerhans cell histiocytosis in adults: a case report and review of the literature. Oncotarget. 2016;7:18678–83.
Article
PubMed
PubMed Central
Google Scholar
Keen RW Ischemic and infiltrative disorders. In: Primers on the Metabolic Bone Diseases and Diosrders of Mineral Metabolism Eighth Edition Wiley-Blackwell (Ed. J Rosen) 805–809
Makras P, Terpos E, Kanakis G, Papatheodorou A, Anastasilakis AD, Kokkoris P, et al. Reduced bone mineral density in adult patients with Langerhans cell histiocytosis. Pediatr Blood Cancer. 2012;58:819–22.
Article
PubMed
Google Scholar
Makras P, Polyzos SA, Anastasilakis AD, Terpos E, Kanakis G, Schini M, et al. Serum osteoprotegerin, RANKL, and Dkk-1 levels in adults with Langerhans cell histiocytosis. J Clin Endocrinol Metab. 2012;97:E618-621.
Article
CAS
PubMed
Google Scholar
Monsereenusorn C, Rodriguez-Galindo C. Clinical characteristics and treatment of langerhans cell histiocytosis. Hematol Oncol Clin North Am. 2015;29:853–73.
Article
PubMed
Google Scholar
Makras P, Salagianni M, Revelos K, Anastasilakis AD, Schini M, Tsoli M, et al. Rationale for the application of RANKL inhibition in the treatment of Langerhans cell histiocytosis. J Clin Endocrinol Metab. 2015;100:E282-286.
Article
CAS
PubMed
Google Scholar
Makras P, Tsoli M, Anastasilakis AD, Thanou M4, Kaltsas G. Denosumab for the treatment of adult multisystem Langerhans cell histiocytosis. Metabolism 2017; 69:107–111
Chester W. Lipoidgranulomatose. Virchows Arch Pathol Anat. 1930;279:561–602.
Article
Google Scholar
Diamond EL, Dagna L, Hyman DH, Cavalli G, Janku F, Estrada-Veras J, et al. Consensus guidelines for the diagnosis and clinical management of Erdheim-Chester disease. Blood. 2014;124:483–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dion E, Graef C, Miquel A, Haroche J, Wechsler B, Amoura Z, et al. Bone involvement in Erdheim-Chester disease: imaging findings including periostitis and partial epiphyseal involvement. Radiology. 2006;238:632–9.
Article
PubMed
Google Scholar
Badalian-Very G, Vergilio JA, Degar BA, MacConaill LE, Brandner B, Calicchio ML. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 2010; 116:1919–1923
Mazor RD, Manevich-Mazor M, Shoenfeld Y. Erdheim-Chester Disease: a comprehensive review of the literature. Orphanet J Rare Dis. 2013;8:137.
Article
PubMed
PubMed Central
Google Scholar
Civesa M, Simonea V, Rizzoa FM. Erdheim-Chester disease: a systematic review. Crit Rev Oncol Hematol. 2015;95(1):1–11.
Article
Google Scholar
Lloyd ME, Spector TD, Howard R. Osteoporosis in neurological disorders. J Neurol Neurosurg Psychiatry. 2000;68:543–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–8.
Article
CAS
PubMed
Google Scholar
Julu PO, Kerr AM, Apartopoulos F, Al-Rawas S, Engerstrom I, Engerstrom L, et al. Characterisation of breathing and associate central autonomic dysfunction in the Rett disorder. Arch Dis Child. 2001;85:29–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellison KA, Fill CP, Terwilliger J, DeGennaro LJ, Martin-Gallardo A, Anvret M, et al. Examination of X chromosome markers in Rett syndrome: exclusion mapping with a novel variation on multilocus linkage analysis. Am J Hum Genet. 1992;50:278–87.
CAS
PubMed
PubMed Central
Google Scholar
Jefferson AL, Woodhead HJ, Fyfe S, Briody J, Bebbington A, Strauss BJ, et al. Bone mineral content and density in Rett syndrome and their contributing factors. Pediatr Res. 2011;69:293–8.
Article
PubMed
PubMed Central
Google Scholar
Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393:386–9.
Article
CAS
PubMed
Google Scholar
Lotan M, Reves-Siesel R, Eliav-Shalev RS, Merrick J. Osteoporosis in Rett syndrome: a case study presenting a novel management intervention for severe osteoporosis. Osteoporos Int. 2013;24:3059–63.
Article
CAS
PubMed
Google Scholar
Shah RR, Bird AP. MeCP2 mutations: progress towards understanding and treating Rett syndrome. Genome Med. 2017;9:17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zanchetta MB, Scioscia MF, Zanchetta JR. Bone microarchitecture in Rett syndrome and treatment with teriparatide: a case report. Osteoporos Int. 2016;27:2873–7.
Article
CAS
PubMed
Google Scholar
Jefferson A, Leonard H, Siafarikas A, Woodhead H, Fyfe S, Ward LM, et al. Clinical guidelines for management of bone health in rett syndrome based on expert consensus and available evidence. PLoS ONE. 2016;11:e0146824.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ludecke HJ, Schaper J, Meinecke P, Momeni P, Gross S, von Holtum D, et al. Genotypic and phenotypic spectrum in tricho-rhino-phalangeal syndrome types I and III. Am J Hum Genet. 2001;68:81–91.
Article
CAS
PubMed
Google Scholar
Napierala D, Garcia-Rojas X, Sam K, Wakui K, Chen C, Mendoza-Londono R, et al. Mutations and promoter SNPs in RUNX2, a transcriptional regulator of bone formation. Mol Genet Metab. 2005;86:257–68.
Article
CAS
PubMed
Google Scholar
Macchiaiolo M, Mennini M, Digilio MC, Buonuomo PS, Lepri FR, Gnazzo M, et al. Thricho-rhino-phalangeal syndrome and severe osteoporosis: a rare association or a feature? An effective therapeutic approach with biphosphonates. Am J Med Genet A. 2014;164A(3):760–3.
Article
CAS
PubMed
Google Scholar