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Abstract 

Background:  Neurofibromatosis type 1 (NF1) is a common human genetic disease with age-dependent phenotype 
progression. The overview of clinical and radiological findings evaluated by whole-body magnetic resonance imaging 
(WBMRI) in NF1 patients < 3 years old assessed with a genetic contribution to disease progression is presented herein.

Methods:  This study included 70 clinically or genetically diagnosed NF1 patients who received WBMRI before 3 years 
old. Clinical, genetic, and radiologic features were collected by retrospective chart review. In NF1+, widely spread 
diffuse cutaneous neurofibromas, developmental delay, autism, seizure, cardiac abnormalities, hearing defect, optic 
pathway glioma, severe plexiform neurofibromas (> 3 cm in diameter, disfigurement, accompanying pain, bony 
destruction, or located para-aortic area), brain tumors, nerve root tumors, malignant peripheral nerve sheath tumors, 
moyamoya disease, and bony dysplasia were included.

Results:  The age at WBMRI was 1.6 ± 0.7 years old, and NF1 mutations were found in 66 patients (94.3%). Focal areas 
of signal intensity (FASI) were the most common WBMRI finding (66.1%), followed by optic pathway glioma (15.7%), 
spine dural ectasia (12.9%), and plexiform neurofibromas (10.0%). Plexiform neurofibromas and NF1+ were more 
prevalent in familial case (28.7% vs 5.7%, p = 0.030; 71.4% vs 30.2%, p = 0.011). Follow-up WBMRI was conducted 
in 42 patients (23 girls and 19 boys) after 1.21 ± 0.50 years. FASI and radiologic progression were more frequent in 
patients with mutations involving GTPase activating protein-related domain (77.8% vs 52.4%, p = 0.047; 46.2% vs 7.7%, 
p = 0.029).

Conclusions:  WBMRI provides important information for the clinical care for young pediatric NF1 patients. As NF1 
progresses in even these young patients, and is related to family history and the affected NF1 domains, serial evalua‑
tion with WBMRI should be assessed based on the clinical and genetic features for the patients’ best care.
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Introduction
Neurofibromatosis type 1 (NF1; OMIM#16220) is one 
of the most common genetic diseases with an inci-
dence of approximately one in 3000 individuals [1, 2]. 
It is characterized by heterogeneous involvements of 
multiple organ systems with variable expressivity [3]. 
NF1 is caused by loss of function mutations in the NF1 
gene, which is located at the 17q11.2 and encodes neu-
rofibromin [4]. Neurofibromin is a multifunctional pro-
tein that is essential for embryonic development and is 
ubiquitously expressed. However, the highest levels are 
found in the neuronal cells [5]. As a main regulator of 
the rat sarcoma virus (RAS)–mitogen-activated pro-
tein kinases (MAPK) pathway, it affects various cellular 
processes (e.g., proliferation, growth, division, survival, 
and migration) in cells of different tissues [6, 7]. Neu-
rofibromin consists of multiple domains: an N-terminal 
cysteine-serine rich domain (CSRD), a central GTPase-
activating protein-related domain (GRD) with a tubu-
lin-binding domain in N-terminus, a phospholipid- and 
protein-interaction domain, and a C-terminal domain 
[8].

NF1 is a tumor-predisposing disease with a higher 
susceptibility to several types of tumors (e.g., neurofi-
bromas, peripheral nerve sheath tumors, central nerv-
ous system gliomas, pheochromocytoma, juvenile 
myelomonocytic leukemia, and rhabdomyosarcoma) 
[9, 10]. In NF1 patients, the screening, early diagno-
sis, and long-term follow-up of various tumor types 
are important. Considering that tumors are distributed 
widely across the anatomic regions in NF1 patients, 
whole-body magnetic resonance imaging (WBMRI) 
can be suggested as the most suitable imaging modal-
ity for NF1 patients. Moreover, WBMRI is a practical 
approach not only for tumor detection but also for 
tumor burden evaluation, tumor characterization, and 
treatment response assessment [11].

The NF1 diagnosis is established according to the 
National Institutes of Health (NIH) Consensus Devel-
opment Conference diagnostic criteria in individuals 
with more than two typical clinical manifestations and/
or family history [12, 13]. Typical NF1 clinical features 
include multiple café-au lait macules (CALMs), axillary 
freckling, cutaneous neurofibromas, plexiform neurofi-
bromas (PN), Lisch nodules, optic pathway gliomas, and 
skeletal deformities [14–16]. Vascular anomalies, endo-
crine disorders, and neurodevelopmental disorders are 
also related. The NF1 clinical features are an age-depend-
ent process and continuously evolve with age.

This study focused on the clinical and radiological find-
ings of NF1 in early childhood which is scarce. The over-
view of clinical and radiological findings evaluated by 
WBMRI in NF1 patients younger than 3  years old with 
the assessment of genetic contribution to disease pro-
gression is presented herein.

Methods
Patients
This study included 70 consecutive Korean 
patients < 3  years old who are clinically or genetically 
diagnosed with NF1 between February 2017 and April 
2020 at the Department of Medical Genetics, Asan 
Medical Center Children’s Hospital, Seoul, Korea. All 
patients underwent WBMRI < 3 years old. This study was 
approved by the Institutional Review Board at the Asan 
Medical Center (IRB number 2021-1084), and appro-
priate written informed consent was obtained from the 
patient’s parents for NF1 gene testing.

Clinical data
Patient data on gender, age, inheritance mode, clinical 
and radiological findings, and molecular analysis were 
collected using retrospective chart review.

The NF1 diagnosis was established in patients who 
meet the previous NIH diagnostic criteria and/or har-
bor the heterozygous pathogenic variants in NF1 [12, 
13]. A previous report [17] subgrouped the phenotypes 
that require medical attention as NF1-plus (NF1+), which 
includes widely spread diffuse cutaneous neurofibromas, 
developmental delay, autism, seizure, cardiac abnormali-
ties, hearing defect, optic pathway glioma, severe PN 
(> 3  cm in diameter, disfigurement, accompanying pain, 
bony destruction, or located para-aortic area), brain 
tumors, nerve root tumors, malignant peripheral nerve 
sheath tumors, moyamoya disease, or bony dysplasia 
[17]. Clinical and radiological progression was defined 
as the development of the new items included in NF1+, 
their progression, or increased PN size.

Short stature was defined as a height below 2.0 stand-
ard deviation score for age and gender compared with 
the Korean population-based reference [18]. Develop-
ment was evaluated with the Korean infant and child 
development test (KICDT) [19], which was developed 
by the Development Education Enacting Subcommittee 
of the Korean Pediatrics Academy. KICDT was designed 
to assess development in five functional domains: gross 
motor, fine motor, social–personal, language, and cog-
nitive–adaptive skills. The developmental quotient 
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(DQ = (developmental age/chronological age) × 100) 
lower than 80 was regarded as abnormal development.

Whole‑body MRI and imaging analysis
3T MR imager (Ingenia, Philips Medical Systems, Best, 
The Netherlands) with an integrated body coil was used 
to acquire WBMRI in each patient. Each patient was 
examined from head to toe in the supine position. In 
the institution of this study, WBMRI for patients with 
NF1 includes the entire body (using a coronal and sagit-
tal short tau inversion recovery image) and brain (using 
axial T1- and T2-weighted images and fluid-attenuated 
inversion recovery image) imaging. Additionally, coronal 
T2-weighted images with fat suppression from bilateral 
orbits through optic chiasm were obtained to evaluate 
optic pathway abnormality. All patients were sedated 
during examination according to the institutional pro-
tocol by a pediatric anesthesiologist. Intravenous con-
trast material was not administered. Detailed imaging 
parameters are summarized in Additional file 1: Table S1. 
Moreover, WBMRI was retrospectively reviewed by a 
pediatric radiologist (HMY with over 8  years of clinical 
experience in pediatric radiology) who was blinded to the 
genetic and clinical information.

Molecular analysis
The genomic DNA was isolated from peripheral blood 
leukocytes using a Gentra Puregene Blood kit (Qiagen, 

Hilden, Germany). Sanger sequencing was performed for 
all coding 57 exons and exon–intron boundaries of NF1 
(NM_000267.3). The nested polymerase chain reaction 
(PCR) was done in each of the five long PCR products 
(6–13 kb) which was amplified using NF-1 specific prim-
ers to avoid homologous domain amplification as previ-
ously described [17]. Multiplex ligation-dependent probe 
amplification analyses were performed using SALSA 
MLPA Probemix P081 and P082 (MRC Holland, Amster-
dam, The Netherlands).

The NF1 mutations were classified according to the 
location of the variants because NF1 protein domains are 
related to different biochemical functions (Fig.  1) [20]. 
Nonsense, frameshift, or splicing mutations were consid-
ered as all subsequent domains were affected.

Statistical analysis
Two-tailed Fisher’s exact test was performed for compar-
ison of categorical variables. A P value < 0.05 was consid-
ered statistically significant. All statistical analyses were 
performed with SPSS version 21 for Windows (SPSS Inc., 
Chicago, IL, USA).

Results
Clinical characteristics and whole‑body MRI findings 
of the patients
WBMRI was performed on 70 children with NF1 (41 
girls and 29 boys) at the mean age of 1.6 ± 0.7 years. The 

Fig. 1  The locations of NF1 functional domains and the distribution of the NF1 mutations. The numbering of the domain boundaries is shown in 
amino acids. CSRD N-terminal cysteine-serine rich domain, Tub tubulin-binding domain, GRD GAP GTPase-activating protein-related domain, Sec14 
Sec14 homology-like domain, PH pleckstrin homology-like domain, Syn syndecan
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cohort included 14 familial cases, 53 sporadic cases and 3 
patients with unknown inheritance patients. The clinical 
and radiologic characteristics of these patients are shown 
in Table 1.

The most frequent NF1-related typical manifestation 
was CALMs (70/70, 100%), followed by relative macro-
cephaly (37/67, 55.2%), axillary freckling (28/62, 45.2%), 
Lisch nodules (8/25, 32.0%), and cutaneous neurofibro-
mas (7/40, 17.5%). Neurologic problems, such as devel-
opmental delay or seizure, were reported in 9.5% (4/42) 
and 5.3% (2/38) of patients, respectively. Short stature 
was reported in 2.9% (2/70) of patients. Atrial septal 
defect was reported in one patient, which was sponta-
neously closed during follow-up. Developmental delay 

(30.0% vs 3.1%, p = 0.036), PN (28.6% vs 5.7%, p = 0.030), 
and NF1+ (71.4% vs 30.2%, p = 0.011) was more com-
monly observed in familial cases (Fig. 2A).

The most frequent WBMRI finding at the first evalu-
ation was focal areas of signal intensity (FASI; 47/70, 
67.1%), followed by optic pathway glioma (11/70, 15.7%), 
bony dysplasia (10/70, 14.3%), suspicious mild spinal 
dura ectasia (9/70, 12.9%), and PN (8/70, 11.4%). Regard-
ing FASI, the cerebellum (72.3%) was the most frequently 
involved site, followed by basal ganglia (38.3%), brain-
stem (31.9%), internal capsule (23.4%), and thalamus 
(10.6%). Less frequently, FASI was also found in the left 
parietal cortex (1/47, 2.1%), dentate (1/47, 2.1%), mid-
brain (1/47, 2.1%), centrum semiovale (1/47, 2.1%), and 

Table 1  Baseline clinical and radiological findings of NF1 patients younger than 3 years old

FASI focal areas of signal intensity, MPNST malignant peripheral nerve sheath tumor

0–1 year (N = 8) 1–2 years (N = 45) 2–3 years (N = 17) p value

Gender

 Male 3/8 (37.5%) 15/45 (33.3%) 11/17 (64.7%) 0.087

Inheritance

 Familial 0 (0.0%) 7/45(15.6%) 7/17 (41.2%) 0.011

 Sporadic 6/8 (75.0%) 37/45 (82.2%) 10/17 (58.8%)

 Unknown 2/8 (25.0%) 1/45 (2.2%) 0/17 (0.0%)

Clinical findings

 Café-au lait macules 8/8 (100%) 45/45 (100%) 17/17 (100%) –

 Axillary freckling 2/5 (40.0%) 14/42 (33.3%) 12/15 (80.0%) 0.005

 Cutaneous neurofibromas 1/5 (20.0%) 4/23 (17.4%) 2/12 (16.7%) 1.000

 Relative macrocephaly 2/8 (25.0%) 22/42 (52.4%) 13/17 (76.5%) 0.052

 Lisch nodules 0/2 (0.0%) 3/10 (30.0%) 5/13 (38.5%) 0.205

 Short stature 0/8 (0.0%) 1/45 (2.2%) 1/17 (5.9%) 0.590

 Developmental delay 0/4 (0.0%) 2/26 (7.7%) 2/12 (16.7%) 0.721

 Seizure 1/3 (33.3%) 1/26 (3.8%) 0/9 (0.0%) 0.205

 Cardiac anomaly 1/2 (50.0%) 1/8 (12.5%) – 0.378

 Hearing defect – 0/12 (0.0%) 0/6 (0.0%) –

Radiologic findings

 FASI 6/8 (75.0%) 26/45 (57.8%) 15/17 (88.2%) 0.056

 Optic pathway glioma 0/8 (0.0%) 4/45 (8.9%) 7/17 (41.2%) 0.006

 Moyamoya disease 0/8 (0.0%) 1/45 (2.2%) 0/17 (0.0%) 1.000

 Aneurysm 0/8(0.0%) 0/45 (0.0%) 0/17 (0.0%) –

 Sphenoid wing dysplasia 0/8 (0.0%) 3/45 (6.7%) 2/17 (11.8%) 0.791

 Superficial neurofibromas 0/8 (0.0%) 2/45 (4.4%) 0/17 (0.0%) 1.000

 Deep localized neurofibromas 0/8 (0.0%) 2/45 (4.4%) 2/17 (11.8%) 0.574

 Plexiform neurofibromas 1/8 (12.5%) 3/45 (6.7%) 4/17 (23.5%) 0.171

 Scoliosis 0/8 (0.0%) 0/45 (0.0%) 1/17 (5.9%) 0.357

 Spinal dysplasia 0/8 (0.0%) 0/45 (0.0%) 0/17 (0.0%) –

 Spinal dural ectasia 0/8 (0.0%) 6/45 (13.3%) 3/17 (24.3%) 0.572

 Long bond dysplasia 0/8 (0.0%) 4/45 (8.9%) 2/17 (11.8%) 0.842

 MPNST 0/8 (0.0%) 0/45 (0.0%) 0/17 (0.0%) –

NF1+ 2/8 (25.0%) 13/45 (28.9%) 12/17 (70.6%) 0.008
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anterior commissure (1/47, 2.1%). The involved bony dys-
plasia sites were sphenoid wing (5/10, 50.0%), tibia and/
or fibula (4/10, 40.0%), pubis and ischium (1/10, 10.0%), 
and sacrum (1/10, 10.0%). PN located on the superficial 
areas in 4 patients (right parotid, superficial neck, left 
cheek, and right arm/left periauricular area) were visible 
and palpable on physical examination. Representative 
cases are shown in Fig. 3.

Importantly, a few cases with extraordinary mani-
festations were noted. A 1.5-year-old girl (NF1 
c.4110 + 2T > G (IVS30(+ 2)T > G)) had a germ cell 
tumor in the pelvic area with bone, lung, and lymph 
node metastasis (Fig.  4A, B). A 1.8-year-old boy (NF1 
c.1307C > A (p.S436*)) with infantile spasm, hypsarryth-
mia, and developmental arrest was diagnosed with West 
syndrome and had moyamoya disease and a horseshoe 
kidney in WBMRI (Fig.  4C). A 1.1-year-old girl (NF1 
c.6326del (p.H2110fs)) was removed cervical nerve root 
tumor causing the spinal cord compression with the neu-
rologic deficit, which was detected by WBMRI examined 
at the age of 11 months.

The remaining 11 patients (15.7%, four girls and seven 
boys; mean age, 1.4 ± 0.4 years) had no radiologic abnor-
malities related to NF1 on WBMRI. No significant differ-
ences in gender (22 males and 37 females with WBMRI 
abnormality vs seven males and four females without 

WBMRI abnormality, p = 0.181) or age (1.6 ± 0.7 years vs 
1.4 ± 0.4 years, p = 0.07) were noted between the patients 
with and without abnormalities in WBMRI.

When the frequency of the clinical phenotypes was 
analyzed according to age at WBMRI evaluation, the 
frequency of most phenotypes increased in patients 
2–3 years old. Moreover, the frequency of axillary freck-
ling, optic pathway glioma, and NF1+ significantly 
increased (P < 0.05; Table 1).

NF1 diagnosis
Fifty-two (74.3%) patients fulfilled the previous NIH 
diagnostic criteria. Among 18 patients who had CALMs 
in NIH diagnostic criteria and confirmed NF1 by 
genetic testing, 50% (4/8) of the patients were younger 
than 1  year old, and 31.1% (14/45) of the patients were 
1–2 years old. In patients who did not meet the previous 
NIH criteria, relative macrocephaly, FASI, sphenoid dura 
ectasia, spinal dura ectasia, and seizure were observed in 
nine (50.0%), eight (44.4%), six (33.3%), three (33.3%), and 
one (5.6%) patient, respectively.

In contrast, all patients met the revised diagnostic 
criteria for NF1; 66 patients with at least CALMs and 
heterozygous pathogenic NF1 variants; 3 patients with 
CALMs and axillary freckling; 1 patient with CALMs and 
a positive family history.

Fig. 2  The frequency of clinical and radiologic manifestations according to inheritance (A), mutation type (B), and affected domains by NF1 
mutations (C, D)
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Molecular findings and genotype–phenotype correlation
Long-range PCR and sequencing of gDNA and MLPA 
analyses identified NF1 mutations in 87.1% and 7.1% of 
patients, respectively. The mutation type distributions 

were frameshift mutations (N = 21, 31.8%), non-
sense mutations (N = 16, 24.2%), missense mutations 
(N = 13, 19.7%), splice-site mutations (N = 11, 16.7%), 
and large deletions (N = 5, 7.6%; Fig. 1). Deep localized 

Fig. 3  A, B A 2.67-year-old boy with genetically confirmed NF1 (NF1 c.3212del (p.A1071fs)). T2 hyperintensity and focal areas of signal intensity 
(FASI) were noted in the left globus pallidus, right thalamus, pons, left middle cerebellar peduncle, and bilateral cerebellar white matter (arrows). 
C, D A 2.75-years-old male with genetically confirmed NF1 (NF1 c.95_96insGTAT (p.K33fs)). C Image from whole-body coronal short tau inversion 
recovery showed plexiform neurofibromas at the bilateral cervical spinal nerve roots with mass effect to the dural sac (arrows). Thoracic scoliosis 
with right-sided convexity (thick arrow) was also noted. D Axial T2WI of the brain showed bilateral sphenoid dysplasia (more severe in the left side) 
with anterior bulging of the bilateral temporal lobe and left proptosis
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neurofibroma was more prevalent in missense muta-
tions than other mutation types (Fig. 2B).

The NF1 functional domains affected by each NF1 
mutation were assessed. Syn domain was most com-
monly affected (52/66, 78.8%), followed by pleckstrin 
homology (PH; 46/66, 69.7%), GRD (45/66, 68.2%), 
Sec14 homology-like domain (SEC14; 44/66, 67.5%), 
tubulin binding (35/66, 53.0%), and CSRD (26/66, 
39.4%) domains. The frequency of phenotypes were 
assessed according to the affected domains, and FASI 
was more prevalent (77.8% vs 52.4%, p = 0.047; Fig. 2C, 
Additional file 1: Table S2) in patients with NF1 muta-
tion affecting GRD involvement.

Progression during follow‑up
Follow-up MRI was performed in 42 (60.0%) patients (23 
girls and 19 boys; mean age, 2.78 ± 0.91 years). The mean 
duration between the baseline and follow-up MRIs was 
1.21 ± 0.50 years. In addition, 19 (45.2%) patients exhib-
ited progression during follow-up: clinical, radiologi-
cal, and both clinical and radiological progressions were 

shown in six, nine, and four patients, respectively. The 
detailed clinical and radiological findings of the patients 
who showed progression during follow-up are summa-
rized in Additional file  1: Table  S3 and a representative 
case was shown in Additional file 2: Fig. S1. The common 
phenotypes exhibiting progression were developmental 
delay in language (N = 7) or fine motor (N = 3) accord-
ing to KICDT. The patient with West syndrome did not 
achieve any developmental milestones during follow-up. 
In the follow-up WBMRI, the radiologic aspects, optic 
nerve signal change or thickening, were newly developed 
in eight patients. Additionally, optic nerve signal change 
and severe PN (one patient), severe PN and diffuse super-
ficial neurofibroma (one patient), nerve root tumor (one 
patient), brain tumor on pons (one patient), and neuro-
blastoma in the left adrenal gland (one patient) were also 
newly developed.

Clinical and genotypic features were compared between 
patients experiencing or not experiencing disease pro-
gression. Gender, inheritance mode, and mutations type 
were not associated with disease progression. However, 

Fig. 4  A, B A 1.41-year-old girl with genetically confirmed NF1 (NF1 c.4110 + 2T > G (IVS30(+ 2)T > G)). A Sagittal short tau inversion recovery (STIR) 
shows a large sacrococcygeal mass (white asterisk) which was a malignant germ cell tumor (yolk sac tumor) and multiple metastatic bone lesions 
(arrows). The urinary bladder (black asterisk) is markedly distended probably due to bladder outlet obstruction caused by the mass. B On coronal 
STIR images, lung (arrows) and lymph nodes metastasis (broken arrows) were noted. C A 1.75-year-old boy with NF1 (NF1 c.1307C > A (p.S436*)) 
was diagnosed with West syndrome. Coronal T2WI with fat suppression depicts segmental luminal narrowing of the left middle cerebral artery with 
multiple basal collaterals (arrows). A horseshoe kidney (not shown) was also noted on WBMRI
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disease progression was observed in higher proportion 
in patients with NF1 mutation affecting GRD (61.5% vs 
15.8%, p = 0.041), SEC (64.0% vs 21.4%, p = 0.019), and 
PH (64.0% vs 21.4%, p = 0.019) domains. Radiological 
progression was especially more frequently observed in 
patients with NF1 mutations affecting the GRD domain 
(46.2% vs. 7.7%, p = 0.029; Fig.  2D), whereas no signifi-
cant differences were observed among those with NF1 
mutations affecting other domains. No significant differ-
ences were noted in the prevalence of clinical progression 
among the affected domains of NF1 mutations.

Discussion
The current study investigates the clinical character-
istics and WBMRI findings of NF1 patients younger 
than 3  years old and their genetic contribution to clini-
cal severity and progression. Its diagnosis is suggested 
mainly based on clinical suspicion because typical NF1 
features evolve with the age-related process, and only 
half of the patients fulfilled the previous NIH diagnostic 
criteria by 1  year old. Indeed, the diagnosis would not 
have been confirmed in about 25% of the patients in the 
current study if genetic testing was not done. Whereas, 
the revised diagnostic criteria, which included the patho-
genic variants of NF1 as a new item, confirmed the diag-
nosis of NF1 in all patients under 3 years of age and led 
to the early recognition. A risk exists where some pediat-
ric NF1 patients may remain undiagnosed and lose criti-
cal time for therapeutic intervention to prevent severe, 
irreversible complications. Thus, the detailed clinical, 
radiological, and genetic evaluation of these young NF1 
patients (< 3 years old) provides some new and important 
insights into the general but precise care of NF1 in pedi-
atric patients.

The current study expected, even in these young ages, 
that the clinical features including axillary freckling, optic 
pathway gliomas, and NF1+ evolved as age increases. 
Importantly, these features became more obvious in 
patients with a positive family history. Delayed devel-
opment, PN, and skeletal abnormalities (e.g., sphenoid 
wing, long bone dysplasia, and scoliosis) also became 
more prevalent, although statistical significance was not 
achieved due to the small number of patients.

In NF1 patients, learning disability or behavior prob-
lems are relatively common and vary from 30 to 80% 
in frequency [21–23]. Yet, flank intellectual disability 
is uncommon. Its prevalence in the current study was 
relatively low because the initial evaluation was done 
by parents’ reports. However, KICDT revealed clinical 
progression related to developmental delay. In addition, 
most patients (9/10) showed a mild delay in language or 
fine motor domain with 70–75 of DQ, but severe retarda-
tion was noted in one patient with West syndrome.

Optic pathway gliomas are the most important cen-
tral nervous system-associated tumors in NF1 patients 
younger than 6  years old (median age of presentation, 
4.2 years old) [24]. Histologically, they are slow-growing 
benign tumors with a low risk of malignancy. However, 
they become symptomatic due to the space-occupying 
location [25, 26]. They can cause a rapid onset of prop-
tosis with decreased visual acuity and lead to precocious 
puberty when located on the optic chiasm [26]. An oph-
thalmologic examination should be performed at least 
annually until 13  years old. However, routine screening 
and surveillance of the optic nerve and pathways by MRI 
in young NF1 patients without symptoms is controversial 
and not recommended [27, 28]. Detailed ophthalmologic 
examination is not easy in these young patients who sel-
dom complain of visual symptoms. The current study 
found optic pathway glioma in 15.7% of patients and with 
some patients experiencing new development of optic 
pathway glioma during follow-up evaluation of WBMRI. 
With these regards, it should be seriously considered that 
the serial (maybe annual) WBMRI including optic path-
way visualization may be necessary for young pediatric 
patients even though they do not show overt ophthalmo-
logical manifestations.

Various types of neurofibromas are classic NF1 mani-
festations. Cutaneous neurofibromas typically appear 
in adolescence, while PN often is detected early in 
childhood and is supposed to be congenital lesions [27, 
29]. PN arises from one or multiple nerve trunks or 
branches that may be asymptomatic or can also cause 
significant morbidity including pain, adjacent structure 
compressions, and malignant transformation risks [30, 
31]. Surgical PN excision is usually challenging due to 
interdigitating of tumors on adjacent structures and 
peripheral nerves as well as the extensive vascular-
ity that can result in life-threatening hemorrhage [32]. 
The current observation suggests that about one-third 
of NF1 patients already have PN by 3  years old and 
progressive growth can be observed. Recently, there 
have been advancements in the medical therapy of 
various NF1 tumors including PN. Selumetinib, an oral 
selective MEK inhibitor, decreases PN and improves 
PN-related complications (e.g., pain, a limitation of 
physical activity and quality of life) [33]. Furthermore, 
serious complications associated with NF1 (e.g., germ 
cell tumor, brain stem glioma, and adrenal gland neu-
roblastoma) were also observed. Thus, WBMRI is not 
only an efficient method of detecting brain, optic nerve, 
and vascular abnormalities as well as internal tumors 
at initial and follow-up evaluation, but it also allows an 
accurate tumor response assessment to a new medi-
cal therapy without ionizing radiation exposure [11, 
34]. Meanwhile, there are concerns about the risk of 



Page 9 of 11Kang et al. Orphanet Journal of Rare Diseases           (2022) 17:24 	

sedation and/or anesthesia in young children and fur-
ther studies are required to assess the risks and the 
benefits of WBMRI in young NF1 children.

Most NF1 patients are diagnosed in childhood and 
even in infancy. Thus, parents are worried about the 
prognosis of their child. Predicting the natural course of 
each patient is difficult because NF1 is a lifelong evolv-
ing disease and a highly penetrant with variable expres-
sivity. Due to the high spontaneous mutation rates across 
the NF1 gene, more than 3000 different germline muta-
tions have been identified with the extreme diversity of 
the NF1 mutational spectrum [8, 35].

Identification of overall genotype–phenotype cor-
relation may help provide information that can predict 
the prognosis. In the current study, missense mutations 
were associated with deep localizing tumors at initial 
evaluation. Several specific genotype–phenotype corre-
lations have been reported. NF1 whole gene deletion is 
associated with facial dysmorphism and intellectual dis-
ability; missense variants affecting codon 844–848 were 
more prevalent in PN, symptomatic spinal neurofibro-
mas, optic pathway gliomas, and skeletal abnormalities; 
c.2970_2972delAAT is a milder phenotype without neu-
rofibromas; and missense variants affecting Met1149, 
Arg1276, Lys1423, and Arg1809 are associated with 
milder phenotype with Noonan-like features [36–41]. 
Moreover, these specific genotype–phenotype correla-
tions and the impact of mutation types on phenotypes 
were also reported. Our recent study reported that NF1+ 
was more prevalent and the number of items included 
in NF1+ was higher in patients with truncating/splicing 
mutations and large deletions [17].

In the current study, the association between radio-
logical findings and the NF1 functional domain affected 
by mutations were newly revealed in young pediatric 
patients because of high FASI frequency and radiologic 
progression which included newly developed optic path-
way glioma, PN, and tumors. Neurofibromin modulates 
cell proliferation and differentiation by regulating the 
RAS signaling pathway. GRD is a catalytic domain of 
neurofibromin, which negatively regulates the RAS–
MAPK signaling pathway by promoting the hydrolysis of 
the active form of RAS-GTP to an inactive form of RAS-
GDP [6, 42]. Haploinsufficiency (Nf1+/−) or loss (Nf1−/−) 
of neurofibromin expression in neural stem cells showed 
growth and survival advantage with abnormal astro-
glial cell differentiation, which was rescued by the GRD 
expression [43].

A limitation of this study is that some clinical data were 
not evaluated or missed due to its retrospective nature. 
In particular, development assessment at initial evalu-
ation was done by parents’ reports, which would have 
affected the relatively low prevalence of developmental 

delay in the patient cohort. Nevertheless, the findings of 
this study will improve the perception of the manifesta-
tions and genotype–phenotype correlation of NF1 in 
young children considering that WBMRI was performed 
in all participants and reviewed by an experienced pedi-
atric radiologist.

Conclusions
In conclusion, the current study provided some novel 
and important insights into the clinical and radiological 
manifestations in young pediatric NF1 patients evaluated 
by serial WBMRI and positive family history and genetic 
factors. In addition, the functional domain affected by 
NF1 mutation (GRD domain in particular) contributes to 
the development of severe phenotype or disease progres-
sion. Future studies with long-term follow-up analysis in 
a larger patient cohort will provide a further understand-
ing of its natural course and clinical and genetic contrib-
uting factors in young NF1 patients.
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