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Abstract 

Background:  Fabry disease (FD) is a rare genetic disorder characterized by glycosphingolipid accumulation and 
progressive damage across multiple organ systems. Due to its heterogeneous presentation, the condition is likely 
significantly underdiagnosed. Several approaches, including provider education efforts and newborn screening, have 
attempted to address underdiagnosis of FD across the age spectrum, with limited success. Artificial intelligence (AI) 
methods present another option for improving diagnosis. These methods isolate common health history patterns 
among patients using longitudinal real-world data, and can be particularly useful when patients experience non-
specific, heterogeneous symptoms over time. In this study, the performance of an AI tool in identifying patients with 
FD was analyzed. The tool was calibrated using de-identified health record data from a large cohort of nearly 5000 
FD patients, and extracted phenotypic patterns from these records. The tool then used this FD pattern information 
to make individual-level estimates of FD in a testing dataset. Patterns were reviewed and confirmed with medical 
experts.

Results:  The AI tool demonstrated strong analytic performance in identifying FD patients. In out-of-sample test-
ing, it achieved an area under the receiver operating characteristic curve (AUROC) of 0.82. Strong performance was 
maintained when testing on male-only and female-only cohorts, with AUROCs of 0.83 and 0.82 respectively. The tool 
identified small segments of the population with greatly increased prevalence of FD: in the 1% of the population 
identified by the tool as at highest risk, FD was 23.9 times more prevalent than in the population overall. The AI algo-
rithm used hundreds of phenotypic signals to make predictions and included both familiar symptoms associated with 
FD (e.g. renal manifestations) as well as less well-studied characteristics.

Conclusions:  The AI tool analyzed in this study performed very well in identifying Fabry disease patients using 
structured medical history data. Performance was maintained in all-male and all-female cohorts, and the phenotypic 
manifestations of FD highlighted by the tool were reviewed and confirmed by clinical experts in the condition. The 
platform’s analytic performance, transparency, and ability to generate predictions based on existing real-world health 
data may allow it to contribute to reducing persistent underdiagnosis of Fabry disease.
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Background
Fabry disease is an inherited X-linked disorder caused 
by mutations in the GLA gene that result in deficient 
or absent lysosomal α-Gal A activity, and intracellu-
lar accumulation of globotriaosylceramide (Gb3) and 
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related glycosphingolipids [1–3]. The condition is pro-
gressive, due to the cumulative damage done to multiple 
organ systems, especially the heart, kidney and central 
and peripheral nervous systems [4]. Fabry disease var-
ies substantially in age of onset and clinical presenta-
tion. ‘Classic’ Fabry disease is associated with onset in 
younger males who first experience neuropathic pain and 
gastrointestinal symptoms, including abdominal pain 
and diarrhea, and renal function deterioration. Patients 
also experience cardiac signs and symptoms (including 
arrhythmias, myocardial fibrosis, and left ventricular 
hypertrophy), and frequently suffer strokes and transient 
ischemic attacks. Later onset Fabry disease affects male 
and female patients. The presentation can be heterog-
enous including a range of symptoms including cardiac, 
central nervous system (CNS) and renal involvement, 
mood disorders, hearing loss, neuropathic pain and gas-
trointestinal (GI) symptoms [5]. Later onset symptoms 
vary in severity, and progress at different rates. Across 
the spectrum of Fabry disease, cardiac disease accounts 
for the majority of deaths in Fabry disease patients [6]. 
Although Fabry disease was once thought to exclusively 
affect males, both male and female patients may experi-
ence severe clinical manifestations [7].

Estimates of Fabry disease prevalence vary substan-
tially, ranging in occurrence from 1 in 40,000 to 1 in 
117,000 live births worldwide [8]. However, due to the 
variations in multisystemic clinical manifestations, Fabry 
disease remains substantially underdiagnosed [9]. The 
challenge of reaching a diagnosis for the full range of 
patients is made more difficult by a general lack of aware-
ness among clinicians of the true variability in Fabry dis-
ease presentation [10]. Definitive diagnosis is achieved 
only through measured deficiency in ɑ-galactosidase A in 
males or by detection of a pathogenic GLA mutation [10]. 
The multisystemic nature of the disease’s manifestations 
compounded by lack of awareness has led to an unmet 
need as patients often experience significant delays 
between symptom onset and diagnosis, with symptoms 
frequently first occurring in childhood or early adoles-
cence but formal diagnosis frequently reached only in 
patients’ 20’s or 30’s [11].

Prior efforts to improve rates of diagnosis of Fabry dis-
ease and to shorten time-to-diagnosis have been made. 
Education among healthcare providers to improve famili-
arity with and awareness of symptoms and disease trajec-
tory has been expanded, with some success in increasing 
screening and eventual diagnosis rates [12]. Newborn 
screening for Fabry disease has been implemented in 
Taiwan, and some US states. Screening programs have 
detected GLA mutations at much higher rates than cur-
rent estimates of Fabry disease prevalence in the general 
population, though not all mutations necessarily result 

in development of clinically significant Fabry disease [13, 
14]. Finally, patient identification through screening of 
patients with certain conditions associated with Fabry 
disease (e.g., hypertrophic cardiomyopathy, renal failure) 
has been attempted [15, 16]. While frequently effective in 
identifying patients, this method relies on symptoms that 
only become evident once the disease has progressed 
substantially. In all efforts to diagnose Fabry disease 
patients, identifying the first case of the condition within 
a family is crucial. Other close relatives of the index case 
patient may be at much greater likelihood of having the 
disease, and can be evaluated accordingly.

Artificial intelligence (AI) provides a different approach 
for patient identification. AI methods isolate statisti-
cal patterns in large datasets and have been successfully 
used to predict patient outcomes in clinical settings 
[17]. These methods can function as ‘general [electronic 
health record] pattern recognition experts’ [18] and are 
especially useful in analyzing highly heterogeneous dis-
eases where patients exhibit wide ranges of symptoms 
and clinical findings over long periods of time. Using AI 
methods for disease identification relies on assessing the 
presence of phenotypic patterns in the medical history 
of an undiagnosed patient to estimate likelihood of dis-
ease. These patterns can be learned from known Fabry 
disease patients’ medical histories. Though clinical appli-
cations of this technology are still nascent, AI methods 
have demonstrated strong performance in patient identi-
fication across a range of fields, including ophthalmology, 
neurology, cardiology, gastroenterology, and hepatology, 
among others [19–22].

Here, we describe an AI tool used to identify patients 
with Fabry disease. The tool (OM1 Patient Finder™, OM1 
Inc., Boston, MA) was examined to determine its ability 
to identify Fabry disease cases using health history data. 
In addition to assessing statistical performance, includ-
ing in men and women separately, the tool’s use of differ-
ent features in healthcare records was studied to evaluate 
correspondence with known clinical signs and symptoms 
of the disease.

Methods
The data used in this study were drawn from a large 
cloud-based curated dataset (the OM1 Real World Data 
Cloud, OM1, Inc, Boston, MA). This dataset is derived 
from deterministically linked, de-identified, patient-level 
health care claims, EMR, and other data, and includes 
medication history and prescription information, labora-
tory results, symptoms and signs, procedures, and diag-
noses. Additional medical and pharmacy claims data are 
linked to these clinical data to provide further informa-
tion regarding patients’ clinical care. These data cover 
January 1, 2013 to the present day, and represent patients 
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with a wide age and geographic distribution (including 
patients from all 50 U.S. states). Use of these de-identified 
data to study patient characteristics and outcomes in ret-
rospective, non-interventional, secondary analyses has 
been determined to be exempt from institutional review 
board (IRB) oversight by an independent IRB.

The dataset used in this study contained 4978 patients 
with confirmed Fabry disease, and 1,000,000 patients 
without any diagnostic or medication codes that would 
indicate a Fabry disease diagnosis. The patients with con-
firmed Fabry disease were identified by the presence of 
at least one Fabry disease ICD-10 code (E75.21, Fabry 
(-Anderson) disease), or by evidence of a medication 
approved to treat Fabry disease (agalsidase beta / Fabra-
zyme, or migalastat / Galafold) in their medical record. 
Patients without any of these indicators of a Fabry dis-
ease diagnosis were randomly selected from a population 
of several million patients with evidence of a minimum 
amount of activity in their medical records. Records 
were restricted to the period from January 1, 2013 to 
July 1, 2020. All patients were at least 18 years old for the 
entirety of the study period.

Following predictive AI modeling methodology [23], 
the study dataset (including patients with and without 
confirmed Fabry disease) was divided into two cohorts: 
a ‘training’ cohort comprising 75% of all patients selected 
at random, and a ‘testing’ cohort comprising the remain-
ing 25%. The AI algorithm was calibrated to estimate the 
presence of Fabry disease using records from the training 
cohort.

The AI tool first assessed patients by computing a per-
sonal phenotypic signature for each patient, using lon-
gitudinal health history data. This signature comprised 
a collection of related phenotypic characteristics (e.g. 
reports of symptoms, use of medications, records of pro-
cedures), grouped together, and reviewed and labeled 
with clinically descriptive signifiers by authors with med-
ical expertise. For example, a phenotypic signal labeled 
‘neuropathy’ contained diagnosis codes for polyneuropa-
thy and skin paresthesia, and procedure codes indicating 
nerve conduction studies and needle electromyography, 
as well as many others. Most relevant signals calculated 
by the AI tool corresponded to organ systems and catego-
ries of pathologies. The statistical strength and relevance 

of a signal for each individual patient’s predicted likeli-
hood of undiagnosed Fabry disease is dependent on that 
signal’s manifestation in that patient’s history.

The tool then learned analytic relationships between 
patients’ phenotypic signatures and the outcome of inter-
est—here, diagnosed Fabry disease—using the confirmed 
Fabry disease and non-confirmed patient data cohorts. 
Differences between the cohorts were used to construct 
a statistical ‘phenotypic biomarker’ for Fabry disease. As 
a final step, the platform predicted a likelihood of having 
Fabry disease for each patient in the testing cohort based 
on that patient’s phenotypic signature profile and its 
relationship to the phenotypic biomarker. Analytic per-
formance in this classification task was quantified using 
receiver operating characteristic (ROC) curve analytic 
process represented in Fig. 1.

In addition, predictive performance was studied by 
examining effective Fabry disease ‘prevalence’ in groups 
of patients identified by the algorithm as at highest risk 
of having Fabry disease following stratification by risk. 
The tool rank-ordered patients in the testing cohort from 
greatest to least predicted Fabry disease likelihood and 
counted the number of confirmed Fabry disease patients 
in different risk strata (e.g., within the 1% of patients at 
greatest risk by predicted likelihood). Dividing these 
counts by the total number of patients in a risk group 
yielded an effective ‘prevalence’ for that risk group.

The study dataset was highly enriched with confirmed 
Fabry disease patients, containing approximately 1 con-
firmed patient for every 50 patients without confirmed 
Fabry disease (roughly three orders of magnitude greater 
than expected background prevalence). As such, calcu-
lated ‘prevalence’ values in risk groups were much higher 
than expected background prevalence of Fabry disease in 
the general population. To normalize, projected preva-
lence within these higher-risk strata was extrapolated 
using a conservative baseline population-wide assump-
tion of 1 in 50,000 based on existing prevalence estimates 
[8]. For example, if calculated prevalence in a higher-risk 
stratum was 1 in 10 (that is, five times greater than the 
study population overall), projected ‘real-world’ preva-
lence after correcting for study population enrichment 
would be five times greater than the 1 in 50,000 back-
ground assumption, or 1 in 10,000.

Fig. 1  Flow diagram illustrating the tool’s process in assessing patient-level risk of Fabry disease
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The algorithm’s performance was also assessed by 
examining relative presence of phenotypic signals in 
different higher-risk strata. Within each, the fraction 
of patients with a particular phenotypic signal in their 
health history was calculated, and these frequencies of 
occurrence were compared across risk strata to identify 
patterns in phenotypic signal presentation in higher- and 
lower-risk groups.

Finally, these analyses were repeated after dividing the 
testing cohort into male-only and female-only subco-
horts to examine robustness of predictive power while 
stratifying by sex.

Following generation and assessment of the tool’s ana-
lytic performance, a group of Fabry disease experts was 
assembled to review outputs, including components 
from patients’ individual phenotypic signatures and the 
platform’s phenotypic biomarker for Fabry disease. This 
review was intended to establish concordance between 
medical understanding of the condition and the algo-
rithm’s outputs across results, especially considering the 
phenotypic variety in disease presentation in patients’ 
medical records.

Results
The study population comprised a total of 1,004,978 
patients. Relevant summary characteristics of the popu-
lation are presented in Table 1.

The tool demonstrated very strong analytic perfor-
mance in identifying Fabry disease patients in the test 
cohort, with an overall area under the receiver operating 
curve (AUROC) of 0.82 (Fig. 2).

Following rank-ordering of test set patients by pre-
dicted risk of Fabry disease, the tool performed very well 
in concentrating Fabry disease patients at the riskier end 
of this ranking. Confirmed Fabry disease patient presence 
in the riskiest 1% of patients as identified by the algo-
rithm was nearly 24-fold greater than the baseline preva-
lence level. Using a true population assumption of Fabry 
disease prevalence of 1 in 50,000, simulated prevalence 
in the 1% identified by the platform would be roughly 24 
times greater, or 1 in 2100. Additional amplifications and 
projected prevalence calculations are provided in Table 2.

Many phenotypic signals contributed to the tool’s over-
all performance. These signals all displayed differences 
in frequency of occurrence between patients across risk 

strata; in general, patients in higher-risk strata had higher 
rates of occurrence of these phenotypic signals. These 
differences were quantified by calculating signal preva-
lence in specific higher-risk strata. Figure 3 displays these 
calculations for several representative phenotypic sig-
nals corresponding to clinically meaningful aspects of 
Fabry disease presentation. These provide a sample of the 
broader group of signals contributing to the algorithm’s 
predictive performance.

Sensitivity analysis examining the tool’s predictive 
performance in the test set after stratification by sex 
demonstrated strong analytic results for both men and 
women. Performance was slightly stronger in the male-
only cohort relative to the female-only cohort, but ampli-
fication remained substantial within higher-risk cohorts 
for both groups relative to the overall study population. 
Amplification within the riskiest 1% subgroup is shown 
in Table 3.

Performance in the test set also remained very strong 
within male and female subsets, as illustrated by the 
respective ROC curves. The AUC for the male-only 

Table 1  Age and sex distribution of study population

Patients with confirmed 
Fabry disease (n = 4978)

Patients with no 
confirmed Fabry disease 
diagnosis (n = 1,000,000)

Sex (% female) 54.5% 55.1%

Mean age (SD) 47.0 (21.8) 44.8 (24.6)

Fig. 2  Receiver operating characteristic (ROC) curve. Area under the 
curve (AUC): 0.82

Table 2  Amplification in riskier strata of the testing set, 
following rank-ordering by predicted likelihood of Fabry disease

Risk group Amplification relative to total 
population

Projected 
prevalence

Riskiest 10% 5.4× 1 in 9261

Riskiest 1% 23.9× 1 in 2090

Riskiest 0.1% 109.8× 1 in 455
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subcohort was 0.83; for the female-only subcohort, it was 
0.82, reflecting balanced performance.

Discussion
Using a predictive model-based AI approach to pre-
screen potential undiagnosed patients may present 
a more efficient way to focus expensive diagnostic 

screening efforts on patients at greatest risk of Fabry dis-
ease. The AI tool analyzed in this study demonstrated 
strong overall performance in identifying Fabry disease 
patients at the individual level using structured medical 
record data for calibration and prediction. Fabry disease 
prevalence in higher-risk strata identified by the algo-
rithm was substantially greater than in the background 
population. This performance was achieved using exist-
ing structured real-world health data; no additional Fabry 
disease-specific data were gathered, nor was informa-
tion from unstructured data (i.e., clinical notes) used. 
Even though the data analyzed were de-identified, the AI 
tool’s ability to recognize relevant phenotypic patterns in 
individual patients’ histories preserves its potential for 
patient-specific real-world application. Future applica-
tions to identified patient populations will face challenges 
around consent and data privacy not addressed in this 
current study, and overcoming these challenges will be 

Fig. 3  Selected phenotypic features and relative prevalence (portion of patients with evidence of feature) in risk strata, defined following 
rank-ordering of patients by predicted Fabry disease risk. Darker coloring indicates these features’ increased prevalence in correspondence with 
increasing risk of Fabry disease. This set of features is a small sample of the hundreds of signals drawn from available data that drove the tool’s 
analytic performance

Table 3  Amplification of Fabry disease occurrence in riskiest 1% 
stratum of the testing set, grouped by sex

Patient subcohort Amplification relative 
to assumed 1 in 50,000 
prevalence

Projected 
prevalence

All patients 23.9× 1 in 2090

Male 26.8× 1 in 1867

Female 21.8× 1 in 2291
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crucial to identifying individual patients so proper treat-
ment can be pursued.

The phenotypic signals driving the platform’s predic-
tions of Fabry disease risk correspond very well to clini-
cal knowledge about Fabry disease and its presentation, 
including both ‘classic’ and late-onset phenotypes. The 
tool isolated differences in occurrence of phenotypic 
signals associated with the clearest clinical presentation 
of advanced disease—specifically, severe renal damage, 
cardiac arrhythmias, and neuropathies—with more fre-
quent occurrence among those patients determined to be 
at greatest risk of Fabry disease by the tool. At the same 
time, the algorithm captured and utilized many more 
subtle statistical signals as well, including phenotypic 
signals associated with behavioral health, cerebrovascu-
lar damage, and auditory and balance-related symptoms. 
This abundance of phenotypic signals provided the tool 
with a rich set of contributing factors to predict Fabry 
disease risk, reflecting the diversity of patient experience 
without relying on a limited set of disease characteristics. 
The authors intend to explore these phenotypic signals at 
greater length in a subsequent publication.

This identification by the tool of phenotypic signals 
confirmed by the group of Fabry disease experts to be 
associated with Fabry disease is strong evidence that 
the algorithm is operating in concordance with medi-
cal, biological, and epidemiological knowledge about the 
condition. AI models do not always agree with clinical or 
scientific knowledge in this way and may generate pre-
dictions without obvious explanations. This ‘black box’ 
problem, where AI technology makes predictions that 
cannot be linked to expert knowledge, does not charac-
terize the tool examined in this study. On the contrary, 
the algorithm elicited and relies on characteristics known 
to be associated with Fabry disease. This quality makes 
the platform an especially promising candidate for real-
world clinical application.

This study has several limitations. First, real-world 
health history data were used for analysis. These data may 
suffer from missingness or incomplete capture, in addi-
tion to errors resulting from mistakes in data recording 
or transcription. However, this limitation is partly miti-
gated by the size of the cohort analyzed. The nearly 5000 
patients in the confirmed Fabry disease patient group is 
substantially larger than Fabry disease cohorts found in 
much of the literature published in this disease area; to 
the authors’ knowledge, this is one of the largest known 
Fabry disease patient cohorts studied to date [24, 25].

Second, the training cohort used to calibrate the AI 
algorithm relied on patients labeled as having Fabry dis-
ease—that is, those diagnosed with the disease, or with 
evidence of a disease-specific treatment in their health 
history record. Because Fabry disease diagnosis in 

general does not necessarily correspond to true preva-
lence, bias may exist within the confirmed Fabry disease 
cohort. Somewhat surprisingly, the cohort is relatively 
balanced between male and female patients. The expla-
nation for this balance is not immediately obvious. Diag-
nosis bias towards ‘classic’ Fabry disease could result in 
overrepresentation of male patients. However, since 
female patients experience later onset and longer lifes-
pan than male patients overall [4, 26], survivorship bias 
could have contributed to greater female representation. 
Further research on the gender balance in Fabry disease 
epidemiology is necessary to better contextualize and 
address these questions. It is important to note that the 
AI tool in this study draws statistical information from all 
available aspects of Fabry disease patients’ health histo-
ries, including late-onset patterns from dominantly ‘clas-
sic’ patients, and can use information in male patients’ 
histories to inform predictions for females (and vice-
versa). Pediatric patients were not analyzed in this study 
due to data limitations, but future research in pediatric 
populations may provide additional clarity around pat-
terns in disease manifestation as detected and utilized for 
AI-driven patient identification.

Finally, the projected prevalence results presented 
herein assume a baseline population Fabry disease preva-
lence of 1 in 50,000. This assumption aligns with existing 
literature around Fabry disease [5] but is likely an under-
estimate of true prevalence due to underdiagnosis, and is 
reflective of classic Fabry disease rather than late onset 
variants. Consequently, projected prevalence estimates 
in higher-risk strata identified by the tool are likely con-
servative. If true prevalence is greater than 1 in 50,000, 
estimates of prevalence in higher-risk groups identified 
would increase as well.

This study also has many strengths. We evaluated a 
novel AI tool for identification of undiagnosed Fabry 
disease patients. The algorithm demonstrated strong 
analytic performance in identifying patients with Fabry 
disease, achieving an out-of-sample AUROC of 0.82. In 
the 1% of patients labeled by the platform as at greatest 
risk, Fabry disease prevalence was nearly 24-fold greater 
than in the population overall. The phenotypic charac-
teristics of tool-identified patients correspond to exist-
ing literature, represent the multisystemic nature of the 
disease, and were clinically validated by a group of Fabry 
experts. These signals’ range covers the full severity spec-
trum of the disease. This diversity of phenotypic signals 
provides robustness to the algorithm’s predictive power, 
which it maintained when tested separately in all-male 
and all-female subcohorts.

Fabry disease patients continue to face long, difficult 
journeys from initial presentation of symptoms to even-
tual diagnosis. These challenges burden Fabry disease 
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patients with clinical manifestations outside the ‘classic’ 
presentation of the disease, including women, for whom 
barriers to accurate diagnosis can be especially high. AI 
technology offers a promising opportunity for earlier 
diagnosis of Fabry disease by drawing on statistical pat-
terns in from large datasets of patients known to have the 
condition. Earlier diagnosis, in turn, could result in ear-
lier monitoring, treatment if needed, slowed progression, 
and better outcomes for patients.

Conclusions
This study demonstrated that use of a novel AI tool may 
lead to improved identification of patients with undi-
agnosed Fabry disease. By labeling patients at dispro-
portionate risk of having the condition, using existing 
medical record data, the AI tool tested may substantially 
improve the efficiency of more determinative approaches 
to Fabry disease diagnosis while continuing to generate 
new insights into patient characteristics. Future research 
will focus on clinical implementations of this technology 
to examine its performance in real-world settings.
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