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Abstract 

Background:  Many genetic syndromes (GSs) have distinct facial dysmorphism, and facial gestalts can be used as 
a diagnostic tool for recognizing a syndrome. Facial recognition technology has advanced in recent years, and the 
screening of GSs by facial recognition technology has become feasible. This study constructed an automatic facial 
recognition model for the identification of children with GSs.

Results:  A total of 456 frontal facial photos were collected from 228 children with GSs and 228 healthy children in 
Guangdong Provincial People’s Hospital from Jun 2016 to Jan 2021. Only one frontal facial image was selected for 
each participant. The VGG-16 network (named after its proposal lab, Visual Geometry Group from Oxford Univer‑
sity) was pretrained by transfer learning methods, and a facial recognition model based on the VGG-16 architecture 
was constructed. The performance of the VGG-16 model was evaluated by five-fold cross-validation. Comparison 
of VGG-16 model to five physicians were also performed. The VGG-16 model achieved the highest accuracy of 
0.8860 ± 0.0211, specificity of 0.9124 ± 0.0308, recall of 0.8597 ± 0.0190, F1-score of 0.8829 ± 0.0215 and an area under 
the receiver operating characteristic curve of 0.9443 ± 0.0276 (95% confidence interval: 0.9210–0.9620) for GS screen‑
ing, which was significantly higher than that achieved by human experts.

Conclusions:  This study highlighted the feasibility of facial recognition technology for GSs identification. The VGG-16 
recognition model can play a prominent role in GSs screening in clinical practice.
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Background
Genetic syndromes (GSs) refer to specific manifestations 
with multiple clinical features that are caused by genetic 
abnormalities. Genetic abnormalities can vary from sub-
tle to prominent and from a discrete mutation in a sin-
gle base on the DNA sequence of a single gene to a gross 

chromosomal abnormality [1]. Each particular genetic 
syndrome (GS) presents with characteristic features 
depending on the developmental aspects affected by the 
abnormal genes or chromosomes. Although individual 
cases are rare, GSs collectively affect a significant propor-
tion of the general population, with the majority being 
children [2, 3]. Children with GSs often suffer repeat 
admissions, long-term care, and impaired quality of life 
which may lead to heavy social and family burdens [4].

Timely diagnosis of GSs is crucial for genetic counsel-
ling and can improve outcomes. With the development 
of next-generation sequencing, GS research is becom-
ing extensive, and gene examination is considered the 
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“gold-standard” method for GS diagnosis [5]. However, 
gene testing is expensive and time-consuming. In clinical 
practice, gene examination for all patients is unrealistic. 
Therefore, the main question has become “how can we 
screen suspected GS patients for further investigation?”

Many GSs have distinct facial dysmorphism, and the 
recognition of a syndrome from a facial gestalt can be the 
first step in making a diagnosis [6]. However, due to the 
variation and complexity in phenotyping, combined with 
the inexperience of general practitioners, the memoriza-
tion of different facial gestalts and recognition of rare GSs 
is a challenging task. Facial recognition technology has 
been widely applied in several fields, and artificial intel-
ligence has been integrated into routine clinical practice 
specifically for diagnostic support. With recent advance-
ments in deep convolutional neural networks (CNNs), 
screening and diagnosis of GSs through facial feature rec-
ognition has become possible [7]. In the present study, we 
developed a facial recognition model based on the VGG-
16 architecture (named after its proposal lab, Visual 
Geometry Group from Oxford University) for identifying 
GS children from healthy children, and the performance 
of the model was also evaluated.

Materials and methods
Patients and facial photos
A total of 228 children with GSs and 228 healthy children 
were recruited from Guangdong Provincial People’s Hos-
pital from Jun 2016 to Jan 2021. The demographic char-
acteristics of the participants are shown in Table 1.

The GS diagnosis was confirmed by karyotyping, 
array comparative genomic hybridization or next-
generation sequencing. The following syndromes were 
included: Williams-Beuren syndrome (n = 108), Noo-
nan syndrome (n = 52), Down syndrome (n = 14), Mar-
fan syndrome (n = 5), Loeys-Dietz syndrome (n = 4), 
Alagille syndrome (n = 4), DiGeorge syndrome (n = 3), 
Acromicric and Geleophysic dysplasia (n = 3), Kabuki 
syndrome (n = 2), Barth syndrome (n = 2), Cornelia de 
Lange syndrome (n = 2), Koolen-de Vires syndrome 
(n = 2). 14q32 duplication syndrome (n = 2). Con-
genital mental retardation, AD (n = 2). 8p23.1 deletion 
syndrome (n = 2). 21q22.3 deletion syndrome (n = 2). 
Helsmoortel-Van der Aa syndrome (n = 1). Mulibrey 

nanism (n = 1). Congenital fibrosis of extraocular mus-
cles (n = 1). Mandibulofacial dysostosis-microcephaly 
syndrome (n = 1). Cerebro-oculo-facio-skeletal syn-
drome (n = 1). Oculo‐facio‐cardio‐dental syndrome 
(n = 1). Wolf-Hirschhorn syndrome (n = 1). Costello 
syndrome (n = 1). Cri du Chat syndrome (n = 1). Stick-
ler syndrome (n = 1). Coffin-Siris syndrome (n = 1). 
Klippel-Feil syndrome (n = 1). Congenital contractural 
arachnodactyly (n = 1). 16p11.2 duplication syndrome 
(n = 1). Holt-Oram syndrome (n = 1). X-Linked Oto-
palato-digital Spectrum Disorders (n = 1). 16p11.2 
microdeletion syndrome (n = 1). Brittle cornea syn-
drome (n = 1). 18q microdeletion Syndrome (n = 1). In 
total, there were 35 different genetic syndromes.

Three to ten frontal facial photos were taken depict-
ing the entire frontal face from hairline to chin, expos-
ing the ears, with opened eyes looking straight ahead. 
Only one clear frontal facial photo was selected for each 
participant (avoid those with obvious “open mouth” as 
much as possible). A total of 456 frontal facial photos 
were collected from 228 children with GSs and 228 
healthy children. Facial images of children with GSs are 
presented in Fig. 1.

This study was approved by the Research Ethics Com-
mittee of Guangdong Provincial Peoples’ Hospital (Pro-
ject Number: KY2020-033-01). Informed consent was 
given by all patients or their wardens to analyse.

Training system
The hardware used for the study was an NVIDIA Tesla 
P100 GPU (NVIDIA Corporation, California, USA) 
with 16 GB RAM and 4096 bits. An Ubuntu18.04 oper-
ation system (Canonical Ltd, UK) was used. Networks 
were based on TensorFlow (Google Inc, California, 
USA).

The study process can be summarized as follows: (1) 
VGG-16 networks were pretrained through transfer 
learning methods by VGG-Face CNN descriptors and 
obtained initializing weights. (2) Face detection from 
photographs was performed by multitask Convolutional 
Neural Network (MTCNN), thus achieving five char-
acteristic markers in each photograph. (3) By randomly 
rotating, cropping or horizontally flipping the detected 
face, a group of facial images of size 224 × 224 × 3 (RGB) 
was obtained as the data inputs. (4) A facial recogni-
tion model based on the VGG-16 architecture was con-
structed, and the performance was evaluated by five-fold 
cross-validation. (5) Gradient-weight class activation 
mapping (Grad-CAM) was produced to highlight key 
regions in the facial images, which were processed and 
recognized by the model. (6) The performance of VGG-
16 model was compared to that of five physicians.

Table 1  Demographic characteristics of children with and 
without GSs

GSs genetic syndromes

Characteristic GSs Controls p

Number of subjects 228 228

Age at photograph (months) 36.85 ± 42.33 37.28 ± 40.77 < 0.05

Gender (male/female) 125/103 119/109 < 0.05
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Image pre‑processing
MTCNN was used for face detection and alignment. The 
MTCNN contained an image pyramid and a three-stage 
cascaded framework: proposal network, refine network 
and output network, finally generated a facial image 
(224 × 224 × 3 pixels) with five facial landmark positions 
(left eye, right eye, nose, left mouth corner, and right 
mouth corner) for each inputted facial photo. The pixel 
value of the image was scaled and normalized from 0 to1. 
The Dataset was augmented by random rotation, crop-
ping and horizontal flipping.

Transfer learning
We used VGG-16 as our network architecture, and we 
started transfer learning by initializing the network with 
pretrained weights from VGG-Face, an open-source face 
data model supplied by the Oxford Visual Geometry 
Group (UK). The primary algorithm included softmax 
for classification training, a triplet loss function for fea-
ture extraction training, and the RMSProp optimization 
method for parameter update.

Model construction and training
A facial recognition model based on the VGG-16 archi-
tecture was constructed. The VGG-16 architecture com-
prised 13 convolutional layers, followed by maximum 

pooling layers, three fully connected layers, and a softmax 
output. We replaced the fully connected layers with con-
volutional layers with a 50% dropout. This improvement 
enhanced the generalization ability, while diminishing 
the computing capacity and time spent. The convolu-
tional layer convolved the input data and was connected 
to a rectified linear unit (ReLU) activation function after 
batch normalization. Following the convolution layer 
operations, the data were finally outputted via softmax; 
then, the probability of GS was predicted. A maximum 
pooling layer placed between two groups of convolution 
layers to downsample the output data was used to reduce 
the computational complexity and avoid overfitting. Soft-
max predicted the probability of input image data being 
GS-specific faces (Fig. 2).

In the experiment, five-fold cross-validation was 
adopted. The proportion of the training set, validation 
set, and test set was 3:1:1. Both the GS and non-GS facial 
image data were randomly split into five subsets. The GS 
and non-GS data were distributed equally in each subset.

Visual explanation
To understand the features learned by the VGG-16 model 
and their locations, we used Grad-CAM to highlight key 

Fig. 1  Facial dysmorphism in children with genetic syndromes. Williams-Beuren syndrome (1–7). Noonan syndrome (8–15). Down syndrome 
(16–21). Marfan syndrome (22–26). Loeys-Dietz syndrome (27–30). Alagille syndrome (31–34). DiGeroge syndrome (35–37). Acromicric and 
Geleophysic dysplasia (38–40). Kabuki syndrome (41–42). Barth syndrome (43–44). Cornelia de Lange syndrome (45–46). Koolen-de Vires syndrome 
(47–48). 14q32 duplication syndrome (49–50). Congenital mental retardation, AD (51–52). 8p23.1 deletion syndrome (53–54). 21q22.3 deletion 
syndrome (55–56). Helsmoortel-Van der Aa syndrome (57). Mulibrey nanism (58). Congenital fibrosis of extraocular muscles (59). Mandibulofacial 
dysostosis-microcephaly syndrome (60). Cerebro-oculo-facio-skeletal syndrome (61). Oculo‐facio‐cardio‐dental syndrome (62). Wolf-Hirschhorn 
syndrome (63). Costello syndrome (64). Cri du Chat syndrome (65). Stickler syndrome (66). Coffin-Siris syndrome (67). Klippel-Feil syndrome (68). 
Congenital contractural arachnodactyly (69). 16p11.2 duplication syndrome (70). Holt-Oram syndrome (71). X-Linked Oto-palato-digital spectrum 
disorders (72). 16p11.2 microdeletion syndrome (73). Brittle cornea syndrome (74). 18q microdeletion syndrome (75). The grey bar is used to protect 
privacy
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Fig. 2  Network architecture of the VGG-16 model. The network consists of 13 convolutional layers followed by three layers with 50% dropout. Five 
maximum pooling layers are placed after groups of convolution layers. The classification prediction is output by the softmax layer

Fig. 3  Visualization by Grad-CAM. According to the colour band, the size of the values corresponds to the colour brightness. A higher value 
corresponds to a brighter expression, thus representing the regions of significant concern. A–E Williams-Beuren syndrome; F–H Noonan syndrome; 
I iGeorge syndrome; J Coffin-Siris syndrome
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regions in the facial images that influenced the decision-
making by the model (Fig.  3). The code is available at 
https://​github.​com/​ramprs/​grad-​cam/, proposed by Sel-
varaju et al. [8] from the USA.

Comparison of the model with paediatricians
Three junior paediatricians (those with 3–5  years of 
experience) and two senior paediatricians (those with 
more than 15 years of experience) were invited to recog-
nize GS patients based solely on facial photos. One senior 
paediatrician had received genetics training. The other 
paediatricians had no experiences with genetic training, 
but all of them had once managed children with genetic 
syndromes in daily clinical practice. Each face image was 
shown for 10  s without exhibiting other clinical data. 
Based on the photo image from the dataset, the physi-
cians determined whether an individual was suffering 
from a GS. The classification performance of the VGG-16 
model was compared to these five paediatricians.

Evaluation metrics
Identification results were noted as TP (true positive), 
FP (false positive), TN (true negative), and FN (false 
negative). The classification performance of the proposed 
VGG-16 model was quantified by accuracy, recall, speci-
ficity, precision, F1-score, and area under the receiver 
operating characteristic curve (AUC). The identifica-
tion performance of the paediatricians was quantified by 
accuracy, sensitivity (the same as recall), specificity, pre-
cision, and F1-scorec. These measures were calculated as 
follows:

Statistical analysis
Model performance measurements were reported as the 
mean ± standard deviation of five testing results obtained 

Accuracy =
TP + TN

TP + FP + TN + FN

Specificity =
TN

TN + FP
= 1−

FP

TN + FP

Recall =
TP

TP + FN
(= sensitivity)

Precision =
TP

TP + FP

F1− score =
2

1

precision +
1

recall

from the cross-validation. Receiver operating charac-
teristic curve (ROC) with 95% confidence interval (CI) 
of VGG-16 model was calculated and plotted by using 
package pROC 1.17.0.1 in R 3.6.1 with 200 iterations of 
bootstrapping. To compare the classification perfor-
mance of the VGG-16 model and physicians, the sensi-
tivity/specificity point of each physician was plotted on 
the ROC space of the VGG model. When the sensitivity/
specificity point of physician lies outside of the 95% CI 
space of the ROC curve of VGG model, the classification 
performance of VGG model and physician are defined 
as statistically difference [9]. Pearson’s chi-squared-test 
was applied to compare the gender proportions, and an 
independent-sample t-test was used to compare the age 
at photograph between the groups. P-values < 0.05 were 
considered statistically significant.

Results
Model performance
The VGG-16 model achieved an accuracy of 
0.8860 ± 0.0211 and an AUC value of 0.9443 ± 0.0276 
(Fig.  4). Other model performance measurements are 
given in Table 2.

Visual explanations by feature maps
Weighted feature maps were computed by the ReLU 
activation function, reserving the class features and 
abandoning the unrelated features; then, the values 
were normalized into the range 0–255. From the colour 
band, the size of the values corresponded to the colour 
brightness. In most cases, the expression was brighter 
for higher values, and it represented relatively more sig-
nificant regions on the face (Fig. 3). Class activation maps 
matched the dysmorphic facial features well in 217 GS 
images. In the other 11 GS photos, the class-discrimina-
tive regions were focused not only on the facial regions, 
but also on the hair or clothes.

Comparison with human experts
The performance results of the five paediatricians are 
shown in Table  2. One of the senior paediatrician, who 
had genetics training experience, achieved the best accu-
racy (0.7983) and sensitivity (0.8772). The sensitivity/
specificity point of each physician was outside of the 95% 
CI space of the ROC curve of VGG-16 model, indicating 
that the identification performance of each participating 
paediatrician was inferior to that of the VGG-16 model 
(Fig. 4).

Discussion
GSs often present with characteristic phenotypes that 
include dysmorphic features and characteristic facial 
gestalts. These craniofacial alterations can provide 

https://github.com/ramprs/grad-cam/
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clinicians with important diagnostic clues. For instance, 
Down syndrome has a disease-specific facial profile that 
can be recognized easily. There are approximately 7000 
genetic syndromes, the vast majority of which are rare 
diseases, and the characteristic craniofacial features are 
often unfamiliar to general physicians and paediatricians. 

However, with technical advancement in computing, GS 
facial recognition is becoming easily available. Loos et al. 
[10] first reported that GSs can be identified by using 
facial resemblance and a traditional machine learning 
method, with an accuracy of 83%. With improvements 
in data storage and computational power, deep CNN has 
become the most important facial recognition method.

In 2014, Face2Gene (http://​www.​face2​gene.​com/, 
FDNA Inc., Boston, USA), based on the DeepGestalt 
framework (one of the deep CNN algorithms), was intro-
duced for GS facial recognition [11]. When a facial photo 
is uploaded, Face2Gene produces a ranked list of 30 types 
of possible GSs. The performance of Face2Gene is evalu-
ated using “top-10 accuracy”, which is the likelihood that 
one of the 10 syndromes with the highest probabilities 
suggested by Face2Gene is the actual syndrome. Studies 
showed that Face2Gene can help discriminate between 
different types of GSs [12, 13]. Hsieh et  al. [14] intro-
duced an approach that used portrait photographs for 
the interpretation of clinical exome data. This study indi-
cated that image analysis by DeepGestalt could quantify 
the phenotypic similarity to advance the performance of 
bioinformatics pipelines for exome analysis. However, 
each uploaded facial image is defaulted as “abnormal” 
by Face2Gene. Even if a photograph of a healthy child is 
input into Face2Gene, a list of 30-type candidate GSs is 
produced, implying that the software lacks a screening 
function. Hence, developing a facial recognition model 
for screening GSs is necessary. In 2020, Pantel et al. [15] 
analysed a total of 646 images of 323 patients with 17 dif-
ferent genetic syndromes and matched individuals with-
out a genetic syndrome. A face recognition model, which 
is driven by support vector machine running on the top 
of DeepGestalt framework, was introduced in this study. 
This novel approach could fairly separate images of indi-
viduals with and without a genetic syndrome.

VGG-net, proposed by the Visual Geometry Group 
(VGG) Lab of Oxford University, is a popular CNN 
architecture. VGG-16 is characterized by its simplicity 
in using only 3 × 3 convolutional layers stacked on top of 
each other in increasing depth. The increased depth and 
smaller kernel can diminish the network parameters, thus 
promoting the fitting capacity and wide clinical applica-
tion. This network has been widely applied in computer 
vision fields. Recently, the medical applications of VGG-
16 have been reported. Related works cover areas on the 
identification of tumour properties, disease staging on 
medical image data, retinal fundus image interpretation, 
etc. [16–20]. We constructed a facial recognition model 
using the VGG-16 architecture for GS screening. The 
model proposed in this study achieved high performance, 
with an accuracy of 0.8860 ± 0.0211 and an AUC of 
0.9443 ± 0.0276. The proposed VGG-16 screening model 

Fig. 4  Receiver operating characteristic (ROC) curve of the VGG-16 
model, together with performance of human experts plotted on 
the same ROC space. a ROC curve and area under the ROC curve 
value of the VGG-16 model. b The sensitivity/specificity point of 
each physician was outside of the 95% confidence interval space 
of the ROC curve of VGG model. AUC​ area under the ROC curve, CI 
confidence interval, SP senior paediatrician, JP junior paediatrician

http://www.face2gene.com/
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has excellent performance in discriminating GS children 
with non-GSs, and outperformed all the participating 
paediatricians with statistical significance. Visual expla-
nations via Grad-CAM can provide insights into dysmor-
phic facial characteristics. However, limited dataset and 
indiscernible image details may influence the localization 
ability of Grad-CAM.

The quality of a CNN model is dependent on the size 
of the dataset. Due to the low incidence of GSs, the num-
ber of dysmorphic facial photographs has often been 
limited, which risks the deep CNN model overfitting in 
cases of small datasets. The transfer learning method 
can solve this problem. Transfer learning is the reuse of a 
pretrained model on a new problem. It enables research-
ers to benefit from the knowledge gained from a previ-
ously used model for a similar task, analogous to humans’ 
capacity to use previously acquired knowledge to solve 
a similar problem [21]. The transfer learning technique 
has often been used with small sample studies. Zhen 
et al. [22] reported research on predicting rectum toxic-
ity in patients receiving radiotherapy for cervical cancer. 
Transfer learning from substantial natural images has 
solved the problem of limited data. In the current study, 
the VGG-16 networks had pretrained weights from the 
large-scale face dataset “VGG-Face” for learning low-
level visual features from the general population. There-
fore, the model parameters were fine-tuned by using our 
facial image dataset and gained knowledge of high-level 
visual features in GS facial manifestations.

In this study, we gathered 228 cases with 35 different 
GSs. There are many typical but rare dysmorphic facial 
images in this facial photograph dataset. These crani-
ofacial alterations can provide clinicians with important 
diagnostic clues, and an automatic facial recognition 
model for GS screening can be constructed using these 
facial images. However, there were several limitations 
in the study. (1) A good diagnostic model is often based 
on a sufficiently large and general dataset. As most GSs 
are rare diseases, the facial photos training set in this 
study was limited, and it will be beneficial to collect 
more GS cases. (2) All participants were from East Asia. 
There were no Caucasian, African, or other ethnic cases 

enrolled in the study. Facial dysmorphic features may be 
influenced by ethnic backgrounds. (3) Enrolled children 
were mainly composed of toddlers or preschool children. 
Therefore, the proposed model in the current study may 
not be appropriate for infants, neonates, or adults.

Conclusions
This study highlighted the feasibility of facial recogni-
tion technology for GSs identification. The VGG-16 
recognition model can play a prominent role in GSs 
screening in clinical practice.
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