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Abstract

Background: In diagnosis of rare genetic diseases we face a decision as to the degree to which the sequencing
lab offers one or more diagnoses based on clinical input provided by the clinician, or the clinician reaches a
diagnosis based on the complete set of variants provided by the lab. We tested a software approach to assist the
clinician in making the diagnosis based on clinical findings and an annotated genomic variant table, using cases
already solved using less automated processes.

Results: For the 81 cases studied (involving 216 individuals), 70 had genetic abnormalities with phenotypes
previously described in the literature, and 11 were not described in the literature at the time of analysis (“discovery
genes”). These included cases beyond a trio, including ones with different variants in the same gene. In 100% of
cases the abnormality was recognized. Of the 70, the abnormality was ranked #1 in 94% of cases, with an average
rank 1.1 for all cases. Large CNVs could be analyzed in an integrated analysis, performed in 24 of the cases. The
process is rapid enough to allow for periodic reanalysis of unsolved cases.

Conclusions: A clinician-friendly environment for clinical correlation can be provided to clinicians who are best
positioned to have the clinical information needed for this interpretation.

Keywords: Rare disease diagnosis, Diagnostic decision support system, Artificial intelligence, Genomic analysis,
Copy number variation

Background
The number of rare diseases described in the literature
has increased dramatically in recent decades, primarily
due to advances in our understanding of genetics. We
are at a crossroads in deciding how to use this
information.
One approach is to submit DNA to labs to use mas-

sively parallel sequencing to identify genetic diagnoses,
but this approach is difficult to implement in an optimal
way because clinicians provide limited information to

the lab, which is therefore not well equipped to do the
clinical correlation. Furthermore, because the clinical
information is typically submitted before the genomic
sequencing, there is little opportunity for the lab to bring
into the clinical correlation information prompted by
the unusual gene variants found in sequencing.
Another approach is for clinicians to remain at the

center of clinical correlation, drawing on the detailed
clinical characterizations in the primary literature as well
as comprehensive reviews in the literature. However,
such clinical correlation is difficult for clinicians to
perform because of the complexity involved in dealing
with thousands of variants and thousands of diseases.
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We suggested solving this problem by empowering the
clinicians who are most familiar with the patient to take
a central role in the clinical correlation step [1]. We
implemented such capabilities using software that clini-
cians already use for clinical diagnostic decision support,
augmented by analysis of variants and known associa-
tions between genes and diseases, linking back to clinical
resources to assist the clinician in assessing diagnostic
possibilities. We ran an initial test using 20 cases with
pathogenic single nucleotide variants (SNVs) in genomic
trios [2]. An early version of the system was also tested
in the CLARITY genome-analysis competition and was
the most clinician-centric of the analyses and it per-
formed by far the fastest [3].
We now test this model more widely and systematic-

ally, and test extension of this model to include large
copy number variants (CNVs). CNVs are typically
assessed in a separate analysis using microarray technol-
ogy performed before doing genomic sequencing [4].
We examine here whether we could use CNVs and
SNVs, both derived from genomic sequencing, in a
single test, which could offer a process for clinical
correlation that is more efficient.
We also test the utility of extending such SNV and

CNV analysis beyond the trio, thereby reducing the
number of plausible genetic abnormalities.

Methods
For “beyond-the-trio” cases, all cases from the Gleeson
cohort of ~ 10,000 families were selected if there had
been sequencing beyond the trio and a causative gene
had met ACMG guidelines for reporting back to the
family [5]. The Gleeson group focuses on neurological
disorders, and all cases analyzed had at least one neuro-
logical finding. The diagnosis had been determined by
the Gleeson group in a manual process typically requir-
ing many hours, extensive expertise and wider sequen-
cing within the family to establish correlation. In all
cases the putative causal variant was confirmed by
Sanger sequencing. Similarly, all cases with large CNVs
were selected.
Most cases were ones in which the gene-disease

relationship had already been described in the literature,
but some had no such description, allowing analysis of
situations in which clinical correlation did not yield an
answer.

SNV information in variant tables
Variant data for the individuals in a case were combined
in annotated variant tables in the format described [6].
Exome sequencing reads were mapped to the hg38

version of the human reference genome using bwa-mem
with default parameters [7]. Duplicates were marked
with Picard’s MarkDuplicates v1.128 [8] and indels were

realigned using GATK’s IndelRealigner v3.5 [9]. Variant
calling for SNVs and indels was performed according to
GATK’s best practices by first calling variants in each in-
dividual sample and then genotyping them jointly across
all individuals used in this study.
Variants were annotated with the Variant Effect

Predictor [10] to include:

� Functional effect (e.g. synonymous, stop gain, etc.)
� Allele frequencies from the 1000 Genomes Project.

the Genome Aggregation Database (gnomAD), and
the Greater Middle East variome [11]

� Pathogenicity predictions using SIFT, PolyPhen, and
MutationTaster

� Conservation assessments using GERP, PhyloP, and
PhastCons.

� Variome “share scores” of the number of times a
variant was observed in the homozygous and
heterozygous state in the Gleeson Lab cohort.

Variants were filtered to include those that were
predicted to affect protein function (frameshift, non-
synonymous, stop gain, splice site, CNV) and rare (<
0.1% allele frequency in gnomAD and < 1% allele
frequency in the Greater Middle East variome [11].

CNV information in variant tables
CNV calls were generated with XHMM according to the
protocol of Fromer and Purcell [12]. The CNVs were
then annotated with overlapping genes and their
frequency from the Exome Aggregation Consortium
(ExAC) database [13].
CNV data was added to the same variant tables as

SNVs by the following changes to the previous format
for the variant tables:

� Instead of listing one HGNC gene symbol for a
variant, all genes in the interval were listed (e.g.,
RN7SL853P,GOLGA6B)

� Instead of listing a single chromosomal position, an
interval was specified (e.g., 15:72954547–72,958,739)

� Instead of listing functional effects such as
frameshift, CNV abnormalities were described as
DEL or DUP.

Pedigree files
Pedigree files in standard format [14] specified informa-
tion about parents, sex, and affected status. For a trio,
relevant information was already in the patient clinical
data file.

Genome-Phenome analyzer software
The cases were analyzed using the SimulConsult
Genome-Phenome Analyzer [15], a diagnostic decision
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support program that helps clinicians assess the diagnos-
tic possibilities for a patient. The core of the tool is the
ability to assess clinical findings, but it also includes the
ability to analyze a genomic variant table and deduce
which genetic variants can contribute to genetic disease.
By combining what is known about the patient together
with the known genotypes of diseases (the “genome”)
and the known phenotypes of diseases (the “phenome”),
it assists with the “genome-phenome analysis” needed
for genomic diagnosis. For this study, the patient data
was loaded into the software in the form of the following
files prepared by the Gleeson group: the patient findings
file, the annotated variant file, and for cases beyond the
trio, a pedigree file.
The design and function of the genome-phenome

analysis software and the evaluation of its analysis for
SNVs in trios have been described previously [2, 16–19].
Briefly, the software compares a patient’s findings to
known diseases in the software’s human curated
database that includes information from many resources
such as textbooks in various fields, review articles such
as all relevant reviews in Orphanet Journal of Rare
Diseases, and many original articles. The software pro-
vides a differential diagnosis and suggests further find-
ings useful in making a diagnosis [16], both before and
after the genome information is available. Findings can
be present (with onset at a particular age or by a particu-
lar age) or absent, allowing the appropriate pattern
matching with information about findings in diseases in
the database, including the onset and disappearance ages
for each finding in each disease [18]. The disease de-
scriptions in the database include mode of inheritance,
but the software considers inheritance in a hypothesis-
independent way based on family history for the patient,
including consanguinity and affected status of other
family members [17].

Identifying abnormal gene zygosities
The variant table is analyzed using the software as
described previously [2]. Briefly, variant severity scores
(0–5) were assigned based on the annotations. These
variant-level scores were combined to assign severity
scores at the level of gene zygosity (i.e., biallelic versus
monoallelic, treated separately because of their different
clinical associations with disease), using the information
about which individuals were affected and which had the
variants [2, 19].
The ability to process variant tables beyond the trio

was achieved by dividing the case group (typically a
family) into a set of trios or partial trios (e.g., a case with
proband + sister + their parents + a cousin was divided
into 3 trios: proband-mother-father, sister-mother-
father, and cousin alone). The software then compared
each trio at the gene zygosity level, looking for abnormal

zygosities that fit the affected status of all individuals in
each trio. This analysis at the level of the gene zygosity,
not the gene variant, allows identifying an abnormal
zygosity even if individuals in different trios had different
abnormal variants in the same gene, as was seen in many
cases of unrelated individuals.
Each abnormal gene zygosity is assigned a pertinence

score according to how different the differential diagno-
sis would have been if the zygosity had not been abnor-
mal, described in detail previously, including how the
pertinence score is affected by the severity score
assigned to each gene zygosity [2, 19].
The software was re-written from the previous version

[2] to retain the original algorithms but have a client-
side interface using the Angular JavaScript / TypeScript
framework and the core analysis is performed on a
server. The HIPAA-compatible server uses a RESTful
approach in which it retains no information about the
patient between clicks by the user. Computational times
were < 1 s to process the case and < 10 s to upload the
full variant table to the server (done once per case).

CNV analysis
CNV abnormalities were analyzed in 2 ways. One was by
considering each gene in the interval to have a variant of
maximal (5) severity. The other was by assessing the
CNV for overlap with the 185 chromosomal disorders in
the database (e.g., 15q13.3 microdeletion) and assigning
a severity score (1–5) according to the degree of base
overlap.

Patient findings file
Patient finding files, consisting of lists of findings in the
individual designated as the index case, were prepared
by the Gleeson group before the genomic analysis. Each
finding was linked to one or more Human Phenotype
Ontology (HPO) codes and one or more Unified Medical
Language System (UMLS) codes. As in previous work,
both clinical and lab findings and both pertinent positive
and pertinent negative findings were used, and onset
ages for findings were included when available [2].
The database was increased substantially since the pre-

vious study [2]: coverage of diseases was increased by
45% (4912 to 7111) and the number of genes was in-
creased by 43% (2734 to 3903). This coverage included
all genes with germline changes convincingly associated
with human disease at the time of analysis; (the database
typically only includes somatic changes if they arise early
in development).

Results
A total of 81 cases were selected, representing exomes
from 216 individuals (Table 1). 70 cases had abnormal
gene zygosities with phenotypes previously described in
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the literature; the genes with pathogenic variants were
(with numbers greater than one indicated in paren-
theses): AGTPBP1, AHI1, ALG1, ALS2, AMPD2 (2),
ARG1, ASPM (3), ATP8A2, BBS12 (2), CA8,
CC2D2A, CENPJ, CEP120, CLN6 (2), CPLANE1,
CSPP1, ENTPD1, ERCC8, ERLIN1, ERLIN2, GAMT,
GEMIN4, GJC2, GLDC, GRID2 (2), GRIK2, HEXB,
HSPD1, KATNB1, KCTD7, KIF7, LNPK, MCPH1,
MKS1, NDUFV1, NGLY1, NPC1, NPHP3, NPHP4,
NT5C2, PAFAH1B1, PCDH12, PEX1, PGAP2, PGAP3,
PIGC, POMT2, PYCR2, RNASEH2B, TBC1D20, TFG,
THOC6, TMEM138, TOE1, TPP1, TRAPPC9, TSEN2,
TSEN54, TTC19, VPS13B (2), WDR62, WWOX (2).
In 11 cases the gene associations were not described
in the literature at the time of analysis (“discovery
genes”). In 24 of the cases, the genomic data included
CNVs as well as SNVs.
The analysis had two output displays relevant to this

study. One was a “genome-phenome analysis list” of
gene zygosities with known genome-phenome associa-
tions, with severity scores (Fig. 1). The other was a list of
“discovery genes”, which are gene zygosities that were
abnormal but not associated with any published genetic
condition (Fig. 2).
In the genome-phenome analysis display, the abnor-

mal gene zygosities are ranked by their “pertinence”
(Fig. 1, light green shading of the variant name of the
display), not by severity. The average number of zy-
gosities listed for consideration was 12.6 for SNVs in
nuclear families, lower when less related individuals
were included and higher when large CNVs were in-
cluded (Table 1). Pertinence is computed by measur-
ing how different the differential diagnosis would be
without that zygosity finding being abnormal [2, 19].
Pertinence scores are normalized to the highest
pertinence score for all findings, including clinical
findings, with the highest possible pertinence score
thereby 100% as seen in Fig. 1.

Genome-Phenome analysis cases
For the 70 non-discovery cases, in 100% of cases the
gene zygosity deemed causative by the Gleeson group
was identified by the analysis. In 66 of these 70 cases it
was ranked as #1 in the genome-phenome analysis list.
In the 4 other cases the rankings were 2, 3, 3, and 4,
with other abnormal gene zygosities ranked higher.
Overall, the average ranking for the correct gene zygosity
was 1.11 (Table 1). The smallest numbers of zygosities
were seen in cases of unrelated individuals having non-
shared variants in the same gene (rank of correct
diagnosis 1.00; 1.27 zygosities in total; Table 1), cases
that also had the highest number of individuals per case
(3.60; Table 1).
In the 4 cases in which ranking was not #1, the aver-

age number of individuals per case was 1.75, versus 2.67
for all cases. The experimental design did not allow for
additions to the patient findings after the information
about the abnormal gene zygosities was available, as
would be done in clinical practice. The experimental
design also did not allow for additions of findings to the
database for relevant diseases that had not been previ-
ously curated in the database. Such changes were simu-
lated and resulted in large improvements in pertinence
and are standard practice in clinical use of the Genome-
Phenome Analyzer, but the results we report are without
any such changes so as to eliminate the bias that could
be introduced by such improvements.

Identifying the correct gene zygosities
The results above demonstrate that even without adding
further clinical data or database information, in the cases
with a known gene, the #1 gene is ranked perfectly or
near perfectly. But the challenges faced in genome
analysis are complicated because there are situations in
which the pathogenic gene is not in the genome-
phenome display at all (Fig. 1), represented here by cases
in which the answer is in the discovery gene display

Table 1 The 81 cases with 216 individuals used in the study

Type of case Cases Known gene Discovery gene Individuals
per case

Rank of correct (known
gene cases)

Number of zygosities
(known gene cases)

Average Range Average Range Average Range

SNV in nuclear family 18 15 3 2.39 2–4 1.13 1–3 12.60 1–21

SNV variant shared 19 19 0 3.11 2–6 1.16 1–4 2.63 1–10

SNV gene shared 20 15 5 3.60 2–6 1.00 1 1.27 1–2

CNV in nuclear families 24 21 3 1.75 1–3 1.14 1–3 87.00 1–790

TOTAL 81 70 11 2.67 1–6 1.11 1–4 29.79 1–790

There were 57 cases with SNVs only, divided into 3 groups depending on familial relationships: nuclear family (all were beyond the trio by virtue of having more
than one sibling), variant shared (beyond nuclear families but with the same pathogenic variant), and gene shared (unrelated, with different variants in the same
gene). Cases with CNVs were all within nuclear families, but 7 were beyond the trio by virtue of including a sibling. The number of zygosities (i.e., monoallelic
versus biallelic) in the genome-phenome clinical correlation (e.g., Fig. 1) and rank of the gene zygosity that was correct (1 = top) are shown only for “known gene
cases”; i.e., cases with a known gene-phenotype association in which a genome-phenome correlation can be done
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(Fig. 2). In the 11 gene discovery cases, there was often
at least one gene zygosity in the genome-phenome ana-
lysis listing (average 9.1; range 0–43, with 6 of 11 having
non-zero numbers of zygosities). In such cases the zy-
gosity ranked #1 in the genome-phenome display had
very low pertinence. However, despite the clinical im-
plausibility of the zygosities in these genome-phenome
analysis lists, these cases serve to illustrate the task faced
by the person interpreting the genome: to assess whether
the zygosities listed in the genome-phenome display
were pathogenic (but having unusually low pertinence in
the genome-phenome display) versus irrelevant (with the

answer being among discovery genes or no answer in
the exome at all).
To guide such assessments, we examined the #1

ranked pertinence scores for all 81 cases. We divided
them into “positives” (the 66 cases in which the correct
gene zygosity was ranked #1 in the genome analysis) and
“negatives” (the 15 cases in which the correct gene zy-
gosity was not ranked #1 in the genome-phenome ana-
lysis: i.e., 4 cases in which the gene zygosity was on the
genome-phenome analysis list but not #1 plus 11 cases
in which the pathogenic gene was a discovery gene and
thus not on the genome-phenome analysis list at all).

Fig. 2 Gene discovery display. This display shows gene zygosities not associated with any published genetic condition. In the case shown here,
only 2 discovery gene candidates were found, ranked by severity score (no pertinence metric is possible for gene zygosities with no known
clinical phenotype). The PPIL1 gene (biallelic) variants were reported as causative

Fig. 1 Genome-Phenome Analysis display including both SNV and CNV results. Display of gene zygosities that fit with the variants and
affected status of all individuals used. Numbers to the left are severity scores for each zygosity (e.g., NBAS gene variants, biallelic, with “c”
denoting compound heterozygote). Zygosities are not ranked by severity score; instead they are ranked by the pertinence metric, here 100% for
biallelic GLDC gene variants (denoted by light green shading) and 0% for the other zygosities and chromosomal abnormalities shown that
represent other possible genetic diagnoses but are much lower in pertinence. The pertinence metric depends on both the severity of the gene
zygosity and the clinical findings entered for the proband. The GLDC and PRSS1 variants were derived from a deletion region and the NBAS
variants were derived from SNPs. Clicking on the “Show the 1 GLDC variant” button shows a mini variant table with that one variant location and
an explanation of how the severity score was determined for that variant (not shown here). The check marks denote variants that were found,
using the convention used for all findings, where for example, @6m for a clinical finding would denote that the clinician had entered that
finding as having onset at 6 months of age (not shown here). The boxes between the check marks and the zygosities are used to denote the
clinician’s choice of a gene zygosity to report as pathogenic (not used in this illustration)
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For the positives, pertinence of the zygosity ranked #1
in the genome-phenome analysis was 100% in 67% of
cases (Fig. 3, e.g., the case in Fig. 1). Pertinence was
intermediate in 19% of cases and less than 1.45% in 14%
of cases.
For the negatives, pertinence of the zygosity ranked #1

in the genome-phenome analysis was less than 1.45% in
93% of cases (1.45% is where the Positives and Negatives
curves cross). Pertinence was higher in only one case
(the one 90% pertinence value in Fig. 3). In this case,
only 4 present findings were used, ones shared very
widely among many diseases (microcephaly, motor delay,
intellectual disability and autism). Seven absent findings
had been used (seizures, deafness, visual impairment,
weakens, regression, splenomegaly and high lactate) but
the pertinence metric indicated that none of these
absent findings had significant influence on the diagno-
sis, and the top 10 findings recommended by the tool’s
usefulness metric were all about facial findings that
would have clarified the diagnosis. The ranking of the
correct gene would have shifted to #1 if the experimen-
tal design had allowed adding pertinent negative facial
findings for the BPTF monoallelic zygosity, which is the
reason that the Gleeson group had settled instead on
MCPH1 biallelic zygosity as the diagnosis for this case.
For the individual interpreting the genome, Fig. 3 gives

a good intuitive sense of the meaning of the pertinence
value: gene zygosities with 100% pertinence were always
pathogenic, other high pertinence scores were typically
pathogenic, and non-pathogenic zygosities almost always
had very low pertinence.
More generally, the ability of a metric to indicate a

diagnosis is assessed using a Receiver Operating

Characteristic (ROC) curve, which assesses the relation-
ship between false positives and false negatives for
various values of the metric [20]. The ROC curve for
pertinence in these cases is shown in Fig. 4; the area
under the ROC curve is 0.93 (perfect, represented by the
top left corner, would be 1.00, and random, represented
by the dotted line, would be 0.50).

CNV analysis
When a combined CNV + SNV variant table is analyzed,
3 types of results are shown together, as in Fig. 1: SNV
abnormalities (e.g., NBAS), single gene abnormalities
from CNV areas (e.g., GLDC in an 8007 base pair
deletion on chromosome 9), and described chromosomal
disorders based on the overlap between a CNV detected
in the patient and such a described CNV (e.g., Chromo-
some 16p13.11 deletion). In Fig. 1, the pertinence for
each of these is intercompared in a hypothesis-
independent way, and here the GLDC variants have
100% of the pertinence (green shading of the gene
zygosity).
As shown in Table 1, the ability to correctly rank

abnormalities in CNV cases was similar to that in SNV
cases.
The genome-phenome analysis was designed to also

look for associations of large CNVs in patients with the
185 large CNV syndromes curated in the SimulConsult
database (chosen as large CNVs with an article in Online
Mendelian Inheritance in Man (OMIM), Orphanet
Journal of Rare Diseases or GeneReviews). It flagged
such associations in many CNV cases (e.g., Chromosome
16p13.11 deletion syndrome in Fig. 1), but no such
zygosity findings were ranked #1 in pertinence and no

Fig. 3 Pertinence values for positives and negatives. Positives are the 66 cases in which the correct (reported) gene was #1 in the genome-
phenome analysis output (e.g., Fig. 1); in 67% of these, pertinence was 100.0. Negatives are the 15 cases in which the correct gene was not
ranked # in the genome-phenome analysis (11 in which it was in the gene discovery display (e.g., Fig. 2) and 4 in which it was in the genome-
phenome analysis output by not ranked #1)
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cases with such CNV syndromes being pathogenic were
provided by the Gleeson group.

Gene discovery
Eleven of the 81 cases were “gene discovery” cases: ones
in which a gene zygosity for which there was no
published human phenotype was determined to be
causative (Fig. 2 and Gleeson et al., in preparation). The
gene discovery display does not include pertinence
because pertinence is defined in terms of a differential
diagnosis, and by definition, discovery genes have no
association with a human phenotype.
For the 11 gene discovery cases, the number of candi-

date genes in the gene discovery list having severity
equal or greater than the discovery gene chosen by the
Gleeson group decreased with the number of individuals
sequenced. For SNV cases it decreased from 21.3 for 2
individuals to a perfect 1.0 with 3 or more individuals.
The number of candidate genes was higher when genes
from CNV regions were included but decreased with the
number of individuals (140 for 1 individual, 57 for 3
individuals).

Discussion
Systematizing the clinical correlation
The goal of this test of diagnostic decision support was
to see if it could convert a long manual process of gen-
ome assessment and clinical correlation performed by
specialized laboratory personnel to a rapid one that
could be performed by a clinician [1–3]. Two additional
hypotheses tested here for the first time were whether
such an approach can be extended to include CNV
analysis and beyond-the-trio cases.
The key result is that in 100% of these 70 cases the

correct gene zygosity was identified, and it was ranked

#1 in 94% of cases, and #1 - #4 in 100% of cases. Since
the computational time is seconds, this provides a tool
for clinical correlation of genomic results that can be
used by clinicians to arrive at a genomic diagnosis and
assess its clinical plausibility with far greater speed and
lower cost than a more manual analysis and clinical
correlation.
The automated analysis also promotes quality im-

provement by making it possible to quantitate the value
of different components of genomic analysis. This was
done here by providing guidance on the interpretation
of gene zygosity pertinence scores (Figs. 3, 4) and show-
ing the effect of adding further individuals beyond the
trio. This adds evidence-based guidance for determining
the optimal number of genomes to order, balancing the
costs of testing with those of failure to diagnose.

CNV analysis as part of genomic analysis
The ability to combine CNV analysis with SNV analysis
suggests that the current practice of doing microarray
analysis before genomic analysis [4] may result in un-
necessary delay and cost, and that the approach used
here in which the CNV information is obtained from
genomic analysis and the CNV and SNV information are
analyzed together could improve speed of diagnosis and
reduce costs.

Hypothesis-independence
A crucial property for such a tool is hypothesis-
independence. As in the earlier study [2], the decision
support analysis is hypothesis-independent as to the
mode of inheritance (e.g., autosomal recessive, com-
pound heterozygote), the number of genes involved, and
which clinical findings were most important. Here, when
CNV information was added to the variant table and

Fig. 4 Receiver operating characteristic (ROC) curve for the diagnostic ability of the analysis. All 81 cases were ranked by their pertinence
scores and the true positive rate and the false positive rate are displayed. The area under the ROC curve is 0.93
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CNV-related abnormalities appeared in the same ranked
pertinence list (Fig. 1), the analysis adds a 4th type
hypothesis-independence: whether the abnormality is in
a CNV or a SNV.

Use of such a tool in actual clinical practice
Although these results provided a rapid analysis with
high accuracy, our analysis of these cases suggests that
in actual clinical practice there would be further
improvements in performance because of two types of
checking done by clinicians:

Clinical correlation informed by abnormal gene zygosities
No opportunity was provided in the study design for
adding pertinent positives and pertinent negatives after
the list of pertinent gene zygosities was available (Fig. 1).
This approach was necessary because for many of the
cases the clinical descriptions were provided as written
records to the Gleeson group, and further information
was not easily available. In particular, the number of
negative findings listed by the Gleeson group was sparse.
However, in actual clinical practice, once the abnormal
gene zygosities are available to the clinician who has
examined the patient or has access to the full patient
record, more information is brought to bear, i.e., useful
findings such as those suggested in the software’s useful
findings algorithm [16] can be used to add pertinent
positive and pertinent negative findings. Decades of
studies in medical informatics have shown that an essen-
tial element of medical diagnosis is its iterative nature
[21, 22] in contrast to a web search that is a one-shot
query. The importance of iterative addition of informa-
tion underscores the relevance of doing clinical correl-
ation after genomic sequencing. As illustrated in Results,
adding pertinent negative facial findings to assess the
BPTF monoallelic zygosity became relevant based on
other gene zygosities found. The post-sequencing
clinical correlation performed in the Gleeson lab re-
sulted in demotion of an incorrect gene zygosity, but
such pertinent negative findings were not provided in
the patient clinical data file used in this study. In actual
practice, it is always advisable for the clinician to con-
sider further findings. This is most important in the 33%
of cases (Fig. 3) in which the pertinence metric was not
100%. In future studies there would be value in modeling
such a post-sequencing phase of clinical correlation.

Enhancing curation of relevant genes
No opportunity was provided in the study design for
adding more information to the database about diseases
related to abnormal gene zygosities listed in the
genome-phenome analysis. This approach was chosen to
avoid biasing the results. However, as discussed in Re-
sults, in actual clinical practice, such literature review

would be done, particularly in the 33% of cases (Fig. 3)
in which the pertinence metric was not 100%. In the 4
cases not ranked #1, doing so raised the pertinence of
the gene zygosity identified by the Gleeson group. How-
ever, to avoid bias, such changes to the database were
not retained in the database or used in this study, even
though they met the evidence-based standards for data-
base information changes. In actual clinical practice it is
advisable to consider such additional information from
the published literature, and those with authority to
submit changes to the database can submit such infor-
mation to the database automatically, thus augmenting
the database in a crowd-sourced manner. This is similar
to the crowd-sources manner in which ClinVar collects
information about variant pathogenicity [23] but submit-
ting SimulConsult database changes takes only seconds
using the existing curation interface in the software.

Reanalysis of genomic results
There is increasing discussion about the importance of
reanalyzing genomic results [24]. Three types of new
information can impact the clinical correlation:

� Genotype-phenotype associations: Hundreds of
new genome-phenome correlations and much new
information about findings in diseases are discovered
each year and added to the database described here
in an ongoing curation effort.

� Patient findings: The patient’s clinical findings
evolve over time, and further laboratory testing is
often done.

� Variant information: New information about
pathogenicity of variant is shared in resources such
as ClinVar, and these scores can be used to re-
annotate a variant table.

A key advantage of a clinician-focused automated
platform is that reanalysis can be done by the clinician
in minutes, making use of these 3 forms of new informa-
tion. Reanalysis of genomic information can now be so
routine as to become part of follow-up visits for patients
who would otherwise have remained undiagnosed.
In contrast, standard commercial gene panels, often

based on a single clinical characteristic such as ataxia,
would need to be re-ordered since the panels keep
changing. This is prohibitively expensive, and as shown
in earlier work [2], it is often not clear before genomic
analysis which findings are most important.

Limitations
The cases analyzed here all had significant neurological
findings, reflecting the case mix of the Gleeson group, so
the conclusions apply most directly to that group,
though it is important to note that most genetic
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conditions have associated neurologic findings. In this
study the range of neurologic findings was not limited to
a single manifestation (e.g., seizures), but encompassed a
broad range of features, with ~ 10 used per case. This
allowed testing of a diverse set of clinical features associ-
ated with neurologic findings representative of a typical
neurologic or genetic practice setting. A diverse group of
genetic disorders with neurologic findings was also in-
cluded in the analysis. These approaches reduce the risk
of introducing bias that would favor the performance of
the tool.
The study did not compare to other tools designed for

clinical genomic diagnosis such as Phen2Gene [25]. Such
comparisons would be important, but because some of
the advantages of the tool described here include the
ability to use onset age and pertinent negative findings,
and the ability to suggest which findings would be useful
to include, such studies would need to test multiple
clinicians approaching real cases and choosing which
findings to include, for which we are developing meth-
odology (Segal, Rahm, Walton and Williams, manuscript
in preparation). This study did not compare to tools de-
signed for gene discovery such as VarElect [26], which
have capabilities such as knowledge of which gene prod-
ucts interact with other gene products, not included in
the tool analyzed here, which was designed primarily for
clinical diagnosis.

Conclusions
Empowering the clinician to do the clinical correlation
for genomic analysis is practical using the enhancements
described here of a tool already widely used by clinicians
for diagnostic decision support. Empowering clinicians
in this way restores their central role in genomic
analysis. It enables highly effective procedures such as
clinical correlation as the final stage of genomic analysis.
It makes reanalysis of sequencing so practical as to be
routine. The ability to incorporate CNV information in
the analysis can save cost and time for testing and
analysis.
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