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Abstract

Background: Osteogenesis Imperfecta (OI) is a rare genetic disorder involving bone fragility. OI patients typically
suffer from numerous fractures, skeletal deformities, shortness of stature and hearing loss. The disorder is
characterised by genetic and clinical heterogeneity. Pathogenic variants in more than 20 different genes can lead to
OI, and phenotypes can range from mild to lethal forms. As a genetic disorder which undoubtedly affects quality of
life, OI significantly alters the reproductive confidence of families at risk. The current review describes a selection of
the latest reproductive approaches which may be suitable for prospective parents faced with a risk of OI. The aim
of the review is to alleviate suffering in relation to family planning around OI, by enabling prospective parents to
make informed and independent decisions.

Main body: The current review provides a comprehensive overview of possible reproductive options for people with
OI and for unaffected carriers of OI pathogenic genetic variants. The review considers reproductive options across all
phases of family planning, including pre-pregnancy, fertilisation, pregnancy, and post-pregnancy. Special attention is
given to the more modern techniques of assisted reproduction, such as preconception carrier screening,
preimplantation genetic testing for monogenic diseases and non-invasive prenatal testing. The review outlines the
methodologies of the different reproductive approaches available to OI families and highlights their advantages and
disadvantages. These are presented as a decision tree, which takes into account the autosomal dominant and
autosomal recessive nature of the OI variants, and the OI-related risks of people without OI.
The complex process of decision-making around OI reproductive options is also discussed from an ethical perspective.

Conclusion: The rapid development of molecular techniques has led to the availability of a wide variety of
reproductive options for prospective parents faced with a risk of OI. However, such options may raise ethical concerns
in terms of methodologies, choice management and good clinical practice in reproductive care, which are yet to be
fully addressed.

Keywords: Reproduction, Osteogenesis Imperfecta, Family planning, Bone fragility, Prenatal diagnosis, Preimplantation
genetic testing, Preconception carrier screening, Ethical decision-making, Ethics of prenatal testing

Background
Procreation is one of the declared meanings of life [1].
Numerous studies have shown a positive association be-
tween the ability to have offspring and satisfaction with
quality of life (QoL) in both men and women and across

different cultures [2]. Since reproduction comprises such
an important aspect of a person’s life, it can raise chal-
lenging issues for those who suffer from infertility or a
genetic disorder. Having a genetic disorder strongly
affects the reproductive decisions of an affected individ-
ual or a carrier [3]. The more severe, the earlier the
onset and the less curable a genetic condition is, the
more complicated and limited the reproductive options
may seem. A lack of information about developments in
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reproductive medicine among patient and professional
communities may result in a sense of fear and insecurity,
and lead to non-independent reproductive decisions.
The latest advances in family planning and assisted

reproduction have already led to considerable benefits for
people with risk of a genetic disorder such as OI [4–7]. OI
is a rare monogenic disorder of bone fragility, also known
as a “brittle bone disease” [8]. The condition is charac-
terised by easily occurring bone fractures, skeletal deform-
ities, shortness of stature and bluish eye sclera. Patients
also suffer from hearing loss, joint hypermobility, dentino-
genesis imperfecta, and cardiovascular and pulmonary
complications [9–13]. Due to high phenotypic variability,
symptoms may vary between OI patients. Phenotypes may
differ even between OI individuals with the same patho-
genic variant, and between affected members of a single
family [14, 15]. Despite being a rare genetic disorder, OI
does not influence the fertility of affected individuals [16].
In most populations, one individual per 10–20,000 is

affected, making OI one of the most common rare skeletal
dysplasias [9, 10]. To date, no cure for OI is available: man-
agement includes the medical and surgical treatment of
both skeletal abnormalities and other symptomatic compli-
cations [17–20]. The most popular OI pharmacological
treatment is an anti-resorptive therapy with bisphospho-
nates, however this is of limited effectiveness [21]. Other
options include the use of anabolic therapies (growth
hormones) which, similarly to anti-resorptive approaches,
support the increase of bone mass; however they do not
improve bone quality [20]. A number of other therapies
are currently under development, including monoclonal
antibodies, gene therapies, mesenchymal stem cell trans-
plantation and 4-phenylbutyric acid therapy [22–24]. Given
the limited efficiency of existing treatments, the presence
of OI can significantly affect QoL, and lead to emotional,
social, physical, reproductive and health-related challenges
[25–27]. Life expectancy depends on the severity of the
condition, which can range from mild osteopenia to severe,
perinatally lethal forms [9]. In general, patients with OI
have a higher lifelong mortality rate as compared to the
general population, due to respiratory, gastrointestinal and
cardiovascular diseases and traumas [28].
Clinical OI classification distinguishes between five OI

types (OI 1–5) [9, 29]. OI 1 (Online Mendelian Inherit-
ance in Man (OMIM) 166,200) is a non-deforming mild
OI with blue sclera. OI 2 (OMIM 166210) is the most
severe, perinatal lethal form of OI. OI 3 (OMIM 259420)
is a severe, progressively deforming OI. OI 4 (OMIM
166220) is a common variable OI with normal sclera
[30]. OI 5 (OMIM 610967) is an OI with progressive
calcification abnormalities [31] (Fig. 1). Of the five OI
types, OI 1 is estimated to affect the highest proportion
of the OI population (46–71%). OI 4 and 3 are each esti-
mated to affect between 12 to 28% of the OI population

[11, 28, 32]. OI 5 is estimated to affect approximately 2–
5% of the OI population [33, 34] and lethal OI 2 is esti-
mated to affect less than 12% [28, 35] (Table 1).
In ~85% of cases, the disorder is caused by pathogenic

variants in the COL1A1 (OMIM 120150) and COL1A2
(OMIM 120160) genes [11, 34, 36–38]. The COL1A1
and COL1A2 genes code for α1 and α2 chains of a colla-
gen type I protein, which comprises up to 90% of the
organic component of the bone and is responsible for its
elastic properties. Structural and quantitative aberrations
in collagen I may therefore cause bone fragility and
result in fractures [39–41]. Over the last decade, 21
other OI-related genes have been discovered (genetic OI
types I-XX) [18, 29, 42] (Table 2, Fig. 1).
Being a monogenic disorder with high genetic and

phenotypic variability, OI raises many ethical issues
around family planning, both for medical professionals
and for families with a risk of OI. For example, in auto-
somal dominant (AD) families, OI may be passed down
through many generations: due to the high probability of
variant transmission (50%), there is a low chance of
eliminating the disorder from the genealogical tree.
Given the limited effectiveness of current treatment
approaches, families with OI risk face difficulties in the
realisation of their reproductive interests.
The current article provides an overview of the latest

advances in reproductive options for prospective parents
faced with OI, with a focus on modern reproductive
medicine techniques. The article discusses reproductive
approaches which may increase the likelihood of un-
affected offspring in OI families. A reproductive decision
tree for families at risk of OI is also presented. Finally,
the article reviews some of the ethical concerns associ-
ated with OI reproductive options, in order to assist
good clinical practice and to support OI families in mak-
ing independent reproductive decisions.

Main text
Reproductive options for prospective parents faced with
Osteogenesis Imperfecta
Before beginning the family planning process, prospect-
ive parents faced with a risk of OI must consider some
important preliminary issues:

– Do they require offspring to be genetically related,
or would a genetically non-related child also be
considered?

– Is natural conception preferred, or is in vitro
fertilisation (IVF) also a possibility?

– Is termination of pregnancy an option (in the case of
an affected pregnancy)?

– Has the possibility of accepting a child affected with
OI been considered (or only the possibility of an
unaffected child)?
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Fig. 1 OI clinical and genetic heterogeneity. OI clinical variability ranges from mild non-deforming OI to severe and lethal OI forms. Genetic
diversity of the disorder is characterised by OI pathogenic variants in more than 22 different genes. Autosomal dominant (AD), autosomal
recessive (AR) and X-linked recessive (XLR) inheritance patterns were observed among OI families. A – Autosomal chromosome; OI –
Osteogenesis Imperfecta; X – X chromosome; Y – Y chromosome

Table 1 OI clinical nomenclature and estimated prevalence of OI types

OI clinical type Online Mendelian Inheritance in Man (OMIM) Description of severity Estimated prevalence
[11, 28, 32–35]

OI 1 166,200 Non-deforming mild OI with blue sclera ~ 46–71%

OI 2 166,210 Perinatal lethal form of OI ~ 12%

OI 3 259,420 Severe, progressively deforming OI ~ 12–28%

OI 4 166,220 Common variable OI with normal sclera ~ 12–28%

OI 5 610,967 OI with progressive calcification abnormalities ~ 2–5%
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Table 2 OI genetic nomenclature combined with causative genes and phenotypes

OI
clinical
type

Mutated
gene

Genetic
OI type

OMIM Inheritance Protein product Phenotype

OI 1 COL1A1 I-IV 166,
200

AD, AR Collagen α1(I) Non deforming OI with blue sclera; Common variable
OI with normal sclera; Progressively deforming

OI 2 166,
210

OI 3 259,
420

OI 4 166,
220

OI 1 COL1A2 I-IV 166,
200

AD, AR Collagen α2(I) Non deforming OI with blue sclera; Common variable
OI with normal sclera; Progressively deforming

OI 2 166,
210

OI 3 259,
420

OI 4 166,
220

OI 5 IFITM5 V 610,
967

AD Bone-restricted interferon-induced trans-
membrane protein-like protein (BRIL;
also known as IFITM5)

OI with calcification in interosseous membranes,
hyperplastic callus, radial head dislocation or severe
bone deformity with grey scleraOI 3

OI 3 SERPINF1 VI 613,
982

AR Pigment epithelium-derived factor
(PEDF)

Progressively moderate to severe deforming, osteoid,
fish-scale appearance of bone lamella

OI 3 CRTAP VII 610,
682

AR Cartilage-associated protein (CRTAP) Progressively deforming, severe rhizomelia, white
sclera

OI 2

OI 3 P3H1
(LEPRE1)

VIII 610,
915

AR Prolyl 3-hydroxylase 1 (P3H1) Progressively deforming, severe rhizomelia, white
sclera

OI 2

OI 3 PPIB IX 259,
440

AR Peptidyl-prolyl cis–trans isomerase B
(PPIase B)

Severe bone deformity with grey sclera

OI 2

OI 3 SERPINH1 X 613,
848

AR Serpin H1 (also known as HSP47) Severe skeletal deformity, blue sclera, dentinogenesis
imperfecta, skin abnormalities and inguinal hernia

OI 3 FKBP10 XI 610,
968

AR 65 kDa FK506-binding protein (FKBP65) Mild-to-severe skeletal deformity, normal-to-grey sclera
and congenital contractures

OI 3 BMP1 XII 614,
856

AR Bone morphogenetic protein 1 (BMP1) Mild-to-severe skeletal deformity and umbilical hernia

OI 3 SP7 XIII 613,
849

AR Transcription factor SP7 (also known as
osterix)

Severe skeletal deformity with delayed tooth eruption
and facial hypoplasia

OI 4

OI 3 TMEM38B XIV 615,
066

AR Trimeric intracellular cation channel type
B (TRIC-B; also known as TM38B)

Severe bone deformity with normal-to-blue sclera

OI 3 WNT1 XV 615,
220

AD, AR Proto-oncogene Wnt-1 (WNT1) Severe skeletal abnormalities, white sclera and
possible neurological defects

OI 4

OI 2 CREB3L1 XVI 616,
229

AR Old astrocyte specifically induced
substance (OASIS; also known as CR3L1)

Progressively severe deforming, respiratory deficiency

OI 3

OI 3 SPARC XVII 616,
507

AR SPARC (also known as osteonectin) Progressively severe deforming, severe fragility

OI 3 TENT5A
(FAM46A)

XVIII 617952 AR Terminal nucleotidyltransferase 5A Progressively moderate to severe, congenital bowing
of the lower limbs

OI 3 MBTPS2 XIX 301014 XLR Membrane-bound transcription factor
site-2 protease (S2P)

Progressively moderate to severe deforming, light
blue sclera

OI 3 PLOD2 No type 609,
220

AR Lysyl hydroxylase 2 (LH2) Progressively moderate to severe deforming, joint
contractures

OI 3 MESD XX 618, AR Mesoderm development LRP chaperone Progressive deforming OI, oligodontia
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These questions are critical to the autonomy of
prospective parents’ decisions. Only after preliminary
discussion with a health specialist (e.g. a general practi-
tioner, genetic counsellor or fertility specialist) in which
the views and wishes of the prospective parents are
specified should a family planning strategy be chosen.
Those individuals carrying, or being at risk of carrying,
an OI variant and who do not wish to pass it on to their
offspring have several options, each of which will be dis-
cussed in detail below (Table 3, Figs. 2, 3 and 4). Some
of the methods (e.g. pre-pregnancy testing and prenatal
testing) may be also useful for those couples considering
natural conception. A decision tree of reproductive
options for prospective parents faced with a risk of OI is
presented below (Fig. 5). Although outside the scope of
the current review, we note that other health risks may
affect the reproductive decisions of females with OI, in
particular the associated additional pregnancy risks such
as cardiorespiratory complications, severe musculoskel-
etal pain, bone loss, uterine and placenta rupture, and
blood loss during delivery [44, 45].

Pre-pregnancy reproductive options for prospective
parents faced with Osteogenesis Imperfecta
During the pre-pregnancy period, an individualised
approach to reproductive options may be developed
which incorporates not only the OI family history and
OI phenotype and genotype characteristics, but also
details regarding prospective parents’ reproductive
health, their abilities and their wishes (Table 3, Fig. 2).
Pre-pregnancy family planning is beneficial not only for
those who hope to have an unaffected pregnancy, but
also for those faced with the possibility of an affected
pregnancy. Pre-pregnancy preparation and family planning
allow for a wider variety of reproductive options, reduce as-
sociated risks and enable the arrangement of OI pregnancy,
delivery and early treatment options where necessary.

Family planning for people with Osteogenesis Imperfecta
Disorder severity is known to alter the reproductive
decisions of OI patients [46]. Approximately 56% of fam-
ilies with OI 1 have several generations of OI history.
This may be due to undiagnosed OI cases in older gen-
erations, resulting from lack of awareness. On the other
hand, conscious risking may occur where the OI pheno-
type is mild and has a lower impact on QoL. Half of OI
4 patients have familial OI. In contrast, only about 14%
of patients with OI 3 have a previous family history of
OI, which may be explained by the severe nature of this
OI form [47]. At an individual patient level, the severity
of the disorder is highly subjective. According to a
“Voice of people with OI” statement, “A person with
mild OI who has severe pain, or who has become deaf,
might regard his OI as more severe than an otherwise
healthy wheelchair user with OI type 3” [48]. It follows
that not only those with OI 3, but also individuals with
OI 4 and even OI 1 may require assistance with repro-
ductive confidence. Consequently, all OI patients, re-
gardless of the severity of their OI, should be offered
support and a choice of reproductive strategies.

Osteogenesis Imperfecta genetic testing For people
with OI, genetic testing is an important starting point
for family planning. Genetic testing provides insights
into a patient’s OI family history and OI genotype char-
acteristics, and allows for the connected evaluation of OI
transmission risks. Modern genetic testing is performed
either after clinical OI diagnosis, or in parallel. Previ-
ously, it was more common to first perform Sanger
sequencing of the COL1A1 and COL1A2 genes [49, 50].
However, the modern conception of OI genetic diagno-
sis is based on the identification of OI-causative variants,
using targeted next generation sequencing (NGS) of all
23 OI-related genes simultaneously (Fig. 2). Targeted
NGS allows the coding sequences and flanking regions
of identified genes to be screened. As a rule, OI panels

Table 2 OI genetic nomenclature combined with causative genes and phenotypes (Continued)

OI
clinical
type

Mutated
gene

Genetic
OI type

OMIM Inheritance Protein product Phenotype

644

OI 4 PLS3 No type 300910 XLR Plastin 3 Common variable OI with normal sclera, normal
height

OI 3 NBAS No type 614800 AR Neuroblastoma amplified sequence Progressively moderate to severe deforming,
intellectual disability, liver failure, optic nerve atrophy

OI 3 SEC24D No type 616294 AR Protein transport protein Sec24D Bone fragility, skull ossification defects, craniofacial
dysmorphism

OI 3 CCDC134 No type 618,
788

AR Coiled-coil domain containing protein
134

Bone fragility, Wormian bones, limited joint mobility,
pseudoarthroses

Adapted from Online Mendelian Inheritance in Man (OMIM) database [18, 29, 43]
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include AD, autosomal recessive (AR) and X-linked
(XLR) OI genes, as well as additional genes associated
with other skeletal dysplasias (such as achondroplasia,
Ehlers-Danlos syndrome, monogenic osteoporosis and
hypophosphatasia) [51].
Although infrequent, some difficulties in OI genetic

testing may arise. These include missing causative genes
in the targeted NGS panel, a new unknown causative
gene, exon or whole gene deletions, and intronic variants
[34, 50–52]. Sometimes, current knowledge is insuffi-
cient for the identification of the pathogenicity of a
found DNA change (known as variants of unknown sig-
nificance (VUS)), which complicates the interpretation
of results. These limitations may also cause a negative
result in a genetic test [50]. In the case of a negative re-
sult for a targeted NGS-panel, other testing options are
usually considered (e.g. multiplex ligation-dependent
probe amplification (MLPA), whole exome sequencing

(WES), biochemical analysis, whole genome sequencing
(WGS) and functional studies).

Autosomal dominant Osteogenesis Imperfecta Up to
90% of OI cases are caused by autosomal dominant
(AD) pathogenic variants in the COL1A1, COL1A2 genes
and the IFITM5 (OMIM 614757) gene, with a 50% prob-
ability of transmission of the pathogenic variant to the next
generation [11, 34, 36, 53, 54] (Table 2, Fig. 1). All OI 5
cases are associated with a heterozygous pathogenic variant
(c.-14C >T) in the 5′ untranslated region of the IFITM5
gene, which is associated with bone mineralization [54].
However, collagen I AD cases may represent any of OI
types 1–4 and display individual characteristics [29]. More
than 1500 pathogenic variants in the COL1A1 and COL1A2
genes have been described to date [55]. Genotype-
phenotype correlations remain unclear, due to the high de-
gree of phenotypical variability, possibly associated with the

Table 3 Comparison of OI reproductive options

Pre-pregnancy testing

Genetic Testing PCS

Target user People affected with OI People with risk of OI (OI family
history, consanguinity,
founder population origin)

Advantages Fast and informative Fast and informative

Limitations VUS; negative results of genetic test Parental mosaicism; de novo OI; VUS

Fertilisation methods

Natural pregnancy IVF with PGT-M IVF with donor germ cells IVF with donor
embryo

Genetically
related child

Yes Yes No No

Child without OI Unknown Yes Yes Yes

OI mother’s
health challenges

Pregnancy, delivery Superovulation,
pregnancy, delivery

Superovulation, pregnancy,
delivery

Pregnancy, delivery

Limitations PGT-M unavailable, high chance of OI
affected pregnancy, de novo variants,
variable phenotypic expressivity of OI

De novo variants De novo variants, PCS need to be
done for sex cell donors

De novo variants

Prenatal testing

NIPT Ultrasound CVS Amniocentesis Cordocentesis

Non-invasive Yes Yes No No No

Week of
gestation

7th–10th 20th 10th–12th 15th–20th 22nd-24th

Tests foetal
abnormalities, OI

Yes Yes Yes Yes Yes

Differs OI 2–3 No No No No No

Risk of
misdiagnosis

Yes (placental
mosaicism)

Yes (differential
diagnosis)

Yes (placental
mosaicism)

No No

Limitations Unavailable before 7th
week of gestation, high
mother’s BMI

Unavailable at
early gestation
weeks

Unavailable at early
gestation weeks, risk
of miscarriage ~ 1%

Unavailable at early
gestation weeks, risk of
miscarriage ~ 0.5–1%

Unavailable at early
gestation weeks, risk of
miscarriage ~ 1–2%

BMI Body mass index, CVS Chorionic villus sampling, IVF PGT-M In vitro fertilisation with preimplantation genetic testing for monogenic disease, NIPT Non-invasive
prenatal testing, PCS Preconception carrier screening, VUS Variant of unknown significance
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influence of genetic modifiers [29, 56, 57]. In general, the
more severe forms of OI are associated with structural ab-
normalities of the collagen type I, and characterised by Gly
missense substitutions in the COL1A1 and COL1A2 genes
[58]. The abovementioned structural aberrations of the col-
lagen are associated with endoplasmic reticulum stress and
apoptosis of osteoblasts and are therefore more deleterious
[38, 59, 60]. The severity of the phenotype is also influenced
by the type of substitution and the position of the variant
[38]. Although the existence of “lethal clusters” of Gly sub-
stitutions was previously proposed for the COL1A1 and
COL1A2 genes, recent reports illustrate that some of the
variants located inside these clusters are associated with
non-lethal OI phenotypes [37, 38, 61]. Attempts to predict

the lethality of collagen I variants are challenging, as the
same variants may cause both lethal and non-lethal OI
cases [62, 63]. Mild OI forms are related to loss-of-function
(LoF) pathogenic variants (splice site, nonsense and frame-
shift) of the COL1A1 and COL1A2 genes [38, 60, 64].
More than half (~ 60%) of AD OI variants in the

COL1A1 and COL1A2 genes arise sporadically as de
novo cases. The majority of de novo cases are missense
variants, whereas inherited OI is caused mainly by LoF
variants [47, 65]. As with other monogenic disorders, the
incidence rate of OI de novo cases is reported to be as-
sociated with paternal age [66]. However, the phenotype
severity is not influenced by the paternal (sperm cell) or
maternal (egg cell) origin of the de novo variant.

Fig. 2 Overview of pre-pregnancy reproductive options for members of families with OI risk. Pre-pregnancy testing of OI: genetic testing and PCS
- preconception carrier screening
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According to observations by Pyott et al., in 32% of
families with unaffected parents and a first child affected
with perinatally lethal OI, the disorder recurred in sub-
sequent children [67]. Recurrence of OI in subsequent
offspring is explained by the AR inheritance pattern, or
parental mosaicism, which is estimated to be as high as
5–8% across all OI cases [68, 69]. Mosaicism is the
presence of more than one cell population with differ-
ent genotypes among the gametes and / or somatic cells
of an individual. The OI-causative variant is present in
only a fraction of the cells of a mosaic individual. For
there to be a higher OI risk in offspring, the genetic
mutation causing OI must be present in a proportion
of gametes. Whereas mosaic parents may reveal mild or
moderate clinical symptoms of OI, or stay asymptom-
atic, their offspring (if developed from a germ cell with
OI variant) may be fully affected, and may even develop
a severe or lethal OI phenotype [67–69].

Autosomal recessive Osteogenesis Imperfecta The
remaining 10% of OI cases are caused by autosomal re-
cessive (AR) pathogenic variants in collagen I and in 19
other OI genes [18, 29, 70]. AR OI genes encode pro-
teins involved in the post-translational modification,
processing, transport and cross-linking of the collagen
type I. Other AR genes are involved in the bone tissue
mineralization or osteoblast differentiation and function-
ing (Table 2, Fig. 1) [71–87]. Unlike AD OI, the distribu-
tion of AR OI differs across populations, which is thought
to be due to the effects of founder populations, migration
processes and cultural traditions which tolerate consan-
guinity [77, 88–92]. If both parents are AR OI carriers,
their probability of having an affected child is 25%.
AR pathogenic variants tend to cause the development

of moderate, severe, and lethal OI phenotypes. Pheno-
typically pathogenic variants in non-collagen AR OI
genes primarily correspond to the classical collagen-

Fig. 3 Overview of fertilisation options for couples with OI risk. IVF - in vitro fertilisation with donor gametes / embryo, PGT-M - preimplantation
genetic testing, and natural conception
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Fig. 4 Overview of prenatal testing options for members of families with OI risk. NIPT – non-invasive prenatal testing, ultrasound, CVS - chorionic
villus sampling, cordocentesis, amniocentesis

Fig. 5 Reproductive decision tree for members of families with OI risk. Based on the OI inheritance pattern in the family, and the wishes of the
prospective parents, a specific autonomous decision-supportive reproductive strategy could be chosen. AD – Autosomal Dominant; AR –
Autosomal recessive; IVF – In Vitro Fertilisation; NIPT – Non-invasive Prenatal testing; OI – Osteogenesis Imperfecta; PCS – Preconception Carrier
Screening; PGT-M – Preimplantation Genetic Testing for Monogenic Disease; XLR – X-linked recessive
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related clinical types (OI 1–4) [29] (Table 2). Nevertheless,
some differences in the details between non-collagen OI
phenotypes may occur [18]. Whereas the homozygous
and compound heterozygous variants of the COL1A2 and
other AR genes may result in severe phenotypes, individ-
uals with the same heterozygous variants tend to be mildly
affected or even asymptomatic [93–97]. Whilst the vast
majority of lethal OI is associated with AD and AR vari-
ants in the collagen I genes, approximately 5% of lethal OI
cases are caused by the CRTAP, P3H1, PPIB and CREB3L1
pathogenic variants (genetic OI types VII-IX, XVI) [34, 83,
97–99]. The X-linked recessive (XLR) OI is associated
with only two genes: MBTPS2 (OMIM 300294) and PLS3
(OMIM 300131). Currently, only 15 families with non-
lethal XLR OI have been identified worldwide [100, 101].

Family planning for people without Osteogenesis
Imperfecta
Besides those individuals personally affected by OI, re-
productive challenges are also faced by members of
families with an OI risk. This includes parents with a
previous child affected by OI, parents of an unborn child
with ultrasound findings of skeletal dysplasia and car-
riers of OI-associated pathogenic variants. All these indi-
viduals face a direct risk of having an offspring affected
by OI. Some individuals face a higher probability of
being OI carriers, such as consanguineous couples and
members of founder communities in which a particular
recessive variant is prevalent.

Preconception carrier screening Preconception carrier
screening (PCS) is conducted prior to pregnancy in cou-
ples with a risk of carrying a recessive OI variant (Fig. 2).
As with genetic testing, PCS aims to identify couples at
risk before pregnancy and provide them with genetic
counselling about reproductive options, in order to
support them in making an autonomous reproductive
decision [102]. PCS is a general population screen for
pathogenic variants conferring severe recessive disorders,
and is recommended as an efficient means of minimizing
the incidence of these disorders [102, 103]. PCS generally
tests for several genetic disorders concurrently. The list of
selected disorders varies between PCS providers, however
the general criteria for inclusion onto a PCS panel in-
cludes relatively high incidence, shortened lifespan, severe
mental or physical disability, and unavailability of treat-
ment [104, 105]. OI is not commonly included in basic
PCS due to its low incidence.
PCS programs differ in their pan-ethnic approach

(which aims to screen carriers across different popula-
tions) and their population-specific approach (based on
the screening of individuals from the same high-risk
population). Pan-ethnic PCS is used for the screening of
cystic fibrosis in individuals with European ancestry,

whereas population-specific PCS is used for the screen-
ing of β-thalassemia in individuals from Mediterranean
regions, and when testing for Tay-Sachs disease among
Ashkenazi Jewish populations [106–108]. As OI has a
lower incidence and higher genetic heterogeneity than
these conditions, a population-specific approach may be
relevant for the evaluation of OI risk in some popula-
tions. One example of a successful population-specific
OI PCS is that reported by Mathijssen et al., in which
the presence of the CRTAP frameshift variant was tested
for in a Dutch founder population. The lethal AR OI
variant was found to be carried by 4.1% of the genetic
isolate village population, whereas the overall allele fre-
quency in the general Dutch population is < 0.2% [109].
Another lethal AR OI variant in the P3H1 gene was
found to be carried in 1.5% of a West African study
population and in 0.4% of a US African American study
population, which is significantly higher than in the gen-
eral population [90, 110]. Other OI founder variants
have also been observed in Palestinian (TMEM38B,
FKBP10), Israeli Arab Bedouin (TMEM38B), Hmong
people (WNT1), German (SEC24D, FKBP10), and First
Nations of Canada (CRTAP) study populations [77, 86,
88, 90, 91, 111–114]. The results of the Dutch PCS are
very promising, however further accumulation of know-
ledge about OI genetic epidemiology is needed for devel-
opment of OI population-specific PCS tests. Currently,
only a limited number of founder populations benefit
from a population-specific approach to OI PCS.
There are two main PCS methodologies: hybridization

techniques, which concentrate on the detection of the
most common targeted variants; and NGS, which is used
to identify all variants in a panel of genes [115, 116].
Hybridization techniques allow the identification of a
pathogenic variant via the complementary attachment of a
labelled DNA probe to a target sequence. Hybridization
techniques are an inexpensive and robust way to discover
disorders in which only a limited number of causative
genetic variants exists. In contrast, NGS is a more expen-
sive method, yet it is better suited to the characteristics of
the OI genetic heterogeneity and the individual nature of
OI variants. NGS is therefore the most effective method
for screening potential OI carriers.
OI screening is included in several currently available

commercial extended PCS panels, since some OI forms
(e.g. OI 2) are severely lifespan limiting. For example,
the Inheritest® 500 PLUS Panel from Integrated Genetics
(U.S.) includes nine AR OI genes (BMP1, CRTAP,
FKBP10, P3H1, PLOD2, PPIB, SERPINF1, TMEM38B
and WNT1), however, no screening of the COL1A1,
COL1A2 genes is provided. Collagen I genes are mainly
associated with AD OI. However, AD and AR collagen I
variants together account for 95% of lethal OI cases [67].
OI PCS is also provided by Asper Biogene (Estonia) via
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the Reprogenetics NGS panel. The panel includes 550
genes, amongst which are the COL1A1, COL1A2,
CRTAP and P3H1 genes, which significantly increases
the sensitivity of this PCS panel with respect to lethal
OI.
OI is genetically and phenotypically complex. In

approximately 10% of individuals with mild OI, fractures
(the main symptom of OI) may be absent [117]. The
rarity of the OI disorder, in combination with a mild or
asymptomatic phenotype, may increase the likelihood of
it remaining undiagnosed, especially for mosaic individ-
uals [118–120]. The inclusion of the COL1A1 and
COL1A2 genes as well as AR genes in a PCS panel may
help to prevent the transmission of a heterozygous vari-
ant from asymptomatic or mosaic parents to their off-
spring. It may also expand the diagnostic scope for OI in
the general population.
PCS does have some limitations. Firstly, PCS does not

screen for one of the main severe OI occurrence sources
- parental gonadal mosaicism [121]. Secondly, PCS can-
not be used to evaluate the risk of a de novo OI variant
in prospective offspring, precluding full guarantee of the
disorder’s absence [102]. Thirdly, the diverse expression
of phenotypes and the absence of rigorous genotype-
phenotype correlations obscures PCS clinical validity
[122]. The existence of both lethal and non-lethal OI
cases caused by the same variant adds additional com-
plexity to the prediction of the phenotype [62, 63, 123].
Other limitations with PCS relate to NGS methodology
limitations, such as VUS variants, lack of genetic coun-
selling and non-specific genetic findings. These limita-
tions may cause challenges for prospective parents when
making a reproductive decision.

Fertilisation options
If risk of OI transmission in prospective parents is
confirmed (i.e. both parents are carriers of the AR variant
or one of the parents has AD OI) then there are several
options other than natural conception which may be appro-
priate. For example, in vitro fertilisation (IVF) with non-
carrier donor germ cells or embryo, or IVF with own germ
cells and preimplantation genetic testing (PGT) of embryos
(Table 3, Fig. 3).

In vitro fertilisation
The use of IVF techniques is increasing in reproductive
medicine worldwide. IVF is a process of oocyte fertilisa-
tion with sperm which occurs outside the body. IVF
began as a therapeutic approach for couples with preg-
nancy loss or infertility, but is now a widely used tech-
nique for fertile individuals at risk of monogenic
disorders, including OI. The first step of IVF is for the
woman to undergo an ovulation stimulation process
(superovulation). Matured oocytes are then removed

from her ovaries. The oocytes are fertilised with sperm
in vitro. Between the second to sixth day of develop-
ment, an embryo is transferred into the uterus. Despite
early hesitations, the latest meta-analyses show that IVF
is not associated with a drastic increase in the risk of
birth defects or genetic alterations in new-borns, as
compared with natural conception [124–127].

In vitro fertilisation with donor sperm cell or oocyte
Prospective parents faced with a risk of OI who are con-
sidering IVF may have the option of non-carrier donor
oocytes (if the female partner is affected) or non-carrier
donor sperm cells (if the male partner is affected). In
either case, the child will not be genetically related to
one or other of the parents. Gamete donation is consid-
ered to be a practical and successful technique, provided
that the non-carrier status of the donor is tested before-
hand [128]. This option is particularly beneficial for indi-
viduals who, in addition to OI, have reduced fertility or
infertility because of other, unrelated reproductive health
issues. A donor oocyte may additionally benefit women
affected with OI, because the possible risks associated
with superovulation for bone density and the cardiovas-
cular system will be avoided [129].

In vitro fertilisation with donor embryo transfer
Another fertilisation option is the implantation of an un-
affected donor embryo, known as a prenatal adoption.
Prenatal adoption could be recommended as an option
where both prospective parents are affected with OI, or
suffer from infertility. IVF with a donor embryo is in
some countries juridically simpler than postnatal adop-
tion and allows for an early mother-child bond.

Preimplantation genetic testing for monogenic
disorders For prospective parents facing a risk of OI
and who will only consider having genetically related
children, preimplantation genetic testing for monogenic
disorders (PGT-M) may be advisable. PGT-M is used to
scan embryos for harbouring the monogenic pathogenic
variants [130].
PGT-M is based on the IVF technique, with the

additional step of blastocyst genetic testing for the OI
disorder. During the IVF process, on the fifth day of em-
bryo development, a blastocyst trophectoderm biopsy is
performed and a few cells are taken for genetic analysis
(Fig. 3). Blastocysts are then frozen and stored. Genetic
analysis identifies those blastocysts without OI patho-
genic variants, which may be transferred into the uterus
during a subsequent frozen embryo transfer cycle. Where
implantation is unsuccessful, another stored unaffected
cryopreserved blastocyst may be used. If further stored blas-
tocysts are unavailable, the procedure may be repeated.
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Due to the limited amount of genetic material col-
lected during the biopsy, its genetic analysis requires a
polymerase chain reaction (PCR)- or a whole genome
amplification (WGA)-based DNA amplification [131,
132]. Historically, PCR-based methods have been widely
used for PGT-M, [133] including when testing for AD
OI variants in COL1A1 and COL1A2 genes [4, 134].
However, PCR-based methods may suffer from allele
drop out (ADO), which can result in misdiagnosis and
the implantation of an affected embryo. To reduce
ADO, amplification may be combined with a modified
linkage analysis. Modified linkage analysis identifies
ADO by confirming polymorphic markers at sites close
to the causative pathogenic variant [135].
In addition to single gene mutation analysis, the use of

WGA enables embryos to be tested for aneuploidy, by
array comparative genomic hybridization (aCGH) or single
nucleotide polymorphism (SNP) arrays [131]. Rechitsky
et al. reported a successful PGT-M for OI using a
combined aCGH approach for chromosomal aberrations
together with a multiplex nested polymerase chain reaction
for OI pathogenic variant. The study reported unaffected
new-borns in two out of three tested families with AD
(COL1A1, COL1A2) and AR OI (PPIB) variants [136, 137].
The popularity of both aCGH and SNP array methods is
increasing, as they allow fast and comprehensive testing of
all chromosome pairs for aneuploidy, therefore enabling
the selection of only euploid embryos for transfer and the
reduction of miscarriage and chromosomal syndrome risks
in new-borns [138, 139].
The SNP-array approach is also the basis for a karyo-

mapping technique which uses SNP haplotyping to map
chromosome origin from parents. In this way, a monogenic
disorder can be diagnosed even without the development
of a custom-made test for a specific pathogenic variant
[140]. Karyomapping is widely used for PGT-M, however
there are important limitations to the approach. These in-
clude the necessity of blood samples from both parents
and a close relative of known disorder status (which are
not always available), the consanguinity of parents and the
de novo nature of the variant (which is particularly com-
mon for severe OI). Nevertheless, the approach may be
useful in the case of milder familial OI cases. For example,
in the case of a paternal-derived variant, a single-sperm-
based SNP haplotyping, based on linked marker analysis
efficiency, has been shown for AD OI (COL1A1) PGT-M,
as reported recently by Chen et al. [136, 141, 142]. Several
private companies (Igenomix, ORM genomics, Superior
A.R.T.) also offer NGS-based PGT-M tests for OI families.
As with natural conception, 50% of AD OI IVF em-

bryos may be mutation-free and 50% may be affected. In
the case of AR OI carriers, 25% of embryos will be un-
affected, 25% will be affected, and the remainder will be
asymptomatic carriers of a pathogenic variant, like the

parents [143]. In general, both carrier and unaffected
embryos may be transferred [144]. However, a more ac-
curate and balanced approach in carrier embryo transfer
in case of OI may be needed. Where heterozygote indi-
viduals lack skeletal phenotype, they may be considered
as apparently asymptomatic. However, in combination
with variable phenotype expressivity and parental mosai-
cism risk, it is difficult to predict the effect of the variant
in the offspring. Therefore, deep phenotyping and accur-
ate clinical and genetic diagnosis in a centre with OI ex-
pertise is highly recommended for prospective parents
prior to IVF and PGT-M procedures. Moreover, accur-
acy of the PGT procedure is estimated as 95 to 99.5%
even in leading PGT centres, which still leaves a small
chance for false diagnostic results [145, 146].
In conclusion, every case needs an individual ap-

proach, and the selection of PGT-M methods must be
based on an OI family history, family members’ availabil-
ity, the inheritance pattern and any OI causative variant
properties observed in a kindred.

Prenatal testing
After impregnation, prenatal screening to confirm or
rule out the presence of OI is recommended (Table 3,
Fig. 4). Prenatal tests allow for both the efficacy of the
PGT approach as well as the OI risks associated with
natural conception to be evaluated. Early prenatal diag-
nosis of OI is beneficial, as it provides enough time for a
pregnancy management decision. It also allows consider-
ation of delivery management and early OI treatment
directly after birth, or even antenatally, with the develop-
ing method of mesenchymal stem cell transplantation
(BOOSTB4 trial) [23, 147].

Non-invasive screening methods

Ultrasound (20th week of gestation) Sporadic severe
and lethal OI are usually first discovered during ultra-
sound screening at the 20th week of gestation [29]. Mild
OI (OI 1 and 4) is usually not detectable with ultrasound,
as the affected foetus has neither bowing of the long
bones, nor intrauterine fractures, whereas a foetus with se-
vere OI might suffer from numerous fractures, severe
bowing of the long bones and demineralization of the
skeleton. Lethal OI (OI 2) and OI 3 are similarly charac-
terised by numerous fractures, severe bowing of long
bones, demineralisation and well-visualized intracranial
structures. A foetus affected with extremely severe lethal
OI might also exhibit shortening and severe crumpling of
long bones, and either thin or thick continuously beaded
ribs [29, 148]. Specialists often find it difficult to make a
differential prenatal diagnosis between OI 2 and 3.
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Non-invasive prenatal testing (NIPT) (seventh to
tenth week of gestation) NIPT is a modern technique
for non-invasive prenatal testing which has increased in
popularity as an early (seventh to tenth week of gestation)
and safe alternative to invasive tests. NIPT uses circulating
cell-free foetal DNA (ccffDNA) from maternal blood
plasma for genetic testing of the foetus [149, 150] (Fig. 4).
Originating from apoptotic trophoblastic cells, ccffDNA
accounts for around 10% of the DNA in maternal blood
from the fifth week of gestation and clears soon after de-
livery [151–153]. NIPT may therefore be used to detect
OI in the first trimester of the pregnancy. However,
confirmative ultrasound screening, followed by amniocen-
tesis or chorionic villus sampling (CVS) are conducted
during the second trimester, which could have a negative
psychological effect on prospective parents [29, 154].
NIPT has proved its sensitivity and specificity, so the test
is now routinely used for the detection of foetal trisomy
21 and other aneuploidies; it is also used for sex- and
RhD-determination of the foetus [155, 156].
To perform NIPT, a peripheral blood sample from

the pregnant woman is required. The blood plasma is
isolated, followed by cell-free DNA extraction. Then
an NGS mutational analysis is performed, to reveal
the presence of any OI-causative variant in the foetus.
Maternal and foetal DNAs in the mother’s blood
plasma are differentiated using a combination of bio-
informatics and biostatistics tools [154, 157, 158]. In
the near future, the further development of technolo-
gies will allow not only de novo or paternal AD cases
of single gene disorders to benefit from NIPT (as has
been the case), but also those with maternal familial
AD and AR pathogenic variants [149, 159].
All reported OI cases identified with NIPT have har-

boured COL1A1 and COL1A2 pathogenic variants, making
these genes an essential part of the skeletal dysplasia NIPT
panels [5, 6, 154, 158, 160]. Additionally, some commer-
cially available NIPT platforms appear to include OI. For
example, GeneSAFE™ (Italy) and Vistara single gene NIPT
by Natera (U.S.) screen for 44 and 21 severe disorders,
respectively. Both tests are recommended for parents with
paternal age > 40 and include the COL1A1 and COL1A2
genes.
The main issues with NIPT occur in the presence of a

placental mosaicism and vanishing twins which, al-
though rare, may cause misdiagnosis [159]. Early weeks
of gestation and high body mass index of the mother are
also common limitations of the NIPT [157]. However,
with the help of a high coverage targeted NGS, NIPT
now allows simultaneous testing for aneuploidy, foetal
fraction and monogenic disorder, and is able to over-
come low foetal fraction [154].
Other NIPT limitations are similar to those of invasive

prenatal and postnatal genetic testing for OI and are

dependent on the genetic testing approach chosen for
screening. If a severe or lethal form of OI is suspected, the
NIPT results are confirmed with invasive prenatal testing
and followed by postnatal genetic diagnosis [158].

Invasive prenatal screening
Positive results from non-invasive testing are usually
followed by invasive prenatal testing, such as CVS, am-
niocentesis or cordocentesis (Fig. 4). All three of these
techniques for foetal cell extraction allow more foetal
DNA be harvested than is possible with NIPT and are
followed with standard OI genetic testing analysis (tar-
geted NGS panel, Sanger sequencing, WES). The risk of
pregnancy loss if invasive methods are used is estimated
to be between approximately 0.5–2% [161]. As with
ultrasound, prenatal genetic testing attempts to differ
between OI 2 and 3 may be unsuccessful, which can
have dramatic consequences for prospective parents and
their families.

Chorionic villus sampling (CVS) CVS uses placental
tissue for sampling of the foetal DNA. The analysis is
performed at the 10th–12th week of gestation, which is
earlier than amniocentesis and cordocentesis. CVS uses
material of placental origin, however this is associated
with a risk of misdiagnosis because of placental mosai-
cism. CVS also enables cells to be biochemically checked
for abnormal collagen production, associated with the
presence of OI or other collagen-related disorders [162].
There is an approximately 1% risk of miscarriage after
CVS [163].

Amniocentesis Amniocentesis is based on analysis of
the foetal DNA from the amniotic fluid. The procedure
is usually performed at the 15th–20th week of gestation.
In contrast to NIPT and CVS, amniocentesis allows
foetal DNA to be analysed directly, which avoids mis-
diagnosis related to placental mosaicism. Amniocentesis
is also able to overcome some NIPT-related testing limi-
tations, such as twin pregnancies. The amniocentesis
analysis is also useful where intrauterine infections need
to be analysed [164]. Due to the invasiveness of the pro-
cedure, an approximately 0.5–1% risk of miscarriage ex-
ists [161].

Cordocentesis Cordocentesis is a blood sampling from
the umbilical cord. The method is used for blood disease
treatment in utero or when other prenatal tests are not
useful. Cordocentesis is performed at 22nd–24th weeks
of gestation and carries many associated risks and com-
plications. Miscarriage risk for cordocentesis is the high-
est of all the invasive methods, at approximately 1–2%.
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Other options
Other options which may be considered by prospective
parents with a risk of OI include refraining from preg-
nancy and adoption [122].
The benefits of adoption include the absence of risks

associated with pregnancy, delivery and lactation for OI
women. However, depending on the country of resi-
dence, adoption may be a long and difficult process, with
certain limitations for disabled parents.

Ethical concerns
General remarks on the ethics of reproductive genetic
testing for Osteogenesis Imperfecta
Reproductive decision-making is a complex process both
for people with OI as well as for those whose families
are or might be affected. Ethically and psychologically
stressful, it often involves ambivalence and requires de-
liberation upon potentially incompatible beliefs, feelings
and desires (such as the avoidance of suffering, the
moral value of embryos, a desire for children, and feel-
ings of guilt) [165]. The role of professional counselling
in setting out options and highlighting the implications
of different reproductive alternatives is important. For
example, in comparison to more directive genetic coun-
selling, a shared decision-making approach may result in
decreased decisional conflict and decisional regret scores
for women who terminate their pregnancy [166]. Figure 5
provides a decision-making tree to help with this
process. Many of the reproductive options for those
affected by OI are characterised by inherent uncertainty
around the interpretation of test results. Although
informing patients of these uncertainties is likely to
make deliberation more complex, at the same time it
supports autonomous decision-making and contributes
towards patient education.
The responsibility to prevent suffering is often keenly

felt by prospective parents and motivates many to reach
out to reproductive technologies [167, 168]. However,
for others this responsibility may be conceptualized dif-
ferently. For example, an individual’s religious beliefs
might not encompass such choices, but may lead instead
to the acceptance of an obligation to care for those af-
fected by OI.
For many reasons, not everyone at risk of having a

child affected by OI will opt for reproductive technology.
For some, the termination of a pregnancy is not accept-
able. Some do not see the disease as a limitation. Others
hope for future treatments, opt for adoption, or decide
against having (more) children [165]. Furthermore, not
all testing options are available everywhere: for example,
in several European countries PGT is strictly regulated
and only available for specific illnesses, and often the
testing is not publicly funded [169].

With respect to PGT legislation, there are three main
approaches: approval for a set of specific conditions (e.g.
OI types I-XIII in UK; OI in South Korea); approval for
all hereditary disorders (US, Russia, Brazil) and approval
without a specific set of conditions (Germany, Italy,
Austria, The Netherlands, France) (Supplemental Table
S1) [170–173]. In the latter case, approval for the PGT is
reviewed case-by-case and agreement from the relevant
ethical committee is needed. Case review may be based
on possible risk, disorder penetration, existence of
genotype-phenotype correlations, severity, lethality, and
treatability of the disorder according to the state’s or
professional organization’s guidelines. Thus, in some
countries, non-lethal, mild, and moderate OI forms
might not be eligible for PGT.
Common general ethical challenges associated with

prenatal diagnostics pertain to the availability of
adequate counselling (made more difficult by clinical
providers having to maintain expertise in this fast mov-
ing field), access issues, the potential impact of attitudes
towards disabled people, commercial interests, the
proliferation of testing options for clinically less serious
disorders and the overall tendency towards the increased
medicalisation of pregnancy [174]. Given the potential
seriousness of OI for QoL, prenatal diagnosis clearly has
an important role in preventing suffering and supporting
informed decision-making in family planning. In the
context of genetic services, the interests and rights of
individuals should not be subject to population health
aims [175].

Ethical aspects of testing options for Osteogenesis
Imperfecta
Given the high genetic heterogeneity of OI, counselling
both prior to and after testing is highly recommended.
Especially for prospective parents faced with a risk of
OI, it is important to clearly communicate which vari-
ants have been tested for and what has been excluded,
but also to discuss the inherent uncertainties involved in
prenatal diagnostics.
PCS for those at risk of carrying a recessive OI variant

supports autonomous decision making and enables
choices (e.g. PGT) which may be psychologically and
ethically more acceptable to some individuals than test-
ing during an already existing pregnancy. Importantly
though, PCS cannot identify de novo variants or identify
parental gonadal mosaicism. Sometimes PCS testing
might be associated with stigmatisation and anxiety be-
cause of carrier status [176]. Depending on cultural and
religious traditions, this stigmatisation may be gender-
specific, causing discrimination and reproductive restric-
tions for some women. In contrast, studies show that
PCS as a routine screening has a positive effect, as it can
minimise the pressure on an individual to make a
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reproductive decision in a short period (i.e. if made
before pregnancy) [177].
Opting for PGT offers the possibility of an unaffected

embryo and avoids the risk of a later diagnosis in pre-
natal testing. On the other hand, PGT may raise numer-
ous ethical concerns for future parents with OI [178]. A
major limitation of this option pertains to the challen-
ging process of IVF itself and its relatively low success
rates (generally around 20–30%).
Prenatal testing - the discovery of severe and lethal OI

with ultrasound - is usually only possible in quite ad-
vanced pregnancy (20th week). After a positive confirm-
ation through invasive prenatal testing, prospective
parents then face psychologically and ethically difficult
decisions (preparation for the birth of an affected child,
late termination of pregnancy). Empathetic and sensitive
communication with parents is therefore a crucial part
of care-provision. It has also been argued that, given the
uncertainties involved in interpretation of tests, the
articulation of a prognosis as lethal or as incompatible
with life is inappropriate: such vocabulary may create
additional stress for parents and tends to limit the clin-
ical treatment options [123, 179].
NIPT enables earlier detection of possible OI and is

favoured by those women who prefer less invasive
methods. Earlier termination of pregnancy (should that
be chosen) may be psychologically, emotionally and
medically less stressful than later termination [174, 180].
NIPT may also be a more attractive option than PGT
because it allows for natural conception, thus avoiding
the demanding process of IVF, although NIPT is an
alternative for those who consider termination of preg-
nancy an option [181]. NIPT is also likely to result in
fewer miscarriages if lower number of invasive proce-
dures are consequently undertaken [175].

Conclusions
Being a rare heterogeneous genetic disorder, OI raises
many technical and ethical reproductive issues for both
medical professionals and patients. There is no single
universal “best reproductive option” for all OI families,
and reproductive strategies need to be carefully evalu-
ated and discussed in order to achieve the most satisfy-
ing autonomous reproductive decision for each specific
family. Access to information about advances in repro-
ductive options and patient education on reproductive
approaches are therefore crucially important. Early fam-
ily planning, starting with pre-pregnancy OI genetic test-
ing or PCS might benefit prospective parents facing a
risk of OI, as it maximises the availability of various
fertilisation and prenatal testing options. When consid-
ering fertilisation options such as natural conception,
IVF with donor cells or embryo, or PGT-M, the advan-
tages and disadvantages of each method should be

evaluated, with a special attention given to the wishes,
interests, health needs and opportunities of the prospect-
ive parents. During prenatal testing, safe non-invasive
techniques, such as NIPT and ultrasound should prevail.
Prospective parents’ decisions regarding invasive prenatal
testing methods such as CVS, amniocentesis and cordo-
centesis, which carry risks for the pregnancy, need to be
made autonomously, but with support.
The majority of OI reproductive ethical concerns are

common to other genetic disorders. Issues around re-
productive techniques, as well as reproductive decision-
making and its consequences are faced by many families
with different rare disorders. The most challenging OI-
specific issues include the inaccurate prediction of OI
type and lethality, insufficient research on fertility in OI
patients, soft tissue issues in OI pregnancy, and a lack of
ethical studies relating to anxiety and stigmatisation
around reproductive decisions. Further improvements in
the understanding of OI pathophysiology and nature
may help to avoid some of the existing ethical dilemmas
and improve the reproductive confidence of people af-
fected by OI.
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