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Abstract

Background: Patients with rare diseases face unique challenges in obtaining a diagnosis, appropriate medical care
and access to support services. Whole genome and exome sequencing have increased identification of causal
variants compared to single gene testing alone, with diagnostic rates of approximately 50% for inherited diseases,
however integrated multi-omic analysis may further increase diagnostic yield. Additionally, multi-omic analysis can
aid the explanation of genotypic and phenotypic heterogeneity, which may not be evident from single omic
analyses.

Main body: This scoping review took a systematic approach to comprehensively search the electronic databases
MEDLINE, EMBASE, PubMed, Web of Science, Scopus, Google Scholar, and the grey literature databases OpenGrey /
GreyLit for journal articles pertaining to multi-omics and rare disease, written in English and published prior to the
30th December 2018. Additionally, The Cancer Genome Atlas publications were searched for relevant studies and
forward citation searching / screening of reference lists was performed to identify further eligible articles. Following
title, abstract and full text screening, 66 articles were found to be eligible for inclusion in this review. Of these 42
(64%) were studies of multi-omics and rare cancer, two (3%) were studies of multi-omics and a pre-cancerous
condition, and 22 (33.3%) were studies of non-cancerous rare diseases. The average age of participants (where
known) across studies was 39.4 years. There has been a significant increase in the number of multi-omic studies in
recent years, with 66.7% of included studies conducted since 2016 and 33% since 2018. Fourteen combinations of
multi-omic analyses for rare disease research were returned spanning genomics, epigenomics, transcriptomics,
proteomics, phenomics and metabolomics.

Conclusions: This scoping review emphasises the value of multi-omic analysis for rare disease research in several
ways compared to single omic analysis, ranging from the provision of a diagnosis, identification of prognostic
biomarkers, distinct molecular subtypes (particularly for rare cancers), and identification of novel therapeutic targets.
Moving forward there is a critical need for collaboration of multi-omic rare disease studies to increase the potential
to generate robust outcomes and development of standardised biorepository collection and reporting structures
for multi-omic studies.
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sequencing, Whole genome sequencing

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: a.j.mcknight@qub.ac.uk
1Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland
2Regional Genetics Centre, Belfast City Hospital, Level A, Tower Block, Lisburn
Road, Belfast BT9 7AB, Northern Ireland

Kerr et al. Orphanet Journal of Rare Diseases          (2020) 15:107 
https://doi.org/10.1186/s13023-020-01376-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s13023-020-01376-x&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:a.j.mcknight@qub.ac.uk


Background
The scale of the rare disease challenge is a staggering
one, with upwards of 8000 types of rare diseases de-
scribed and an estimated 262.9–446.2 million people liv-
ing with a rare disease globally. The definition of a rare
disease varies internationally; the European definition is
any disease with an incidence of less than one in 2000
[1], the United States (US) definition is conditions affect-
ing fewer than 200,000 people [2], and the Chinese def-
inition is disorders prevalent in less than one in 500,000
within the population [3]. Yet while the type and defini-
tions of a rare disease may vary, there are many com-
mon issues faced by patients falling under the ‘rare’
umbrella.
The first hurdle many patients’ face is escaping the

‘diagnostic odyssey’, with an average of 5.6 years waiting
for an accurate diagnosis in the United Kingdom (UK)
and 7.6 years in the US [4]. Patients often report receiv-
ing several inaccurate diagnoses before the correct con-
clusion is reached. Obtaining a diagnosis has a
significant impact on the development of a patients' de-
fined care pathway as an accurate diagnosis can enable
appropriate medical intervention, access to public ser-
vices (such as financial support) and connection with
vital rare disease support groups [5–7]. The difficulties
in providing a diagnosis arise due to several interacting
factors. Rare diseases have been widely reported as pre-
senting with phenotypic and genetic heterogeneity which
can make them difficult to diagnose even by specialists
with prior experience [8–11], and the often multi-system
impact of the conditions can mean they are masked by
common complex disease symptoms [12]. Overlapping
phenotypes in patients with more than one rare disease
can also be difficult to differentiate and provide a con-
clusive diagnosis [13]. As rare diseases frequently have
multi-system impact, patients are usually managed by
more than one physician across a range of medical spe-
cialities. For example, a national survey of rare disease
patients and carers in Northern Ireland showed that 63%
of participants reported attending multiple doctors with
7% reporting management by greater than 10 doctors
[14]. The nature of typical patient confidentiality can
make essential communication between healthcare
teams difficult, particularly with care across multiple
centres and when accessing external specialist centres of
excellence, thus leading to further delays in the diagnosis
of a rare disease and fragmented patient care [4, 15, 16].
Even where a patient is fortunate enough to obtain a

diagnosis there are often limited or no treatment options
available, and a third of all rare disease patients die be-
fore reaching their fifth birthday [2]. Conditions lasting
into adulthood are often debilitating and/or life limiting.
The development of a panel of sensitive, minimally inva-
sive and clinically accessible molecular biomarkers for

faster diagnosis of patients with rare diseases will facili-
tate optimised care strategies and drive new therapeutic
developments. This will be aided by the evolution of
international registries, federated datasets, and computa-
tional tools that enable secure sharing and analysis of
complex data generated within rare disease research net-
works; one such example of evolving infrastructure for
rare disease is the Health Data Research UK (HDRUK)
SPRINT exemplar innovation program which, in collab-
oration with the National Institute for Health Research
(NIHR) BioResource and several National Health Service
(NHS) trusts, aims to provide a dedicated research re-
source involving integration of phenotype-genotype in-
formation through cloud-based methods [17].
The advent of high-throughput technology in the past

decade, such as next generation sequencing (NGS) and
high-density microarrays have enabled large scale gen-
omic analysis of rare diseases and brought hope for
many patients and their families [18]. For example, the
100,000 Genomes Project was a UK based project which
recently completed whole genome sequencing (WGS) of
119,286 genomes including those from 74,674 patients
with rare diseases and their family members, providing
actionable findings for 20–25% of rare disease cases
where traditional genetic testing did not identify a causal
variant; additionally, new therapeutic targets have been
identified and this transformational research project that
was embedded with the UK NHS is moving towards
generating sequencing data for ~ 1 million individuals
[19]. Thirty percent of the identified causal variants
found by the 100,000 Genomes pilot project had not
previously been reported [20]. Moving forward the
Health and Social Care secretary announced in 2018
plans to continue this work by sequencing five million
genomes in the UK over the next five years, with all ser-
iously ill children being offered WGS from 2019 [21].
Rapid genome/exome sequencing for acutely ill children
with a likely genetic diagnosis will enable improve diag-
nostic rates with rapidly implemented optimised care
protocols. Non-invasive prenatal testing that analyses
foetal cell free circulating DNA within a maternal blood
sample to identify chromosomal disorders has been in-
troduced by many countries, including tests such as Har-
mony (Ireland, UK, US, Spain, Mexico, Germany,
Canada and more) and MaterniT21 (US, Algeria,
Belgium, Cameroon, Czech Republic, France and more)
[22]. International projects such as the US National In-
stitute of Health (NIH) Undiagnosed Diseases Program
(UDP) aims to provide a diagnosis and identify treat-
ment options, whilst the International Rare Diseases Re-
search Consortium (IRDiRC) aims to provide a diagnosis
for rare disease patients within one year of presentation,
to develop 1000 new therapies and assess the impact of
these diagnoses and novel therapies by 2027 [23–25].
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Undoubtedly WGS efforts have been found to in-
creased diagnostic yield, with the figure ranging from 21
to 73% depending on participant age and phenotype
[18]. However, for those phenotypes with lower diagnos-
tic yields, WGS by projects such as The 100,000 Ge-
nomes Project facilitate further investigations by
providing a platform for integrative multi-omic analysis.
The term ‘omic’ stems from the suffix ‘ome’ added to
many fields of biological study, which refers to the study
of something in its entirety. There are estimated to be
over 500 omic types [26], (Table S4) with the most com-
monly known being genomics, epigenomics, transcripto-
mics, proteomics, metabolomics and phenomics
(definitions for common examples can be found in
Fig. 1). Considered individually, these omic types have
been used to identify and / or provide functional sup-
porting information for candidate pathogenic mutations
for rare diseases across various medical specialities. For
example, transcriptomics from blood samples has been
shown as a useful method of characterising undiagnosed
rare diseases with a validated diagnostic yield of 7.5%
where whole exome sequencing (WES) was insufficient
to identify a causal variant [27]. Taking a holistic mo-
lecular approach by integrating analyses for several dif-
ferent ‘omic’ types could further increase diagnostic
yield and contribute to understanding of phenotypic het-
erogeneity and disease progression. Furthermore, multi-
omic analysis could illuminate opportunities for drug re-
purposing through identification of novel therapeutic
targets, an important component of rare disease treat-
ment, where drugs originally intended for treatment and
management of common complex diseases can be ap-
plied for use in rare diseases where there is unlikely to
be many existing treatment options [28]. In reality, the

full potential of integrative multi-omic analysis has yet
to be comprehended. Challenges exist in the integration
and processing of large datasets across ‘omics’ technolo-
gies and even between laboratories (with much data now
publicly available online), as well as interpreting the clin-
ical impact of the relationships between these omic ana-
lyses [29].

Aims and objectives
To fully understand what research has been undertaken
and what gaps still exist, this scoping review aims to sys-
tematically summarise research into multi-omics and
rare disease research by:

� Evaluating what primary research studies exist
pertaining to multi-omics and rare disease and
which type of omic analysis was undertaken.

� Highlighting research outcomes with implications
for rare disease diagnosis, treatment or improved
understanding of disease mechanisms.

Main text
Methods summary
The full methodology for this review is available online
as a published protocol [30], and follows the Joanna
Briggs Institute methodology guidance for scoping re-
views. To ensure our search was comprehensive, we
followed all applicable aspects of the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses Exten-
sion for Scoping Reviews guidelines [31].
With reference to the population, concept, context

(PCC) guidelines for determining the review research
question, our population of interest was studies of pa-
tients diagnosed with a rare disease, meeting the

Fig. 1 The diagram emphasises the potential of studies which, following careful phenotyping at study conception, utilise integrated multi-omic
analysis to consider multiple components in the journey from DNA to expression
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European definition (an incidence of less than 5 in 1000)
[32], or with a rare cancer (European definition of less
than 6 in 100,000 and the US definition of less than 15
in 100,000) [33, 34]. Our concept was multi-omic data
generated on rare diseases, where a multi-omic study
was defined as one which included two or more omic
analyses types [26]. The context of the scoping review
was primary studies written in English, published prior
to 30th December 2018.
Databases searched included MEDLINE, EMBASE,

PubMed, Web of Science, Scopus and Google Scholar,
as well as the grey literature databases GreyLit and
OpenGrey. One additional information source utilised
not detailed in the published protocol, was papers pub-
lished by The Cancer Genome Atlas (TCGA). This re-
source was identified through an article returned in the
initial search. TCGA is a large collaborative project be-
tween the National Cancer Institute and the National
Human Genome Research Institute, which has con-
ducted multi-omic analyses of 33 cancers [35]. While no
hard definition of a rare cancer was used by TCGA, re-
searchers selected uncommon cancers on the basis of
public health impact and the feasibility of getting enough
samples for meaningful analyses. Review articles and ref-
erence lists were searched for any additional eligible arti-
cles, as well as forward citation searching using the Web
of Science Cited Reference Search Tool. For any confer-
ence abstracts identified, full texts were searched.
The reference management software EndNote X8 was

used for citation handling throughout duplicate removal
and title/abstract screening. Microsoft Excel was used to
record results and exclusion reasons, as well as for full
text screening and data extraction. Data extraction
(otherwise referred to in scoping reviews as data-
charting) was performed independently and in duplicate
(by KK and CB) with any discrepancies were resolved by
consultation of a third individual. Data extracted in-
cluded rare diagnosis (or phenotype where patients were
undiagnosed), omic analyses type, study design informa-
tion, experimental methods and key relevant results. As
is typical of scoping reviews, a qualitative narrative syn-
thesis was then conducted to summarise key compo-
nents of the multi-omic rare disease field [31, 36, 37].

Results
Initial searches identified a total of 1770 articles: n = 173
MEDLINE articles, n = 630 EMBASE articles, n = 17
PubMed articles, n = 206 Google Scholar articles, n =
721 Web of Science articles, n = 23 Scopus articles. A
further 19 articles were identified from additional
sources, not included in the initial search numbers. This
included five articles which were full text versions of
conference abstracts [38–42]. One paper returned in the
initial search published through TCGA [43], led to the

identification of a further 13 articles on multi-omics of
rare cancers [44–56]. Finally, one article was identified
from the reference list of a review paper [57, 58]. The
screening process is summarised in Fig. 2. Following du-
plicate removal, 1417 articles were identified for title/ab-
stract screening from which 1306 articles were excluded
(1018 papers as they were not primary studies of multi-
omics and/or rare disease, 20 articles as they were not
written in English, and 268 articles as they only included
one omic analysis type). This left 111 articles for full text
screening, from which four articles were excluded as
they were qualitative review articles, four as they were
conference abstracts and the corresponding full texts
were already included in the return, nine articles as they
were found not to be primary studies of rare disease,
two did not specify which rare cancer and finally a fur-
ther 26 articles described only a single omic type (a total
of 45 articles removed at this stage). Subsequently, 66 ar-
ticles were eligible for inclusion in this review. General
study and participant characteristics are summarised in
Table 1, detailed experimental procedures and results
are available in Additional file 1: supplementary Table 1
(Table S1). The year of publication ranged from 2001 to
2018, with a rapid increase in publications over the past
decade (Fig. 3). Two of the final 66 included papers were
published in 2019, despite the 2018 date restriction, as
these were identified from within the additional TCGA
search [38, 59]. Evolution of inclusion and exclusion cri-
teria is not unusual within the process of conducting
scoping reviews [37]. Three study designs were identi-
fied: case-control studies (n = 55), familial studies (n = 6)
and studies which incorporated a mix of both familial
comparisons and external unrelated cohort comparisons
(n = 5) into their methodological designs (Table 1).
Four of the 66 articles were conference abstracts for

which no full text was available, but appeared to describe
case-control studies. As expected, likely due to the low
prevalence of rare diseases, no randomised controlled
trials were identified in the search. The most frequent
number of participants was 1–5, with mode reported in-
stead of mean as there are a number of studies con-
ducted by TCGA which have extremely large participant
numbers which would disproportionally skew the mean
of included studies. The mean age of participants was
39.4 years (median = 49), however this was not reported
for almost half of the included articles (39.4%, 26 stud-
ies). There was a peak in the number of studies which
included participants between 0 and 10 years of age,
followed by a significant reduction until a second peak
from 50 years of age (Table 1). Similar to participant age,
participant ethnicity/race was unknown in a large per-
centage of included studies (60.6%, 40 studies). Where
ethnicity and/or race were known there was significant
heterogeneity in reporting, therefore these have been
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summarised in groups in Table 1. The most common
participant ethnicity was Caucasian (82.1%), and the
least common ethnicity mixed race (0.33%). Publication
countries of origin included the United States of Amer-
ica (n = 38), France (n = 5), Switzerland (n = 4), the
United Kingdom (n = 4), Canada (n = 3), Japan (n = 3),
Germany (n = 3), Italy (n = 2) Brazil (n = 1), Finland (n =
1), Korea (n = 1), Spain (n = 1).
Fourteen different omic analyses types were identified

within this scoping review, including various combina-
tions of genomic, epigenomic, metabolomic, phenomic,
proteomic and transcriptomic analyses (Table 2), with
transcriptomics being the most commonly integrated
omic analyses type. The majority of studies eligible for
inclusion were rare cancers (64%, 42 studies), including
two studies of pre-cancerous conditions, summarised in
Table 3. Of the remaining 22 non-cancerous rare disease
articles, neurological disorders was the most common
disease type (15%, 10 studies) whilst other rare disease
types combined contributed just 20% of the included
studies. These included auto-immune diseases, multi-
system developmental disorders, cardiovascular disease,
muscular disease, neurological disease and renal disease.

Specific rare diseases are detailed in the discussion and in
Additional file 1, Table S1. Studies of rare cancers/pre-can-
cerous rare diseases had more than ten times the mean par-
ticipant number compared to studies of non-cancerous rare
diseases (429.3 ± 1799.5 and 41.2 ± 113.6 mean and standard
deviation of participant numbers respectively). However, this
was influenced by two studies with high participant numbers
(3527 and 11,286 participants) [43, 60]. The disproportionate
representation of cancerous to non-cancerous rare diseases is
summarised in Fig. 4.
From the data extraction process five key themes were

identified in this review which are expanded upon in a narra-
tive synthesis in the discussion section. These included:

1. Significant use of NGS technologies and high
throughput microarrays for multi-omic rare disease
analysis.

2. Varied methodological and analytical approaches to
multi-omic rare disease research.

3. Multi-omics for diagnosis of undiagnosed rare
phenotypes.

4. Multi-omics for identification of pathogenic and
prognostic biomarkers of rare disease.

Fig. 2 PRISMA flow diagram summarising the screening process. 66 articles were selected for final inclusion in the review [31].
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5. Multi-omics for elucidation of novel treatments and
drug re-purposing opportunities.

A concise critical appraisal of studies was conducted
using a checklist adapted from the Joanna Briggs Insti-
tute (JBI) critical appraisal tools in the PRISMA exten-
sion for scoping reviews (Additional file 2: Table S2)
[31]. Conference abstracts were excluded from critical
appraisal (n = 5). Assessment of sample numbers, appro-
priate matching of cases and controls (e.g. age/gender),
appropriate experimental controls and statistical analysis
(e.g. accounting for multiple variates) lead to the identi-
fication of 19 studies with high methodological rigour,
10 with medium methodological rigour and 32 with low
methodological rigour (Additional file 1: Table S1). This
high proportion of studies deemed to have low meth-
odological rigour was in most cases due to very low
sample numbers, e.g. case reports of one person, and is
typical of studies of rare disease.

Discussion
Scoping reviews are an increasingly popular method of sum-
marising literature in a researcher’s particular area of inter-
est, which can be used to identify themes and significant
gaps to inform research hypothesis development [61]. This
scoping review provides a comprehensive narrative synthesis
of studies of multi-omics and rare disease [36], identifying
66 primary studies published between 2000 and 2019. Esti-
mated European prevalence (where known) of each rare dis-
ease and overall study objectives are summarised in Table 4,
whilst detailed study design, methodology and results are
available from Additional file 1, Table S1.
Whilst this review conducted a comprehensive search,

using multiple information sources and developing
search terms carefully in collaboration with a Medical
Faculty librarian, it was not possible to include all rele-
vant studies, primarily due to the heterogeneity of terms
used to identify these studies as multi-omics, and in
varying definitions of a rare cancer. Rather it is intended
that this scoping review will provide an overview of gen-
eral themes in multi-omic rare disease research and pro-
vide direction for future projects. This is particularly
true of multi-omics and cancer studies, which are con-
ducted far more routinely than studies of non-cancerous
rare diseases. Two studies of non-cancerous rare dis-
eases which were eligible for inclusion, but not returned
through our original search, were identified during peer-
evaluation of this scoping review, both of which utilised
RNA sequencing to increase diagnostic yield of Mendel-
ian disorders reporting a 10% diagnosis in mitochondrio-
pathy patients and 35% in undiagnosed rare muscular
diseases respectively [139, 140]. A second limitation is
that due to language restrictions we were only able to in-
clude articles written in English, which led to the

Table 1 Summary of general study characteristics

Study Characteristic Number of Studies
(n = 66)

Percentage

Publication year

2000–2010 1 1.52%

2011–2015 21 31.82%

2016–2019 44 66.67%

Study design

Case-control 55 83.33%

Familial study 6 9.09%

Case-control and familial
study

5 7.58%

Number of participants in studies

1–5 21 31.82%

6–10 3 4.55%

11–20 6 9.09%

21–50 5 7.58%

51–100 12 18.18%

101–200 7 10.61%

201–500 5 7.58%

> 1000 2 3.03%

Not applicable (animal
models)

3 4.55%

Unknown 2 3.03%

Participant age

0–10 years 10 15.15%

11–20 years 1 1.52%

21–30 years 2 3.03%

31–40 years 1 1.52%

41–50 years 6 9.09%

51–60 years 8 12.12%

61–70 years 9 13.64%

Not applicable (animal
models)

3 4.55%

Unknown 26 39.39%

Participant race/ethnicity Total known: 1534
participants

Arab 10 participants 0.65%

Asian 150 participants 9.78%

Black/African/African-
American

100 participants 6.52%

Caucasian 1259 participants 82.07%

Hispanic/Latino 10 participants 0.65%

Mixed 5 participants 0.33%

Not applicable 3 studies –

Unknown 40 studies –
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exclusion of 20 articles. However, these articles are avail-
able in Additional file 2 (Table S3) and can be reviewed
for readers able to interpret them. Following our pub-
lished protocol, the search strategy can be easily repro-
duced by researchers hoping to conduct a multi-lingual
inclusive search [30]. Furthermore, the vast majority
(82%) of participants in the included studies for which
ethnicity/race was known were identified as Caucasian,
with all other ethnicities comprising just 17.9% of partic-
ipants. It should be noted however that representation
bias may have been introduced by the language limita-
tions imposed on this review. Twenty articles were

identified that were published in additional non-English
languages; many of these may not meet the criteria for
inclusion within the review and so the effect of such bias
is likely to be minimal. This disproportionate representa-
tion of Western ethnicity will need to be addressed by
international collaborative efforts in future research
studies. In the narrative synthesis below, this review re-
flects how multi-omic rare disease research is the natural
next step for progressing our understanding of rare dis-
eases: whether that be for diagnostic or prognostic pur-
poses, development of novel treatment options, or
simply understanding the mechanisms behind disease

Fig. 3 A significant increase is seen the publication of multi-omic studies of rare disease between since 2012, with 22 studies conducted since
2018 (33%), *2019 representing a partial year outside of the original date restrictions as these articles were returned in the additional search of
TCGA publications (see methods summary)

Table 2 Fourteen combinations of omic analyses for rare disease research

‘Omic’ analyses combination Number of Studies
(n = 66)

Percentage

Epigenomics, genomics 1 1.52%

Epigenomics, genomics, proteomics, transcriptomics (TCGA) 13 19.70%

Epigenomics, genomics, transcriptomics 9 13.64%

Epigenomics, proteomics, transcriptomics 2 3.03%

Epigenomics, transcriptomics 1 1.52%

Genomics, metabolomics 4 6.06%

Genomics, metabolomics, phenomics 1 1.52%

Genomics, phenomics 1 1.52%

Genomics, phenomics, transcriptomics 2 3.03%

Genomics, proteomics 7 10.61%

Genomics, proteomics, transcriptomics 8 12.12%

Genomics, transcriptomics 13 19.70%

Metabolomics, proteomics 1 1.52%

Proteomics, transcriptomics 3 4.55%
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progression. We also discuss the challenges posed by re-
searchers attempting to conduct these projects and areas
to be addressed in future projects.

NGS, high density arrays and data integration software
has enabled multi-omic research
The success of large-scale genomic analysis projects is
largely owed to the development of cost-effective high

throughput microarrays with semi-automated analysis and
the refinement of NGS technologies. Similarly, emerging
data for epigenomic and transcriptomic data typically use
these approaches. Within the papers discussed in this re-
view, platforms provided by Illumina® dominated for
WGS, WES and RNA-seq data generation.
These included the:

� Illumina® Genome AnalyzerIIx System, developed
2008 (now obsolesced).

� Illumina® HiSeq™ 2000 and 2500, developed 2010
and 2012 respectively (now obsolesced).

� Illumina® MiSeq™, developed 2011.
� Illumina® HiSeqX series and NextSeq500®, developed

2014 (now discontinued).

More recent versions of Illumina technologies not
used in this review include the NextSeq550® and the
NextSeq 2000. These platforms, whilst undoubtedly very
useful, rely on short read sequencing methods where the
DNA is fragmented for sequencing and re-aligned
against a reference genome for interpretation. Other
providers of NGS less frequently seen included Ion Pro-
ton™ System by Ion Torrent™ and the Applied Biosys-
tems™ 5500xl Genetic Analyzer. Moving forward with
multi-omic rare disease research, long read sequencing
methodologies (currently commercially provided by Ox-
ford Nanopore Technologies and Pacific Biosciences)
offer significant benefits compared to short read sequen-
cing, with Oxford Nanopore also providing ultra-long
read sequencing with additional benefits for identifying
molecular variation. True long read sequencing has po-
tential to overcome issues with amplification bias during
short read library preparation (presuming the sample to
be processed by LRS has not already underwent amplifi-
cation), errors when aligning to a reference genome to
due repetitive regions, detection of large structural or
copy number variants and issues with inaccuracies in
reference genomes themselves [141–143]. Furthermore,
long read sequencing enables direct measurement of
methylation and RNA sequencing without the need for
reverse transcription to complementary DNA (cDNA)
which can introduce additional errors [144, 145].
Other platforms utilised included microarrays for the

detection of single nucleotide polymorphisms (SNP)
such as the Affymetrix™ Genome-Wide Human SNP
Array 6.0 (Applied Biosystems™), which enables the in-
terrogation of approximately 900,000 SNPs across the
genome. For studies which included epigenomic analysis
of DNA methylation, the primary microarray platforms
utilised were the Illumina® Infinium methylation arrays:
the HumanMethylation27 (27 K), HumanMethylation450
and Illumina’s most recent array, the MethylationEPIC
(850 K) BeadChip®. These arrays were used by all but

Table 3 Summary of participant diagnosis/phenotype and rare
cancer types

Study Characteristic Number
(n = 66)

Percentage

Rare disease, cancer or phenotype

Acute myeloid leukaemia 1 1.52%

Adrenocortical carcinoma 5 7.58%

Autoinflammatory disorder 1 1.52%

Brain cancer 4 6.06%

Cancer predisposition disorder 2 3.03%

Cardiovascular disorder 1 1.52%

Cholangiocarcinoma 1 1.52%

Chromosomal disorder 1 1.52%

Fibrolamellar hepatocellular carcinoma 1 1.52%

Gastric cancer 2 3.03%

Gynaecological cancer 4 6.06%

Immune Disorder 3 4.55%

Malignant pleural mesothelioma 1 1.52%

Metabolic disorder 1 1.52%

Mixed rare cancers (TCGA) 2 3.03%

Multi-system developmental disorder 3 4.55%

Muscular disorder 1 1.52%

Neurological disorder 7 10.61%

Neurometabolic disorder 2 3.03%

Neuromuscular disorder 1 1.52%

Pheochromocytomas and paragangliomas 1 1.52%

Phyllodes breast tumours 1 1.52%

Primary testicular germ cell tumours 1 1.52%

Primary urethral clear-cell adenocarcinoma 1 1.52%

Prostate cancer 2 3.03%

Pseudomyxoma peritonei 1 1.52%

Rare renal cancer 2 3.03%

Renal disorder 1 1.52%

Salivary duct carcinoma 1 1.52%

Sarcoma 5 7.58%

Sezary tumour 1 1.52%

Thymic epithelial cancer 2 3.03%

Thyroid cancer 2 3.03%

Uveal Melanoma 1 1.52%
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two studies for DNA methylation, where one utilised
targeted bisulphite pyrosequencing of four genes with
the Qiagen PyroMark Q96 MD System [65], and a sec-
ond utilised enhanced reduced representation bisulphite
sequencing [92]. Proteomic and metabolomic analyses
largely utilised liquid Chromatography with tandem
mass spectrometry (LC-MS/MS) and nanoLC-MS/MS.

A standardised methodological approach to multi-omic
rare disease research is needed
One challenge with multi-omic rare disease research is
the large variety of methodological approaches which re-
searchers can choose to undertake. These can compli-
cate data analysis due to between-laboratory batch
effects and a lack of independent datasets generated
from the same methods which may be needed to validate
potential variants of interest. Therefore it would be valu-
able to develop a multi-omic analysis pipe-line that can
be utilised to maximise the power of rare disease studies.
As discussed previously, TCGA is a multi-centre cancer
genomics programme run by the National Cancer Insti-
tute and National Human Genome Research Institute,
which began in 2006 and has undertaken extensive
multi-omic analysis of 33 cancers including several rare
cancers [35]. Sixteen of the 66 articles included in this
review were studies of rare cancers conducted by TCGA
[39, 43–46, 48–56, 60, 93]. The studies included in this
review which followed TCGA methodology all presented
with high methodological rigour, usually with large sam-
ple numbers and even a broader range of participant
ethnicity which is crucially needed in genomic analysis.
With few methodological differences between research
projects, these studies followed a comprehensive analyt-
ical pipeline which involved the generation and

interpretation genomic, epigenomic, transcriptomic and
proteomic data, providing a powerful impetus for stan-
dardised multi-omic methodology (Additional file 1,
Table S1). This enabled researchers to identify molecular
relationships between cancers, cluster prognostic vari-
ants and elucidate future therapeutic targets to explore.
Furthermore, much of this anonymised data is publicly
available on the Genomic Data Commons Data Portal
for future research projects to utilise [146], and three
non-TCGA cancer studies included in this review re-
ported using this public data to overcome the rarity of
their studied cancer type, to confirm cell ontology and
even simply as a comparative control for their own gene
expression data [69, 70, 99].
An additional point of interest was the computational

algorithms used to overcome the statistical challenge of
data integration in multi-omic studies of rare disease.
Approaches to the analysis of multi-omic data vary
dependent on research group preferences and bioinfor-
matic experience, with many choosing to simply analyse
each ‘omic’ dataset independently and identify overlap-
ping molecular variation within top ranked genes (e.g.
genes which show differentially methylated CpG sites
from microarray analysis that correlate with differential
gene expression from mRNA sequencing). However, this
approach can lead to missing variants with biological
significance which may not be immediately clear, for ex-
ample missing a relationship between differentially
methylated genes which could indirectly impact down-
stream protein production. Therefore, for those with
bioinformatic expertise, integration of multi-omic data
largely falls into three categories; early data integration,
late data integration and statistical data integration, with
a comprehensive description and examples of each

Fig. 4 Multi-omic studies of rare disease are primarily conducted on rare cancers (64%, 42 studies). Two studies of pre-cancerous disorders were
included (3%), and the remaining 22 studies (33%) were of non-cancerous rare diseases
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Table 4 Rare disease prevalence in Europe, reference numbers of relevant studies and key objectives of these research papers

Rare disease Estimated prevalence Overall study objectives and reference number(s)

Rare cancers

Acute myeloid leukaemia 5–8/100,000 [62] • Molecular characterisation of cancers by TCGAa across tissues of origin [43,
60].

• Identification of pathogenic genomic and epigenomic variants [44].

Adrenocortical carcinoma 0.7–2/1 million [63] • Identification of pathogenic genomic, epigenomic, proteomic and
transcriptomic variants [41, 64].

• Identification of prognostic genomic, epigenomic and transcriptomic
biomarkers [65].

• Molecular characterisation of cancers by TCGA across tissues of origin [39, 43].
• Identification of novel therapeutic targets through genomics, transcriptomics
and proteomics [66].

Central nervous system cancers 7/100,000 [67] • Identification of pathogenic genomic and epigenomic variants [68].
• Molecular characterisation of ENBb [69], ,R-GBMc [70], and IGCTsd [71].
• Molecular characterisation of cancers by TCGA across tissues of origin [43, 60].

Cholangiocarcinoma (Bile duct) 2.17/100,000 [72] • Molecular characterisation of cancers by TCGA across tissues of origin [43, 45].

Diffuse large B-cell lymphoma 3.8/100,000 [73] • Molecular characterisation of cancers by TCGA across tissues of origin [43].

Rare liver cancer (FL-HCCe) 1 in 5 million [74] • Identification of pathogenic genomic and transcriptomic variants [75].

Gastric cancer 2.6/100,000 • Identification of pathogenic genomic, transcriptomic and epigenomic variants
[76, 77].

Gynaecological cancer USCf/UCSg: 2.57–5/100,000 [78,
79]
SCCOHTh: 300 reported cases
VSCCi: 2.5/100,000 [80]

• Molecular characterisation of cancers by TCGA across tissues of origin (USC/
UCS) [43, 52, 53].

• Identification of novel therapeutic targets in SCCOHT through functional
multi-omic analysis [42].

• Identification of pathogenic genomic and transcriptomic variants [81].

Mesothelioma 0.6–8/100,000 [82] • Molecular characterisation of cancers by TCGA across tissues of origin [43, 46].

Oesophageal cancer 4.2/100,000 [83] • Molecular characterisation of cancers by TCGA across tissues of origin [43].

Adrenal nerve tissue (PCCsj and
PGLsk)

0.4–0.21/100,000 [84] • Molecular characterisation of cancers by TCGA across tissues of origin [48].

Phyllodes breast tumour 2.1/1 million [85] • Identification of novel therapeutic targets through multi-omic analysis [86].

Rare urethral cancer (PUCAl) 0.31/100,000 [87] • Molecular characterisation using cytopathology, genomics and transcriptomics
[88].

Pseudomyxoma peritonei 1/1 million [89] • Identification of prognostic biomarkers through genomics and proteomics
[90].

Rare prostate cancers
(SCPCm, CRPC-NEn)

Unknown prevalence. • Molecular characterisation of SCPC using genomics and transcriptomics [91].
• Functional study which developed organoids to assess the molecular profile
of CRPC-NE [92].

Rare renal cancers (ChRCCo,
TLFRCCp)

Unknown prevalence. • Molecular characterisation of cancers by TCGA across tissues of origin [43, 55,
93].

Salivary duct carcinoma 0.05–2/100,000 [94] • Molecular characterisation of salivary duct carcinoma using proteomics and
genomics [95]

Sarcoma 0.1–5/100,000 [96] • Molecular characterisation of cancers by TCGA across tissues of origin [43, 49]
• Identification of novel therapeutic targets through multi-omic analysis [97].
• Identification of pathogenic genomic and transcriptomic variants in
angiosarcoma [98].

• Identification of prognostic multi-omic biomarkers [99].

Sézary syndrome 0.1/100,000 [100] • Identification of novel therapeutic targets through genomic and
transcriptomic analysis [101].

Testicular germ cell tumours 3.8–6.3/100,000 [102] • Molecular characterisation of cancers by TCGA across tissues of origin [43, 50].

Thymoma and thymic cancers 1.3–3.2/1 million [103] • Molecular characterisation of cancers by TCGA across tissues of origin [43, 51].
• Molecular characterisation and comparison between Asian/European thymic
cancer profiles [104].

Thyroid cancer 2–6/100,000 [105] • Molecular characterisation of cancers by TCGA across tissues of origin [43, 56].
• Identification of pathogenic epigenomic markers of medullary thyroid cancer
development [106].

Uveal melanoma 5.1/1 million [107] • Molecular characterisation of cancers by TCGA across tissues of origin [43, 54].
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provided by Rapport and Shamir, 2018 [147]. Early data
integration involves the combining of integrated features
from single omic data sets (concatenation) to output a
single matrix representing similar features from multi-
omic datasets in the participant, e.g. Autoencoder which
has been used to integrate data from three omic analyses
(DNA methylation, RNA-Seq and miRNA) for analysis
of liver cancer [148]. Late data integration conducts
clustering of related variants within single omic analysis
and then integration of the single analyses clusters to-
gether, for example the Cluster-Of-Cluster-Assignments
(CoCA) algorithm which looks across multiple omic

analyses to define subclasses, whilst removing the need
for data normalization prior to clustering and adding
weight to analyses type so that large platforms do not
dominant results (e.g. 450 K array compared to reverse
phase protein array) [149]. Another example of late data
integration tools is the similarity network fusion (SNF)
which develops a network of patient level data rather
than individual clusters enabling prognostic prediction
[150]. Finally, statistical algorithms infer the most prob-
able clusters within multi-omic datasets, for example
PARADIGM which infers associations of molecular vari-
ants with patient phenotype by incorporating pathway

Table 4 Rare disease prevalence in Europe, reference numbers of relevant studies and key objectives of these research papers
(Continued)

Rare disease Estimated prevalence Overall study objectives and reference number(s)

Benign or pre-cancerous rare tumours

Rare head and neck cancer
(MNTIq)

Unknown prevalence • Identification of novel therapeutic targets using genomic and transcriptomic
analysis [108].

Juvenile polyposis syndrome 1/100,000 [109] • Molecular characterisation of the genomic, transcriptomic and proteomic
profile [110].

Non-Cancerous rare diseases

Mevalonate kinase deficiency Unknown • To explain polarised phenotypic heterogeneity in siblings with the same
pathogenic mutation [111].

Triglyceride deposit
cardiomyovasculopathy

Unknown • Identification of pathogenic transcriptomic and proteomic markers of disease
[112].

Monosomy 18p 1 / 50,0000 live births [113] • Investigation of the role of monosomy 18p on FSHDr type 2 development
[114].

Rare auto-immune conditions ICF1r and IPEXs: 1/100,000 [115]
PIDt: 6/100,000 [116]

• Identification of pathogenic genomic, transcriptomic and epigenomic variants
[117–119].

Congenital Disorder of
Glycosylation

< 100 cases reported of each
type [120]

• Investigation of key genomic and proteomic variants associated with
glycosylation disorders [121].

Multi-system developmental
disorders

TBSu: 1–9/100,000 [122]
Primrose syndrome: 1/100,000
[123]

• Diagnosis of previously undiagnosed rare phenotypes [124].
• Identification of pathogenic genomic and proteomic variants [125].

Congenital absence of the ACLv/
PCLw

1.7/100,000 live births • Investigation of key genomic and proteomic variants associated with
congenital ACL/PCL [126].

Rare neurological disease SNSx and Alexander’s disease:
unknown
Aconitase deficiency: 1/100,000
[127]
HPEy: 1.31/100,0000 live births
[128]
Huntington’s: 7.2/million [129].

• Identification of genomic, proteomic, transcriptomic and metabolomic
mutations [38, 130–132].

• Diagnosis of mitochondrial aconitase deficiency [58].
• Investigation of therapeutic intervention in animal models of Huntington’s
disease [133].

Rare neuro-metabolic disease Unknown, undiagnosed
phenotypes.

• Diagnosis provision using phenomics, genomics and metabolomics [134, 135].

Rare neuro-muscular disease Unknown, undiagnosed
phenotypes.

• Diagnosis provision using genomics, transcriptomics and proteomics [136].

Rare renal disease (PUVz) 1/5000–8000 births [137] • Prediction of post-natal prognosis in patients using peptidomics and metabo-
lomics [138].

Abbreviations: TCGAa The Cancer Genome Atlas, ENBb Esthesioneuroblastoma, R-GBMc Rhabdoid glioblastoma, IGCTsd Intracranial germ cell tumours, FL-HCCe

Fibrolamellar hepatocellular carcinoma, USCf Uterine serous carcinoma, UCSg uterine carcinosarcoma, SCCOHTh Small cell carcinoma of the ovary hypercalcemic
type, VSCCi Vulvar squamous cell carcinoma, PCCsj Pheochromocytomas, PGLsk paragangliomas, PUCAl Primary Urethral Clear-Cell Adenocarcinoma, SPPCm Small
cell prostate cancer, CRPC-NEn Castration resistant neuroendocrine prostate cancer, ChRCCo Chromophobe renal cell carcinoma, TLFRCCp Thyroid-like follicular
renal cell carcinoma, MNTIq Melanotic neuroectodermal tumour of infancy, FSHDr Facioscapulohumeral muscular dystrophy, ICF1r Immunodeficiency Centromere
instability and Facial anomlies syndrome, IPEXs Immune dysregulation polyendocrinopathy enteropathy X-linked, PIDt Primary immunodeficiency disorder, TBSu

Townes-Brocks syndrome, ACLv/PCLw anterior/posterior cruciate ligaments, SNSx Snyder-Robinson syndrome, HPEy Holoprosencephaly, PUVz Posterior
urethral valves
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activity and inactivity data [151]. Multi-Omics Factor
Analysis (MOFA) is a second example of a statistical
multi-omic data integration tool and an unsupervised
model for identification of biological and technical vari-
ability [152].
In this scoping review we found that studies utilising

multi-omic specific software to facilitate data integration
across omics platforms comprised just 11% of included
articles (7 studies). These included three algorithms de-
veloped by TCGA [1]; COCA consensus clustering (de-
scribed above) [2] iCluster, an integrative multi-variate
regression clustering algorithm which looks across sev-
eral datatypes (DNA methylation, copy number variants
(CNVs), mRNA and miRNA) to identify molecular pat-
terns (also an example of a data integration technique
which spans the criteria of both early and statistical inte-
gration), and [3] PARADIGM (described above) [39, 43,
45, 46, 49, 60]. In addition to studies which utilised
TCGA specific algorithms, the only other study included
in this review which discussed a bioinformatic pipe-line
for multi-omic data integration was in vulvar carcinoma
[81], in which the researchers used the CONEXIC algo-
rithm to combine CNV and gene expression data to
construct hypothesised regulatory networks, providing a
ranked score which informs how well a particular variant
predicts module behaviour, with high scores indicating
high tumour adaptive advantage.
The pipe-lines for laboratory and computational ana-

lysis described here focus primarily on cancer. Develop-
ment of a similar integrative workflow for non-
cancerous rare diseases, coupled with international col-
laboration to increase sample size, would be useful to in-
crease pathogenic variant identification, diagnostic yield
and development of a defined care pathway. Figure 5 il-
lustrates a workflow which could be utilised for the
planning and implementation of multi-omic rare disease
studies when considering study design, selection of bio-
logical material for common omic analysis, data integra-
tion and reporting of findings to patients. Furthermore,
there is a need for discussion on ensuring the data we
generate is publicly available, whilst protecting patient
confidentiality, to enable large scale collaborative efforts,
a phenomenon which would be particularly helpful for
diagnosing currently undiagnosed patients. Such a dis-
cussion and development of resources should involve
continuous consultation with patients and their family
members [16, 153].

Multi-omics can provide a diagnosis to previously
undiagnosed patients with rare phenotypes
Escaping the diagnostic odyssey is a major hurdle many
patients with rare diseases face. This review highlighted
studies which specifically intended to utilise multi-omics
for provision of a diagnosis to previously undiagnosed

rare phenotypes. Whilst most articles included in this
paper sought to identify disease driving mutations,
which could themselves be further investigated to eluci-
date a definitive molecular diagnosis, just three studies
were identified with the specific aim of providing a diag-
nosis for patients with previously undiagnosed rare dis-
eases through multi-omic analysis [58, 124, 136], as well
as a further two conference abstracts for which no full
text was available [134, 154].
Through a combination of comprehensive WES,

chromosome microarray (CMA), linkage analysis and
mRNA analysis, one study aimed to provide a diagnosis
for a combination of the complex undiagnosed pheno-
types: non-syndromic hearing loss (NSHL), aberrant
skeletal phenotypes and significant developmental delay,
in four individuals [124]. WES identified a recessively
inherited splice variant in PDZD7 (c.226 + 2_226 + 5del-
TAGG) likely to explain the NSHL phenotype, which
was confirmed through mRNA analysis to inhibit gene
expression in affected individuals, as no PDZD7 exons
were amplified. Furthermore, the developmental delay
and microcephaly phenotype was explained via CMA
through identification of a de novo unbalanced trans-
location in chromosome 8 and 18. The skeletal pheno-
type was associated with an autosomal dominantly
inherited variant in COL1A1 which lead to a diagnosis of
osteogenesis imperfecta. This study reflects the pheno-
typic heterogeneity that is often present in undiagnosed
rare diseases and demonstrates the utility of providing
comprehensive genomic analysis with additional con-
firmatory mRNA analysis to maximise diagnostic yield.
A second study aimed to utilise WGS, protein and
mRNA analyses to aid the diagnosis of a family with het-
erogeneous myopathic and neurogenic phenotypes [136],
uncovering five likely pathogenic exonic variants. Of
these, a single mutation in the gene NEFL was identified
in all affected family members, (c.1261C > T; p.R421X
associated with truncated NEFL protein levels) which
has previously been associated with Charcot-Marie-
Tooth disease. This study is an excellent example of the
power of multi-omic analysis to provide a molecular
diagnosis for patients with rare undiagnosed phenotypes,
while expanding on a previously known clinical pheno-
type, with both of the above studies utilising genomic
analyses complemented by a form of transcriptomic ana-
lyses. Finally, a third small case-control study of eight
patients, from four unrelated families, utilised WES and
global metabolomics to identify diagnostic biomarkers of
the rare disease mitochondrial aconitase deficiency [58].
The research team identified 758 metabolomic features
with a minimum fold change of 1.5 between cases and
controls, including α-ketoglutarate which was reduced
4.3 fold in ACO2 deficient patients and thus likely to con-
tribute to the pathogenic phenotype. This study is the first
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to report a diagnostic biomarker of mitochondrial aconi-
tase deficiency, using multi-omic technologies.
Further to the above studies, two conference abstracts

were identified which also briefly discussed the utility of
multi-omics for diagnosis of rare neuro-metabolic dis-
eases [134, 154]. The first of these described utilising
WES and metabolomic analysis of undiagnosed neuro-
metabolic diseases in 59 individuals with a diagnostic
yield of 43% [134]. However, unfortunately no full text is
currently available for this article and little detail with
regards to the target genes and metabolites identified is
provided in the abstract. The second conference abstract
also described the application of WES and metabolomics
to aid diagnosis of complex rare phenotypes including
neuro-metabolic diseases [154]. The researchers re-
ported diagnosis of 179/500 previously undiagnosed in-
dividuals, with 8% of this diagnostic yield originating
from metabolomic analysis alone, reflecting that a com-
bined omics approach to diagnosis is indeed capable of
greater diagnostic yield than WES alone.

Pathogenic and prognostic markers can be identified by
integration of multi-omic datasets
Elucidation of disease driving molecular profiles through
integrative multi-omic analysis, most commonly genomic,
epigenomic, transcriptomic, proteomic and metabolomic
analysis, was the primary focus of most articles included
in this review. Whilst it would be impractical to discuss

each of the driver mutations identified for each rare dis-
ease studied within this review across all studied omic
types, a comprehensive overview of pathogenic variants
identified in individual studies is available for reference in
Additional file 1: Table S1 (key results column). One ex-
ample of note was a study of mevalonate kinase deficiency,
a recessively inherited auto-inflammatory disorder, with
multiple organ involvement. The spectrum of clinical pre-
sentations includes hyperimmunoglobulinemia D syn-
drome, periodic fever syndrome and mevalonic aciduria
[155]. This study conducted WES, RNA-Seq and differen-
tial protein analysis in a case study of two sisters present-
ing with polarised phenotypic heterogeneity where they
both harboured a known driver homozygous mutation in
MVK but only one sibling presented with disease symp-
toms [111]. Their integrative multi-omic analysis identi-
fied a rare mutation in the modifier gene STAT1 resulting
in upregulated mRNA AND protein expression, likely re-
sponsible for the phenotype in the affected sister. Single
omic analysis alone was insufficient to detect this muta-
tion, and therefore is exemplary of why these multi-omic
studies are crucial in identifying a cause for rare diseases
and explaining the phenotypic heterogeneity which can
complicate patient care.
The identification of prognostic biomarkers through

multi-omic analysis was highlighted in several studies of
rare cancer including adrenocortical carcinoma (ACC),
sarcoma, uveal melanoma and pseudomyxoma peritonei.

Fig. 5 Proposed workflow for multi-omic analysis of rare diseases. To conduct an impactful study of multi-omics and rare disease, careful
planning from study conceptualisation is crucial
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Distinct prognostic groups of ACC were discussed in
three of the five included ACC studies [39, 64, 65], in-
cluding three prognostic molecular subtypes of ACC
clustered by DNA methylation profile with 92.4% accur-
acy [39], two clusters by DNA methylation changes with
frequent gene mutations (poor prognosis) and miRNA
regulation (good prognosis) [64]. A third study reported
the increased power of prognostic prediction accuracy
using multi-omic data compared to singular analysis,
specifically through the integration of several somatic
variants, pathway analysis and differential methylation
[65]. In a large case-control study of six different sar-
coma subtypes, three prognostic clusters were identified
through integration of somatic CNAs and DNA methy-
lation data in dedifferentiated liposarcoma, in which the
first two groups (JUN amplified and TERT amplified
with chromosome instability) had a worse survival rate
than the third cluster (6q25.1 amplified and less unbal-
anced chromosome segments), with JUN identified as a
potential therapeutic target due to its overexpression
previously being shown to increase tumour migration
and invasion [49]. In a study of uveal melanoma, four
molecularly distinct groups were identified with differ-
ences in prognostic outcomes: two associated with poor-
prognosis, (monosomy 3) and two with better-prognosis,
(disomy 3) [43]. Finally, one study of pseudomyxoma
peritonei (a very rare form of appendix cancer) showed
that aberrant p53 staining reflected a worse overall sur-
vival in patients compared to normal p53 staining (19%
compared to 80% five year survival) [90].

Multi-omic analysis can identify both novel treatments
and drug re-purposing opportunities
Care for patients with rare diseases often relies on symptom
management, rather than treatment of the underlying cause,
with limited therapeutic options available. The most frequent
age-group of participants in the studies included in this re-
view was between 0 and 10 years, followed by a significant
drop off until a peak again at age group of 41–50 years,
which stresses the need for early diagnosis and therapeutic
intervention to improve survival and quality of life for these
children. Therefore, it is unsurprising that identification of
promising novel therapeutic targets through multi-omic ana-
lysis was a consistently observed research aim across studies
of non-cancerous rare diseases and rare cancers.
For example, one study identified 156 differentially

methylated genes in ACC, including hypermethylation of
CYP1B1, which was shown to have sensitivity to the
methylation inhibitor decitabine in an ACC cell line.
Furthermore, the same study found that cell prolifera-
tion occurred in the mutated genes GATA6, G0S2,
MEIS1, NCOA7, KCTD12, FAM1156A following treat-
ment with the oncology drug oncostatin M [41]. How-
ever even where novel therapeutic targets are identified

as excellent candidates for clinical research, the expense
of trials often results in pharmaceutical companies refus-
ing to test and a produce a novel drug. For those novel
drugs fortunate enough to be deemed worth the finan-
cial investment, the average timeframe from experimen-
tation to clinical implementation is 12 years [156].
Therefore, re-purposing of drugs already approved for
use in a different disease has become an increasing focus
of the search for therapeutics in rare disease, in particu-
lar for precision oncology medicine [157]. This scoping
review found that identification of drug repurposing op-
portunities to over-come the lack of treatment availabil-
ity was a strong recurrent theme for the multi-omic
analyses of rare cancer studies. For example the drug
Ponatinib, which is used normally to treat leukaemia,
was identified as a potential drug repurposing opportun-
ity for small cell carcinoma of the ovary hypercalcaemic
type, through integrated proteomic and transcriptomic
analysis with functional cell-line and animal models [42].
Additionally, 16 potential novel ACC drug targets were
identified for which there is varying degrees of evidence
for drug targeting in other cancers targeting of the
genes: CDK4, NOTCH1, NF1, MDM2, EGFR, BRCA1,
BRCA2, ATM, BRAF, PTCH1, TSC1, TSC2, KIT, RET,
ESR1, EZH2 [65]. With this in mind, it would be useful
to explore opportunities for drug repurposing via multi-
omic analysis for non-cancerous rare diseases also.

Conclusions
This scoping review highlights the exponential increase of
multi-omic studies of rare diseases in the past decade, reflect-
ing how the advent of NGS and high-density arrays have en-
abled multi-omic analysis. We have also highlighted in this
review that the most frequently age group of participants
identified was 0–10 years. This is concordant with the life ex-
pectancy of less than five years for a third of all rare disease
patients, and emphases the importance of early diagnosis
and implementation of a defined care pathway involving
optimised treatment and not symptom management alone
which can be provided by multi-omic analyses. Taken to-
gether, the discussed themes emphasise the need for the de-
velopment of a standardised pipeline, to ensure unbiased and
accurate reporting of biomarkers, as well as international col-
laboration to address the low participant numbers and biased
participant ethnicity numbers which plague the power of rare
disease research studies. The workflow provided in this re-
view will be useful for researchers planning multi-omic stud-
ies of rare disease, whether that be for cancer or non-
cancerous conditions. Projects such as the previously men-
tioned 100,000 Genomes Project, and moving forward, the
Five Million Genomes project, as well the NIH UDP and the
IRDiRC, provide a platform for multi-omic analysis and are
therefore fundamental for the future of rare disease research.
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