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Abstract

Background: Respiratory muscle weakness is an important feature of spinal muscular atrophy (SMA). Progressive
lung function decline is the most important cause of mortality and morbidity in patients. The natural history of lung
function in SMA has, however, not been studied in much detail.

Results: We analysed 2098 measurements of lung function from 170 treatment-naïve patients with SMA types 1c–
4, aged 4–74 years. All patients are participating in an ongoing population-based prevalence cohort study. We
measured Forced Expiratory Volume in 1 s (FEV1), Forced Vital Capacity (FVC), and Vital Capacity (VC). Longitudinal
patterns of lung function were analysed using linear mixed-effects and non-linear models. Additionally, we also
assessed postural effects on results of FEV1 and FVC tests. In early-onset SMA types (1c–3a), we observed a
progressive decline of lung function at younger ages with relative stabilisation during adulthood. Estimated
baseline values were significantly lower in more severely affected patients: %FEV1 ranged from 42% in SMA type 1c
to 100% in type 3b, %FVC 50 to 109%, and %VC 44 to 96%. Average annual decline rates also differed significantly
between SMA types, ranging from − 0.1% to − 1.4% for FEV1, − 0.2% to − 1.4% for FVC, and + 0.2% to − 1.7% for VC.
In contrast to SMA types 1c–3a, we found normal values for all outcomes in later-onset SMA types 3b and 4
throughout life, although with some exceptions and based on limited available data. Finally, we found no
important differences in FVC or FEV1 values measured in either sitting or supine position.

Conclusions: Our data illustrate the longitudinal course of lung function in patients with SMA, which is
characterised by a progressive decline in childhood and stabilisation in early adulthood. The data do not support
an additional benefit of measuring FEV1 or FVC in both sitting and supine position. These data may serve as a
reference to assess longer-term outcomes in clinical trials.
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Introduction
Spinal muscular atrophy (SMA) is an autosomal reces-
sive neuromuscular disorder (NMD), characterised by a
progressive loss of spinal cord motor neurons. This is
caused by survival motor neuron (SMN) protein defi-
ciency due to homozygous loss of SMN1 gene function
in all patients [1–3]. SMA demonstrates a remarkably
broad range in clinical disease severity, largely explained
by variation in the SMN2 gene copy number [4]. The
current classification system distinguishes four SMA
types based on age at symptom onset and whether pa-
tients acquire the ability to sit or walk independently [3].
The infantile-onset SMA type 1 is the most severe form
and characterised by severe muscular weakness, hypo-
tonia, severe morbidity and early mortality due to re-
spiratory failure. Childhood-onset SMA types 2 and 3
are characterised by delayed gross motor development
and progressive loss of motor function and muscle
strength. SMA type 4 is the mildest type and has an on-
set in adulthood [1–3, 5].
Increased understanding of the disease course through

natural history studies of the past decade has helped cli-
nicians with providing timely supportive care [3, 6] and
facilitated clinical trial design to test efficacy of recently
developed SMN protein augmenting drugs [7, 8]. None-
theless, there is still a lack of reference data on several
aspects of SMA’s natural history, including lung func-
tion, but obtaining additional ‘treatment-naïve’ patient
data has become increasingly difficult now that SMN2-
antisense oligonucleotide treatment is reimbursed in
many countries [9].
Reduced lung function is caused by weakness of re-

spiratory muscles and underlies the increased suscepti-
bility to respiratory tract infections. It is the most
important cause of morbidity and mortality in patients
with SMA [2, 6]. Previous longitudinal studies of lung
function included relatively small numbers of SMA pa-
tients, did not encompass the entire spectrum of severity
or ages, focused on Forced Vital Capacity only, or had
limited follow-up [10–15]. Additional natural history
data of SMA patients treated according to the standards
of care [6], but prior to receiving recently introduced
therapies, are important to further improve timing of
supportive care and to explore its potential as an out-
come measure to evaluate longer-term effects of new
treatment strategies [2, 9, 16, 17]. To study the natural
history of lung function in SMA, we studied outcomes
of several commonly used lung function tests (LFTs)
longitudinally, using data from treatment-naïve patients
participating in a large, population-based prevalence co-
hort study. We used Forced Expiratory Volume in 1 s
(FEV1), Forced Vital Capacity (FVC), and Vital Capacity
(VC) and here report their longitudinal course across
the spectrum of SMA severity.

Methods
Design and participants
Patients enrolled in this study are participating in our
ongoing prospective population-based prevalence cohort
study on SMA in The Netherlands [18, 19]. The study
was approved by the local Medical Ethics Committee
(No. 09–307/NL29692.041.09) and registered in the
Dutch clinical studies and trials registry (https://www.
toetsingonline.nl/). Written informed consent was ob-
tained from all participants and/or their parents in case
of minors. The reporting of this study conforms to the
STROBE statement [20].
For all patients we used multiplex ligation-dependent

probe amplification (MLPA; SALSA MLPA kit P021-
B1–01, MRC-Holland) to confirm homozygous loss of
SMN1 function and to determine SMN2 copy numbers.
We distinguished SMA types based on age at symptom
onset and acquired motor milestones. In case of discrep-
ancies, acquired motor milestones determined final clas-
sification. We used previously published additions to
also distinguish subtypes (e.g., 2a-b, 3a-b; Table 1) [2, 3,
18, 19, 21]. This is of importance, as a relationship be-
tween best acquired motor function and lung function
has been reported in several NMDs, including SMA
[22]. Patient data were used only if obtained prior to
participation in a clinical trial or treatment with SMN
protein augmenting drugs (i.e., ‘treatment-naïve’).

Lung function tests (LFTs)
We retrieved lung function data from prospectively en-
rolled patients from two sources. First, we used spirom-
etry data (FEV1 and FVC) obtained from patients in our
ongoing study [18], using a handheld calibrated spirom-
eter (MicroLab 3500®, PT Medical). These data were ob-
tained prospectively between March 2013 and June
2018, at every study visit. Secondly, we included patients’
(retrospective) spirometry data (Geratherm Spirostik®),
collected between July 1991 and July 2018 at the depart-
ment of pulmonology and Centre of Home Mechanical
Ventilation at our hospital [18]. This allowed us to re-
trieve additional longitudinal FEV1 and FVC data, and
longitudinal data on VC. All LFTs were measured in sit-
ting position, without corsets or braces.
Additionally, we evaluated the effect of posture by also

measuring FEV1 and FVC in supine position at every
study visit. Normally, measurements in supine position
would yield a lower FEV1 and FVC [23], but for SMA
this was previously assessed only in a small number of
patients. We obtained measurements in sitting position
first, followed by measurements in supine position after
a resting period to prevent a significant influence of fat-
igability. Lung function tests were performed by a small
team of professionals experienced in conducting LFTs in
children and adults with NMDs.

Wijngaarde et al. Orphanet Journal of Rare Diseases           (2020) 15:88 Page 2 of 11

https://www.toetsingonline.nl/
https://www.toetsingonline.nl/


All LFTs were measured and reported according to
the European Respiratory Society guidelines [24]. We re-
port standardised LFT values, according to the Global
Lung Function Initiative [25] and have therefore not
transformed data to improve model fitting. Measuring
height in SMA patients can be challenging. Arm span
was used in most instances as a surrogate measure. In
some cases, however, height was used. If so, it was mea-
sured preferably in standing position if patients were
able to stand, or otherwise in sitting or supine position,
using a flexible ruler. The use of a flexible ruler helped
avoiding large underestimations due to contractures as
much as possible.

Statistical analysis
We used descriptive statistics to describe baseline char-
acteristics. All available patient data were used for ana-
lyses. We assessed longitudinal changes of lung function
using linear mixed-effects models (LMMs). We hypothe-
sised a progressive decline of lung function depending
on SMA type over time, thus LMMs for the different
outcomes contained age (at measurement), SMA type,
and an interaction term of these two predictors as fixed
factors. Dependency in the data due to repeated mea-
sures was accounted for by a random intercept per indi-
vidual. A random slope for age was added to assess
whether there were differences in rates of decline be-
tween patients (as measure of disease heterogeneity or
between-patient slope variability). We used a likelihood
ratio test to evaluate whether the rate of decline over
age was significantly different between SMA types. We
used estimated baseline values (i.e., the projected inter-
cepts on the y-axes) as a surrogate for lung function out-
comes in the earliest stages of life, when these outcomes
could not be measured. Model summary statistics and
parameters estimates are reported (Table 3).

Because we cannot assume that the natural course of
the outcomes of the different lung function tests is com-
pletely linear, we also fitted non-linear models. We used
smoothed B-spline models with 3 knots, in which poly-
nomial continuous regression lines are computed in be-
tween knots [26]. We have provided the visual output of
these models to further aid interpretation of the natural
history data, as coefficients for such models are not
interpretable.
We assessed possible postural influences on FEV1 and

FVC by comparing repeated LFT measurements of indi-
viduals obtained on the same day. As data followed a
non-normal distribution (Shapiro-Wilk test P < 0.05,
non-normally distributed residuals on visual inspection),
the Wilcoxon signed-rank test was used. We used R
(v3.6.0 with RStudio v1.2.1335) for all analyses [27]. The
LMMs were fitted using the lmer function of lme4
(v1.1–21) and ggplot2 (v3.1.1) was used for data visual-
isation [28, 29].

Results
Demographics
We included 170 patients with SMA types 1c–4, be-
tween 4.1 and 73.9 years. Average follow-up was 4.4
years. We were unable to determine SMN2 copy num-
bers in two participants (1.2%) due to insufficient quan-
tities of DNA. Baseline characteristics of patients and
performed LFTs are shown in Table 2.

Forced expiratory volume in 1 s
We analysed a total of 784 FEV1 measurements from
163 patients with SMA types 1c–4 (Table 2). We found
a progressive decline of FEV1 in SMA types 1c–3a, but
not in type 3b. The findings for type 3b likely also ex-
tend to type 4, but the limited number of observations
precluded reliable estimations. After stratification for

Table 1 Clinical classification of spinal muscular atrophy

SMA type and sub-classification Age at onset Highest achieved motor milestones

1 0–6 months Never acquires ability to sit unsupported

0/1a Prenatal / neonatal 0/1a: Symptoms in prenatal and/or neonatal period, no head control

1b (‘classic’) 1–6 months 1b: No head control and no ability to roll over

1c 3–6 months 1c: Will usually acquire additional motor skills, such as head control or rolling
from supine to prone, or at least to one side at any stage in life.

2 6–18months Able to sit unsupported, not able to walk

2a 2a: unsupported sitting but not able to stand or walk even with assistance

2b 2b: in addition to unsupported sitting also able only with assistance to stand
or even walk a few steps

3 > 18 months Able to walk unsupported

3a 18–36 months

3b > 36 months

4 During adulthood, i.e. ≥ 18 years Able to walk unsupported
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SMA type, linear analyses demonstrated significant dif-
ferences in baseline %FEV1 values, i.e., 42% in SMA type
1c, 62% in type 2a, 81% in type 2b, 98% in type 3a, and
100% in type 3b (Fig. 1, Table 3). Average annual rates
of %FEV1 decline differed significantly between SMA
types over time (χ2(5) = 16.381, P = 0.0058). There was a
decline of 1.29% per year in type 2a, 1.37% in type 2b,
and 0.73% in type 3a. Due to the limited number of ob-
servations, the slope parameters for patients with SMA
types 1c (− 0.40%) and 3b (− 0.11%) were not significant
(Table 3). Based upon our findings in patients with SMA
types 2a and 2b, however, it is likely that FEV1 in pa-
tients with type 1c will decline, while FEV1 values in
tube 3b appear to be stable over time and within normal
ranges.
Non-linear analyses further confirmed the association

of baseline FEV1 values and SMA severity, and its pro-
gression over time (Fig. 1). The fastest FEV1 decline was
present at younger ages – exceeding the estimated an-
nual rates of decline from our linear models (Table 3) –
followed by a slower further decline during adulthood in
SMA types 1c–3a. The available data suggest relatively
stable FEV1 values over time in types 3b and 4. The lim-
ited number of observations of patients with type 3b
over 60 years (n = 4) likely explains the marked FEV1

decline in elderly patients. When stratifying by SMN2
copy number and SMA type, we found no differences in
the longitudinal trajectories for any of the SMA types,
with the possible exception of SMA type 3a. Here, pa-
tients with type 3a and 4 SMN2 copies had a slower lon-
gitudinal decline in comparison to those with 3 SMN2
copies.

Forced vital capacity
In total, we analysed 668 FVC measurements from 167
patients with SMA types 1c–4 (Table 2). Similar to
FEV1, we observed an FVC decline in the majority of pa-
tients over time. After stratification for SMA type, we
found a progressive FVC decline in all SMA types, ex-
cept for type 4 (Fig. 2). At baseline, linear analyses of
%FVC demonstrated large differences, i.e., 50% in type
1c, 64% in type 2a, 85% in type 2b, 97% in type 3a, and
109% in type 3b. Significant differences in the average
annual rate of decline between SMA types were present
(χ2(5) = 14.202, P = 0.014). FVC declined 1.32% per year
in type 2a, 1.4% in type 2b, and 0.67% in type 3a. The
slope parameters for SMA types 1c (− 1.15%) and 3b (−
0.23%) were not statistically significant (Table 3). The dif-
ferences in annual average decline between SMA types 2a
and 2b, or 3a and 3b were not significant (P > 0.05). Due

Table 2 Baseline characteristics and measurements of lung function

Patients

SMA type Type 1c
(n = 6)

Type 2a
(n = 48)

Type 2b
(n = 34)

Type 3a
(n = 43)

Type 3b
(n = 35)

Type 4
(n = 4)

M: F 3: 3 19: 29 12: 22 18: 25 18: 17 4: 0

SMN2 copies

2 1 1 1 1 1 –

3 5 44 27 21 5 –

4 – 3 5 21 25 4

5 – – – – 3 –

n/a – – 1 – 1 –

Mechanical ventilation: n (% of total) 5 (83.3%) 23 (47.9%) 3 (8.8%) 5 (11.6%)b 1 (2.9%)b 0

Median age at start of mechanical ventilation (IQR) 14.6a (13.1–25.9) 12.3b (8.2–16.9) 16.8 (12.7–20.8) 39.9c (35.9–48.3) 40.0c n/a

Assessments

Lung function test Patients, n (%) No. of patient assessments Median no. of
assessments per patient
(range)

FEV1 163 (95.9) 784 5 (1–40)

FVC 167 (98.2) 668 4 (1–32)

VC 80 (47.1) 646 6 (1–38)

Legend: SMA spinal muscular atrophy; n number of patients or assessments; M males, F females, SMN2 survival motor neuron 2 gene, IQR interquartile range; n/a:
not available, FEV1 forced expiratory volume in 1 s, FVC forced vital capacity, VC vital capacity
a: the high median age at which mechanical ventilation was initiated in patients with SMA type 1c is explained by the fact that in The Netherlands it was
uncommon to initiate mechanical ventilation for infants with SMA type 1 until recent years, as it was considered not ethical to prolong life without any realistic
outlook for further improvements of motor function at a later time. This has changed in the past years, following the introduction of SMN protein augmenting
drugs and current clinical drug trials. b: the exact age at which mechanical ventilation was started is unknown for one patient; c: excluded are two patients with
SMA type 3a and one patient with type 3b using either bi-level or continuous positive airway pressure for obstructive sleep apnoea syndrome. Ages are shown
in years
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Table 3 Model parameters

Fixed Effects Random effects

n Intercept (SE) 95% CI Intercept Slope 95% CI
Slope

Std. dev. Intercept Std. dev. Slope

FEV1

SMA type 1c 6 42.13 (4.58) 33.89; 50.59 −0.40 −1.42; 0.60 (n.s.) 6.11 1.12

SMA type 2a 46 61.71 (4.51) 52.44; 70.60 −1.29 − 1.78; − 0.81 24.35 1.21

SMA type 2b 34 81.37 (6.15) 68.36; 93.53 −1.37 −2.04; − 0.73 25.06 1.18

SMA type 3a 41 97.61 (6.30) 84.80; 110.02 −0.73 −1.11; − 0.35 23.20 0.64

SMA type 3b 32 100.35 (9.17) 81.91; 118.90 −0.11* − 0.55; 0.32 *(n.s.) 16.62 n/a*

FVC

SMA type 1c 5 49.71 (7.34) 34.65; 68.07 −1.15 −3.29; 0.70 (n.s.) 12.60 1.70

SMA type 2a 47 64.20 (5.29) 53.65; 74.64 −1.32 −1.90; −0.76 28.46 1.39

SMA type 2b 34 84.53 (6.07) 71.85; 96.50 −1.40 −2.10; −0.71 23.68 1.28

SMA type 3a 43 96.65 (6.17) 84.08; 108.73 −0.67 −1.06; − 0.31 23.14 0.63

SMA type 3b 34 109.00 (7.42) 94.46; 123.50 −0.23* −0.58; 0.11* (n.s.) 15.35 n/a*

VC

SMA type 1c 6 44.09 (7.06) 28.41; 60.01 −0.78 −2.35; 0.63 (n.s.) 12.84 1.21

SMA type 2a 32 61.01 (4.62) 51.78; 70.16 −1.57 −2.23; −0.94 23.17 1.40

SMA type 2b 22 85.54 (6.98) 69.33; 98.18 −1.65 −2.59; −0.60 25.04 1.46

SMA type 3a 16 96.34 (9.05) 78.17; 114.60 −1.06 −1.71; −0.45 30.07 0.98

SMA type 3b 4 80.99 (19.67) 35.90; 124.82 0.21 −0.77; 1.23 (n.s.) 35.12 0.75

Legend: Model parameter estimates, standard errors, and confidence intervals for the linear mixed-effects models are shown. n: number of patients in each group
SE standard error, CI confidence interval, Std. dev standard deviation, n.s. slope parameter is not significant; n/a not available
* due to a too limited number of repeated-measurements ‘age at measurement’ was omitted as a random factor from the mixed-effects model. The slope
parameter (i.e. the annual rate of decline in % of predicted) will therefore likely be an overestimation of the true value

Fig. 1 Longitudinal changes of FEV1 in SMA. Legend: Linear mixed-model (coloured lines) and non-linear (black) analyses of longitudinal changes
in FEV1 stratified by SMA type. Solid regression lines indicate the mean values of FEV1 and its mean rate of decline over time. Shades represent
95% confidence intervals for the mean rates of decline. n = number of patients; obs = number of observations
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to the limited repeated-measurements for type 3b, the es-
timated annual decline (− 0.23%) will likely be an overesti-
mation. In fact, the available data indicate relatively stable
values over time for type 3b.
Comparable to FEV1, non-linear analyses show that

FVC decline is most pronounced at younger ages, ex-
ceeding the estimated annual rates of decline from our
linear analyses. This is followed by a slower rate of de-
cline or even stable course during adulthood in SMA
types 1c–3a, whereas FVC remained relatively stable in
type 3b throughout life. The steep decline in SMA type
3b from 55 years onwards is likely explained by limited
measurements from older patients. The number of ob-
servations for patients with type 4 was too small for reli-
able estimations (Fig. 2).

Vital capacity
Our FVC findings were further supported by a total of
646 VC measurements from 80 patients with SMA types
1c–3b (Table 2). Similar to FVC and FEV1, in the major-
ity of patients we observed a VC decline with increasing
age. Linear analyses demonstrated large differences in
baseline %VC values, i.e., 44% in SMA type 1c, 61% in
type 2a, 86% in type 2b, and 96% in type 3a. The pre-
dicted average baseline value of 81% for SMA type 3b is
likely an underestimation due to the limited number of
observations (Fig. 3, Table 3). Average rates of yearly VC
decline were significantly different between SMA types

(χ2(4) = 10.223, P = 0.037) and averaged 1.57% in type 2a,
1.65% in type 2b, and 1.06% in type 3a, whereas the
slope parameters were not significant for SMA types 1c
(− 0.78%) and 3a (+ 0.21%) due to the limited number of
observations for these groups (Table 3). The small differ-
ence in slope parameters between patients with types 2a
and 2b was not significant (P > 0.05). Available data sug-
gest that VC in type 3b was relatively stable over time and
within normal ranges. Non-linear analyses further indicate
that the longitudinal pattern of VC decline is similar to
what we found for FEV1 and FVC, i.e., the steepest decline
is expected at younger ages in the majority of SMA types,
followed by a relatively stable course or slower further de-
cline during adulthood (Fig. 3).

Postural influence on lung function tests
We assessed postural effects on FEV1 and FVC using
data from 117 and 162 patients, respectively (Fig. 4).
FEV1 values differed significantly at group level, al-
though with very small absolute differences: median
FEV1 was 73% vs. 72%, and mean FEV1 was 70.4% vs.
67.9%, respectively (W = 4107, P = 0.0101, r = 0.166, sit-
ting vs. supine position). FVC values, however, did not
differ significantly: median FVC was 75.0% vs. 77.5% and
mean FVC was 72.7% vs. 73.1%, respectively (W =
5485.5, P = 0.847, r = 0.01). Differences between FEV1 or
FVC obtained in sitting vs. supine position were not in-
fluenced by disease duration.

Fig. 2 Longitudinal changes of FVC in SMA. Legend: Linear mixed-model (coloured lines) and non-linear (black) analyses of longitudinal changes
in FVC stratified by SMA type. Solid regression lines indicate the mean values of FVC and its mean rate of decline over time. Shades represent
95% confidence intervals for the mean rates of decline. n = number of patients; obs = number of observations
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Discussion
Here, we describe the natural history of lung function in
treatment-naïve patients with SMA based on a large number
of assessments of FEV1, FVC, and VC, in a cohort that en-
compasses the entire spectrum of SMA severity. At baseline,
FEV1, FVC, and VC are significantly lower in more severe
SMA types (1c, 2a), affected to a lesser extent in type 2b and
virtually normal in type 3a. Longitudinal decline of lung
function in SMA patients is most pronounced during child-
hood and stabilises in early adulthood. Patients with late-
onset SMA (types 3b and 4) are likely to have a stable lung
function throughout life, with some exceptions to the rule.

Several relatively small studies previously evaluated the
natural history of lung function in patients with SMA
[10–14, 30–38]. FVC was studied most frequently and
progressive FVC decline has been reported, caused by
progressive respiratory muscle failure, limited lung and
chest wall growth, and scoliosis progression [39, 40].
Previously reported rates of FVC decline are, however,
different from our data. For example, Khirani suggested
that patients with SMA type 2 (n = 7) had an earlier but
comparable rate of decline compared to patients with
type 3 (n = 9) [13]. Werlauff found no significant differ-
ence between patients with SMA type 2 younger and

Fig. 4 Postural influence on FEV1 and FVC measurements. Legend: Comparison of FEV1 (a) and FVC (b) measurements obtained in sitting (red)
and supine (blue) position, stratified for SMA type. Small red circles indicate outliers

Fig. 3 Longitudinal changes of VC in SMA. Legend: Linear mixed-model (coloured lines) and non-linear (black) analyses of longitudinal changes
in VC stratified by SMA type. Solid regression lines indicate the mean values of VC and its mean rate of decline over time. Shades represent 95%
confidence intervals for the mean rates of decline. n = number of patients; obs = number of observations
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older than 20 years (n = 42, cross-sectional data) [33]. By
contrast, our findings indicate that rates of decline differ
between SMA types 2 and 3, are not constant over time,
and may even stabilise in adulthood. Our data also sug-
gest that there are important differences of lung function
already at a very young age (i.e., from ‘baseline’ on-
wards), possibly caused by a more rapid decline in the
first years of life, specifically in more severely affected
patients. These differences with previous studies are
likely explained by the much larger number of observa-
tions in our work, facilitating more accurate compari-
sons between SMA types.
Non-linear FVC analyses showed that the fastest pro-

gression is expected during childhood, followed by rela-
tive stabilisation during early adulthood in SMA types
1c–3a. This pattern has previously also been noticed by
Ioos in a study in which virtually all FVC measurements
were obtained before the age of 25 years [37], and more
recently by Trucco in a cohort of paediatric patients
with SMA types 2 and 3 [15]. For SMA types 3b and 4
there are, to the best of our knowledge, no longitudinal
studies available for comparison. Our data suggest that
in most of these patients FVC remains relatively stable.
In addition to FVC, we longitudinally analysed FEV1

and VC. There are very few previous studies on these
outcomes for patients with SMA, impeding meaningful
comparisons. Given the large number of observations in
our work, we conclude that both FEV1 and VC seem to
follow a pattern similar to FVC: significant differences
are already present at baseline between SMA types, pos-
sibly caused by a rapid decline in the first years of life,
specifically in more severely affected patients. This is
followed by a yearly decline of 0.2–2% during childhood
and adolescence, and a relative stable phase during
adulthood. At group level, VC and FEV1 values remain
normal throughout life in SMA type 3b. The available
data for patients with SMA type 4 in our work was very
limited. However, given the characteristics of SMA type
4 it is likely that these patients will have normal longitu-
dinal values as well. Nonetheless, some individuals with
type 3b or 4 may show progressive worsening of lung
function that warrants continued awareness. The limited
available data on older patients with types 3b and 4 pre-
cluded further analyses to identify the characteristics
that predict for such a decline.
In our work we stratified patients using the SMA clas-

sification system with some modifications that reflect ac-
quired motor milestones other than sitting (type 2) or
walking unsupported (type 3). This approach has been
helpful in previous studies to uncover differences of the
natural history between SMA types. For example, in
comparison to type 2a, patients with SMA type 2b are
less likely to use mechanical ventilation later in life and
require scoliosis surgery at older ages [18, 41]. Here, we

have shown that these differences are also present for
lung function at baseline. Together, it underscores the
prognostic usefulness of additional motor milestones,
such as rolling and standing with assistance (Table 1), in
addition to sitting and walking unsupported that are
used in the current classification system [3, 42, 43].
The general progressive pattern of lung function de-

cline in patients with SMA identified in our work is ra-
ther similar to the observed progressive pattern of
muscle strength decline in patients with SMA [19], but
in adults and particularly those with milder SMA types
(i.e., types 3b and 4) lung function may be more stable
than skeletal muscle strength. As previously suggested,
lung function is therefore a suitable longitudinal out-
come measure for patients with SMA, at least until early
adulthood [17].
An effect of posture on LFT outcomes has previously

been reported for patients with NMDs. Higher outcomes
are usually reported for measurements obtained in su-
pine position, possibly due to a mechanical advantage of
the diaphragm and muscle fibre stretching [31, 33, 37,
44]. However, we found no significant differences when
comparing FVC measured in sitting and supine position.
Furthermore, the differences between FEV1 measure-
ments were so small that we consider them clinically ir-
relevant. Given the size of our cohort, measurement
standardisation, and consistency across SMA types and
patients’ ages, our findings question the usefulness of
measurements in both positions, especially as they are
time-consuming and relatively difficult to perform in
wheelchair-bound patients.
Our work has several strengths. First, we provided

baseline and longitudinal reference data not only for
FVC, but also for FEV1 and VC. Secondly, the large size
of our cohort, including a large number of repeated-
measurements and relatively long follow-up, allowed for
more detailed longitudinal analyses. Finally, LFT thera-
pists and physicians experienced in performing LFTs in
paediatric and adult patients with NMDs conducted all
tests, assuring measurement reliability.
We also acknowledge several limitations of our work.

Broad confidence intervals around both intercept and
slope in very young children and elderly patients indicate
considerable inter-individual variation. This is partly ex-
plained by the inability to reliably perform LFTs in
young children and inclusion of a limited number of
elderly patients. Secondly, the observed patterns of
pulmonary function decline, characterised by relative
stabilisation during adulthood, may partially also be
explained by the fact that the most severely affected pa-
tients could have been lost to follow-up at higher ages,
for example due to shorter survival or need for invasive
mechanical ventilation. This could particularly be the
case for patients with SMA types 1c and 2a. However,
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we have also observed this pattern in patients with SMA
types 2b and 3a, in whom invasive mechanical ventila-
tion is not initiated frequently and survival is not short-
ened or to such a limited extent that it becomes
irrelevant in this context [18, 21, 45, 46]. A similar cau-
tion for the interpretation of data of more mildly af-
fected patients applies (i.e., types 3b and 4), as patients
with long term stable symptoms could have been lost to
follow-up as well.
Our analyses are based upon an uneven distribution of

repeated-measures data across SMA types. Most patients
with repeated lung function assessments had SMA types
2a, 2b, or 3a. This is caused by the fact that these pa-
tients regularly have follow-up visits at the pulmonology
department or Centre of Home Mechanical Ventilation
at our hospital, because of a higher likelihood of requir-
ing supportive therapy (e.g., cough assistance or mech-
anical ventilation) in comparison to those with types 3b
and 4. The relatively limited number of (repeated) obser-
vations for SMA type 1 is explained by the fact that sur-
vival in type 1 is short and most of these patients will
require (invasive) mechanical ventilation and usually will
be lost to follow-up for regular LFTs. Furthermore, we
were not able to report LFT results related to known
confounders, like severity of (corrected) scoliosis, use of
airway clearance techniques, or mechanical ventilation.
However, we consider this less important as we focussed
on the natural history with treatment according to the
standards of care, which include scoliosis correction, air-
way clearance techniques, and/or mechanical ventilation
[3, 6]. LFTs are known to be influenced by respiratory
tract infections [17], which were not taken into account.
Finally, lung function is not solely defined by the 3 main
outcomes used in our work. Data on several other out-
comes, including peak cough flow, peak expiratory flow,
and maximal inspiratory and expiratory pressures would
further improve our understanding of lung function in
patients with SMA and should be addressed in future
work.

Conclusions
The natural history of lung function in SMA is charac-
terised by a progressive decline, particularly in SMA
types 1c, 2, and 3a. This decline is most pronounced in
(early) childhood and stabilises in early adulthood. Our
data do not support additional benefits of measuring
FEV1 or FVC in both sitting and supine position. Our
data may serve as a reference to assess longer-term out-
comes in clinical trials.
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