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Transcript, protein, metabolite and cellular
studies in skin fibroblasts demonstrate
variable pathogenic impacts of NPC1
mutations
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Abstract

Background: Niemann-Pick type C (NP-C) is a rare neurovisceral genetic disorder caused by mutations in the NPC1
or the NPC2 gene. NPC1 is a multipass-transmembrane protein essential for egress of cholesterol from late
endosomes/lysosomes. To evaluate impacts of NPC1 mutations, we examined fibroblast cultures from 26 NP-C1
patients with clinical phenotypes ranging from infantile to adult neurologic onset forms. The cells were tested with
multiple assays including NPC1 mRNA expression levels and allele expression ratios, assessment of NPC1 promoter
haplotypes, NPC1 protein levels, cellular cholesterol staining, localization of the mutant NPC1 proteins to lysosomes,
and cholesterol/cholesteryl ester ratios. These results were correlated with phenotypes of the individual patients.

Results: Overall we identified 5 variant promoter haplotypes. Three of them showed reporter activity decreased
down to 70% of the control sequence. None of the haplotypes were consistently associated with more severe
clinical presentation of NP-C. Levels of transcripts carrying null NPC1 alleles were profoundly lower than levels of
the missense variants. Low levels of the mutant NPC1 protein were identified in most samples. The protein localised
to lysosomes in cultures expressing medium to normal NPC1 levels. Fibroblasts from patients with severe infantile
phenotypes had higher cholesterol levels and higher cholesterol/cholesteryl ester ratios. On the contrary, cell lines
from patients with juvenile and adolescent/adult phenotypes showed values comparable to controls.

Conclusion: No single assay fully correlated with the disease severity. However, low residual levels of NPC1 protein
and high cholesterol/cholesteryl ester ratios associated with severe disease. The results suggest not only low NPC1
expression due to non-sense mediated decay or low mutant protein stability, but also dysfunction of the stable
mutant NPC1 as contributors to the intracellular lipid transport defect.
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Background
Niemann-Pick type C (NP-C) disease is an autosomal re-
cessive neurovisceral lysosomal lipid storage disorder
with a severe and progressively debilitating course lead-
ing to premature death in most patients. The clinical
phenotype is highly heterogeneous. First symptoms can
be detected at any age from the newborn period to the
sixth decade of life. Aside a perinatal, rapidly fatal sys-
temic form, the age at neurological onset is largely pre-
dictive of disease severity. Patients are therefore usually
categorized into early infantile, late infantile, juvenile
and adolescent/adult neurological forms. Most often,
progressive neurodegeneration - presenting with ataxia,
vertical gaze palsy, gelastic cataplexy, dysarthria, spasti-
city, psychosis and intellectual decline - is preceded and/
or accompanied by hepatosplenomegaly or splenomeg-
aly; prolonged neonatal cholestastic jaundice is another
systemic quite common presenting sign [1, 2]. Psychi-
atric symptoms in adolescent and adult NP-C patients
may be prominent and can be easily misdiagnosed as
psychosis, schizophrenia, or bipolar disorder [3]. Several
adult patients with relatively benign, visceral-only NP-
C1, have also been reported [4–6].
The underlying metabolic defect in NP-C is an impaired

trafficking of LDL-derived cholesterol from late endo-
somes/lysosomes (LE/LY). NP-C evolves due to mutations
in either NPC1 [7] or NPC2 [8] genes. Defects in both
proteins result in an identical cellular phenotype that is
characterized by an abnormal LE/LY accumulation of
unesterified cholesterol (UC) and glycolipids [9]. Muta-
tions in NPC1 gene are much more common (occurring
in about 95% of NP-C patients) [1]. Crystal structures of
NPC1 and NPC2 proteins were determined and support
the model of the “hydrophobic handoff” of cholesterol
from soluble NPC2 to membrane-bound NPC1 [10, 11].
UC trafficking from LE/LY to endoplasmic reticulum

depends on both NPC1 and NPC2 [9], but UC egress to
mitochondria [12] requires only NPC2. A pathway for
UC trafficking to peroxisomes that depends on NPC1
was described [13]. UC departure from LE/LY to mito-
chondria requires also MLN64/STARD3, a member of
STARD family of cholesterol-binding proteins [14]. UC
trafficking to mitochondria is not impaired by NPC1 de-
ficiency and, crucially, mitochondrial cholesterol content
is increased in NPC1-deficient cells [15] and may con-
tribute to pathogenesis of NP-C disease [16, 17].
The mainstay of NP-C diagnostics is the classic filipin

test [18–21] that detects levels of UC in cytoplasm of
cultured skin fibroblasts after challenge with LDL, a sen-
sitive but laborious test, combined with mutation ana-
lysis. The discovery of oxysterols, lysosphingomyelin
isoforms and analogs and bile acid metabolites [22, 23]
as biomarkers of NP-C recently enabled screening from
peripheral blood.

Efforts to associate biochemical NP-C phenotypes with
clinical severity have shown that patients with severe
neurological forms of NP-C show a “classic” biochemical
phenotype by the filipin and/or cholesteryl esterification
tests [24–27] and tend to have low or undetectable levels
of immunoreactive NPC1 [27–29]. On the other hand, a
number of patients with other clinical phenotypes, more
particularly individuals with adult-onset NP-C, have
shown a “variant” filipin test [18, 28, 30] and only mod-
erately decreased or normal levels of immunoreactive
NPC1 [28, 29]. Biochemical and clinical phenotype asso-
ciations were determined for several common NPC1
mutations. For instance, in the homozygous state, the
p.I1061T substitution associates with pronounced cellu-
lar cholesterol transport abnormalities, a reduced NPC1
level and a juvenile neurological form [19, 27, 31–33]. In
contrast, the p.P1007A mutation links to the “variant”
biochemical phenotype (close to normal rates of LDL-
induced cholesteryl ester formation and variant filipin
test) [18, 27, 28, 34], and near normal NPC1 level [28].
The only currently approved drug for NP-C is the gly-

cosphingolipid synthesis inhibitor miglustat (Zavesca,
Actelion) [35]. Intrathecal administration of the
cholesterol-sequestering drug 2-hydroxypropyl-β-cyclo-
dextrin has achieved impressive long-term effects in a fe-
line NP-C1 model [36, 37]. Clinical trials with this agent
using different administration routes are underway, as
well as a trial using arimoclomol, an inducer of heat-
shock proteins 70 and 40 in cells under stress [38].
In an attempt to improve assessment of the disease se-

verity prognosis, we examined the impact of NPC1 gene
variations on its expression, NPC1 protein level and
NPC1 subcellular localization, as well as unesterified and
esterified cholesterol levels in cultured skin fibroblasts
from a cohort of well-characterised NP-C1 patients [3].

Results
Clinical phenotypes and NPC1 mutations in the cohort
Genotypes and phenotypes of the 26 patients are sum-
marized in Table 1 and Table S1. Detailed data on clin-
ical phenotypes are available in [3] for 21 of them (for
correspondence see Table S1). The phenotype classifica-
tion of patients #5 and #24 was revised and reclassified
according to Nadjar and colleagues [39] as late infantile
and adolescent/adult, respectively. Juvenile NP-C was by
far the most common clinical phenotype. Our cohort
also comprised 4 patients with the early infantile form, 5
patients with the late infantile form and 4 patients with
the adolescent/adult form. The most frequent NPC1
mutations in our cohort were p.R1186H (n = 12, 2
homozygotes), p.S954L (n = 10), and p.A927V (n = 6, 3
homozygotes). All three are common in European popu-
lations. The two variants usually reported as the most
prevalent in populations from the Western world,

Musalkova et al. Orphanet Journal of Rare Diseases           (2020) 15:85 Page 2 of 12



Ta
b
le

1
C
oh

or
t
of

N
P-
C
1
pa
tie
nt
s
st
ra
tif
ie
d
by

N
P-
C
cl
in
ic
al
ph

en
ot
yp
es

an
d
co
rr
es
po

nd
in
g
ge

no
ty
pe

s
an
d
re
su
lts

of
th
e
ce
ll
an
al
ys
es

Pa
tie
nt

N
o.

N
P-
C
C
lin
ic
al

Ph
en

ot
yp
e

G
en

ot
yp
e

D
ed

uc
ed

N
PC

1
pr
ot
ei
n
ch
an
ge

(re
f.
N
P_

00
02
62
.2
)

N
PC

1
Pr
om

ot
er

ha
pl
ot
yp
e

A
lle
le

ex
pr
es
si
on

ra
tio

(%
)

N
PC

1
m
RN

A
le
ve
l(
qP

C
R)

Re
la
tiv
e
N
PC

1
pr
ot
ei
n
am

ou
nt

by
W
es
te
rn

bl
ot

C
ol
oc
al
iz
at
io
n

ob
je
ct

Pe
ar
so
n’
s

co
ef
fic
ie
nt

U
C
/C
E
ra
tio

D
ire
ct

Fi
lip
in

flu
or
es
ce
nc
e

vs
.c
on

tr
ol

LD
L-
in
du

ce
d

C
ho

le
st
er
ol

es
te
rif
ic
at
io
n

ra
te

Ev
al
ua
tio

n
of

ve
si
cu
la
r

ch
ol
es
te
ro
lb

y
di
ag
no

st
ic

fil
ip
in

te
st

“N
P-
C

Bi
oc
he

m
ic
al

Pr
of
ile
”

1
Ea
rly

in
fa
nt
ile

p.
[A
60

5C
fs
*2
];[
A
11

87
Rf
s*
55

]
1/
2

10
/9
0

0.
29

±
0.
15

0.
00

±
0.
00

0.
07

5.
8
±
0.
6

3.
0
±
0.
8

<
10

st
ro
ng

C
LA

2
Ea
rly

in
fa
nt
ile

p.
[N
91
6d

el
];[
P1

24
5R

fs
*1
2]

1/
1

50
/5
0

0.
56

±
0.
04

0.
05

±
0.
00

0.
17

8.
1
±
1.
7

2.
6
±
1.
0

<
10

m
as
si
ve

C
LA

3
Ea
rly

in
fa
nt
ile

p.
[I1
06
1T
];

[T
11
76
_S
11
96
de

l;S
11
97
_

V1
19
8i
ns
15
]$

1/
1

63
/3
7

1.
26

±
0.
81

0.
09

±
0.
01

0.
12

7.
0
±
0.
6

2.
3
±
0.
9

–
–

–

4
Ea
rly

in
fa
nt
ile

p.
[R
11
86
H
];[
T1
20
5K
]

1/
4

54
/4
6

0.
49

±
0.
21

0.
04

±
0.
00

0.
07

15
.5
±
1.
0

2.
7
±
0.
5

<
10

m
as
si
ve

C
LA

5
Sb

La
te

in
fa
nt
ile

p.
[Y
27
6H

];[
R1
18
6H

]
1/
1

48
/5
2

0.
87

±
0.
42

0.
08

±
0.
01

0.
28

10
.2
±
1.
5

1.
7
±
0.
2

<
10

m
as
si
ve

C
LA

6
Sb

La
te

in
fa
nt
ile

p.
[Y
27
6H

];[
R1
18
6H

]
1/
1

49
/5
1

0.
66

±
0.
45

0.
14

±
0.
03

0.
24

7.
7
±
0.
8

1.
5
±
0.
5

<
10

m
as
si
ve

C
LA

7
La
te

in
fa
nt
ile

p.
[R
11
86
H
];[
R1
18
6H

]
1/
4

–
0.
51

±
0.
31

0.
03

±
0.
00

0.
15

11
.9
±
1.
8

3.
0
±
0.
8

–
–

–

8
La
te

in
fa
nt
ile

p.
[R
11
86
H
];[
R1
18
6H

]
1/
1

–
1.
40

±
0.
42

0.
05

±
0.
01

0.
27

7.
1
±
1.
3

2.
1
±
0.
8

–
–

–

9
La
te

in
fa
nt
ile

p.
[P
10
07
A
];[
R1
18
6H

]
1/
1

49
/5
1

0.
92

±
0.
30

0.
85

±
0.
08

0.
72

3.
2
±
0.
7

1.
3
±
0.
4

30
0

im
po

rt
an
t

IN
T

10
Ju
ve
ni
le

p.
[S
95
4L
];[
R1
18
6H

]
1/
1

51
/4
9

0.
88

±
0.
14

0.
18

±
0.
01

0.
42

3.
3
±
0.
6

1.
6
±
0.
3

22
0

st
ro
ng

C
LA

11
Ju
ve
ni
le

p.
[S
95
4L
];[
R1
18
6H

]
1/
1

55
/4
5

1.
60

±
0.
63

0.
28

±
0.
01

0.
62

3.
7
±
0.
9

0.
9
±
0.
3

12
0

m
as
si
ve

C
LA

12
C
s

Ju
ve
ni
le

p.
[S
95
4L
];[
R1
18
6H

]
1/
1

51
/4
9

1.
44

±
0.
19

0.
29

±
0.
05

0.
63

2.
1
±
1.
0

1.
3
±
0.
2

–
–

–

13
C
s

Ju
ve
ni
le

p.
[S
95
4L
];[
R1
18
6H

]
1/
1

52
/4
8

0.
80

±
0.
27

0.
36

±
0.
04

0.
62

4.
3
±
0.
8

1.
2
±
0.
3

18
5

ab
no

rm
al

IN
T

14
Ju
ve
ni
le

p.
[P
47
4L
];[
P6
91
L]

1/
2

48
/5
2

0.
93

±
0.
57

0.
33

±
0.
03

0.
77

2.
7
±
0.
8

0.
9
±
0.
4

25
m
as
si
ve

C
LA

15
Ju
ve
ni
le

p.
[V
95
0G

];[
P1
00
7A

]
1/
4

71
/2
9

0.
86

±
0.
49

0.
32

±
0.
00

0.
77

1.
5
±
0.
1

0.
8
±
0.
2

51
0

ve
ry

si
gn

ifi
ca
nt

IN
T/
VA

R

16
Ju
ve
ni
le

p.
[R
41
1P
];[
P1
00
7A

]
1/
4

51
/4
9

1.
29

±
0.
75

0.
44

±
0.
01

0.
79

3.
4
±
0.
2

0.
9
±
0.
1

11
95

m
od

er
at
e
bu

t
si
gn

ifi
ca
nt

VA
R

17
Ju
ve
ni
le

p.
[R
41
1P
];[
S9
54
L]

1/
4

51
/4
9

0.
52

±
0.
18

0.
52

±
0.
06

0.
68

4.
6
±
0.
9

1.
3
±
0.
2

–
–

–

18
Ju
ve
ni
le

p.
[L
17
6R
];[
S9
54
L]

1/
1

48
/5
2

0.
60

±
0.
32

0.
72

±
0.
08

0.
75

3.
5
±
0.
6

1.
5
±
0.
3

32
0

st
ro
ng

IN
T

19
Ju
ve
ni
le

p.
[Q
11

9V
fs
*8
];[
P1
00
7A

]
1/
1

25
/7
5

1.
60

±
0.
67

0.
74

±
0.
03

0.
67

3.
5
±
0.
6

0.
6
±
0.
1

58
0

m
od

er
at
e
bu

t
si
gn

ifi
ca
nt

VA
R

20
Ju
ve
ni
le

p.
[V
27

0S
fs
*4
0]
;[S
95
4L
]

1/
1

36
/6
4

0.
66

±
0.
25

0.
17

±
0.
03

0.
58

4.
2
±
0.
9

1.
2
±
0.
2

–
–

–

21
Ju
ve
ni
le

p.
[E
57

5R
fs
*1
7]
;[S
95
4L
]

1/
5

11
/8
9

0.
30

±
0.
13

0.
25

±
0.
02

0.
67

3.
1
±
0.
2

1.
1
±
0.
3

22
0

m
as
si
ve

C
LA

22
Ju
ve
ni
le

p.
[A
60

5C
fs
*2
];[
S9
54
L]

1/
2

11
/8
9

0.
30

±
0.
14

0.
29

±
0.
03

0.
71

3.
9
±
0.
1

1.
1
±
0.
2

24
0

m
ar
ke
d

IN
T

23
A
do

le
sc
en

t/
A
du

lt
p.
[Q
90

5R
fs
*3
1]
;[S
95
4L
]

1/
1

10
/9
0

0.
25

±
0.
09

0.
30

±
0.
03

0.
66

2.
7
±
0.
5

0.
9
±
0.
1

–
–

–

24
Sb

A
do

le
sc
en

t/
A
du

lt
p.
[A
92
7V
];[
A
92
7V
]

2/
4

52
/4
8

0.
90

±
0.
37

0.
49

±
0.
11

0.
69

1.
4
±
0.
1

1.
1
±
0.
4

83
4

m
od

er
at
e
bu

t
si
gn

ifi
ca
nt

VA
R

25
Sb

A
do

le
sc
en

t/
A
du

lt
p.
[A
92
7V
];[
A
92
7V
]

2/
4

–
0.
48

±
0.
30

0.
73

±
0.
00

0.
69

2.
1
±
0.
2

1.
2
±
0.
3

33
7

m
od

er
at
e

VA
R

26
Sb

A
do

le
sc
en

t/
A
du

lt
p.
[A
92
7V
];[
A
92
7V
]

2/
4

50
/5
0

1.
11

±
0.
59

0.
74

±
0.
01

0.
67

3.
3
±
0.
1

1.
0
±
0.
3

87
0

m
od

er
at
e
bu

t
si
gn

ifi
ca
nt

VA
R

C
on

tr
ol

le
ve
ls

(n
=
3)

w
t

50
/5
0

0.
95

(0
.3
5–
1.
34
)

0.
94

(0
.5
6–
1.
27
)

0.
77

(0
.7
1–
0.
80
)

3.
2
(2
.3
–3
.7
)

1.
00

(0
.8
0–
1.
33
)

29
50

±
12
00

ab
se
nt
/v
er
y
lo
w

no
rm

al

Va
lu
es

in
“a
lle
le

ex
pr
es
si
on

ra
tio

”
ar
e
in

th
e
or
de

r
co
rr
es
po

nd
in
g
to

th
e
or
de

r
of

al
le
le
s
as

in
th
e
co
lu
m
n
“d
ed

uc
ed

pr
ot
ei
n
ch
an

ge
”.
Bo

ld
fo
nt

in
di
ca
te
s
fr
am

es
hi
ft
m
ut
at
io
ns
.$

ef
fe
ct

of
th
e
sp
lic
e
m
ut
at
io
n
on

pr
ot
ei
n
as
su
m
ed

fr
om

cD
N
A
an

al
ys
is
in

Ri
be

iro
et

al
.[
28

]
LD

L-
in
du

ce
d
ch
ol
es
te
ro
le

st
er
ifi
ca
tio

n
ra
te
s
ar
e
ex
pr
es
se
d
in

pm
ol

ch
ol
es
te
ry
l-[

3
H
]o
le
at
e
fo
rm

ed
/m

g
pr
ot
ei
n/
4.
5
h.

A
co
lu
m
n
lin

ki
ng

th
e
ce
ll
lin

es
to

pa
tie

nt
s
of

th
e
co
ho

rt
of

re
fe
re
nc
e
[3
]
is
av
ai
la
bl
e

in
su
pp

le
m
en

ta
ry

Ta
bl
e
S1

.A
bb

re
vi
at
io
ns
:C

LA
cl
as
si
ca
l,
IN
T
in
te
rm

ed
ia
te
,V

A
R
va
ria

nt
[1
8]
,U

C
un

es
te
rif
ie
d
ch
ol
es
te
ro
l,
CE

ch
ol
es
te
ry
le

st
er
s,
Sb

si
bl
in
g,

Cs
co
us
in

Musalkova et al. Orphanet Journal of Rare Diseases           (2020) 15:85 Page 3 of 12



p.I1061T (n = 2) and p.P1007A (n = 4), were present in
compound heterozygosity with other mutations. One pa-
tient was a compound heterozygote for two frameshift
mutations. The effects of missense mutations p.S954L and
p.P1007A were deduced from samples of 7 patients, who
carried presumably null frameshift mutations on the other
allele. Similarly, impacts of less severe mutations were esti-
mated on the background of known and well charac-
terised severe mutations. The positions of the mutations
are highlighted in the NPC1 structure in Fig. 1c.

Analysis of the NPC1 promoter region
We identified 6 common variants clustered into 5 haplo-
types (Fig. 1a) in the NPC1 promoter region in the cell
lines of patients and controls. Haplotypes 2, 3, and 4
contained 4, 2, and 1 sequence variants, respectively, that
were not present in the reference sequence (haplotype 1).
Promoter fragments corresponding to haplotypes 2, 3, and
4 had 20–30% lower luciferase reporter activities than
haplotype 1. The differences were statistically significant
(p = < 0.001). Rare haplotype 5 (one allele in the cohort
only) was not tested by the reporter assay.

Expression of the NPC1 transcripts
NPC1 relative expression measured by two TaqMan as-
says (Hs00264835_m1 and Hs00975249_m1) were highly
correlated (correlation coefficient r = 0.92, p < 0.0001),
therefore, only results of Hs00264835_m1 assay were
used for analysis. Relative expression of NPC1 in pa-
tients was comparable to controls. Lowest levels of
NPC1 expression (0.25-0.30) were found in samples car-
rying a frameshift mutation (#1, #21, #22, #23).
NPC1 allelic expression ratios in fibroblasts carrying

two missense mutation were ~ 50/50 (Table 1) with the
exception of 70/30 ratio in patient #15. This discrepancy
was likely caused by combination of promoter haplotypes
1 and 4 and/or altered transcript stability. In patients car-
rying a nonsense and a missense mutation, expression ra-
tios were usually skewed in favour of the missense
mutation (90/10–65/35). In patient #1, who carried two
frameshift mutations p.[A605Cfs*2];[A1187Rfs*55], the al-
lelic ratio was shifted in favour of the latter (presumably
more stable) allele (10/90).
We did not identify any major promoter haplotype-

linked differences in allelic NPC1 expression. For example,
there was identical expression of both NPC1 alleles in two
siblings #24 and #26 homozygous for p.A927V and het-
erozygous for promoter haplotypes 2 and 4 and SNP
rs1140458 in the coding region.

Semi-quantitative measurement of NPC1 protein in skin
fibroblast lines
Fibroblasts with the lowest levels of the NPC1 protein
were from patients affected by the early or late infantile

forms of NP-C. On the contrary, patients with the highest
levels of NPC1 protein presented with the adolescent/
adult disease (Table 1, Fig. 1b, Fig. 2b and Figure S1).
Patient #9 (p.[P1007A];[R1186H]) with relatively high
amount of NPC1 protein and a late infantile phenotype
was an exception. The lowest amount of NPC1 protein
was found in samples from patients #1 (p.[A605Cfs*2];
[A1187Rfs*55]), #2 (p.[N916del];[P1245Rfs*12]), #7 and #8
(p.[R1186H];[R1186H] homozygotes). These findings cor-
respond well with the severe impact of the latter mutation.
Samples of the two siblings #5 and #6 (p.[Y276H];
[R1186H]) repeatedly displayed slightly altered banding
patterns on Western blots compared to controls (Fig. 1b).

Confocal microscopic co-localization studies
Subcellular localization of the mutant NPC1 was difficult
to assess in cells with extremely low expression of the
protein (e.g. fibroblasts carrying p.R1186H or frameshift
mutations). In these cells the NPC1 fluorescent signal
was indistinguishable from the background (Table 1 and
Fig. 1d). For this reason we did not evaluate possible co-
localization of NPC1 with the ER-marker protein disul-
fide isomerase (PDI) that was tested by others [41].
Localization of NPC1 was evaluated only in cell lines ex-
pressing higher amounts of the mutant protein. We pre-
sume that in cell lines carrying heterozygous frameshift
NPC1 mutations the detected protein is expressed from
the other allele (e.g. p.S954L and p.P1007A). The signal
from p.A927V, p.S954L and p.P1007A NPC1 mutant pro-
teins colocalized with the late endosomal/lysosomal (LE/
LY) marker LAMP2 (Table 1, Fig. 1d and Figure S1).

Concentrations of UC and CE, direct quantitative filipin
staining, diagnostic filipin test and LDL-induced rates of
cholesteryl ester formation in native cultured skin
fibroblast lines
We evaluated UC/CE ratio instead of their separate
values (Table S1) as we expected increase of UC and de-
crease of CE due to the impaired metabolic turnover of
cholesterol by the NPC protein mutation. UC/CE ratios
were elevated (Table 1, Fig. 2d) in 8 patients with the
most severe phenotypes (early infantile, late infantile),
while in patients with milder phenotypes the values
overlapped with controls. However, in patient #9 with
late infantile NP-C (p.[P1007A];[R1186H]) UC/CE ratios
were comparable to controls.
The strongest filipin signal under steady-state condi-

tions was detected in cells homozygous or compound het-
erozygous for null and severe NPC1 mutations, such as
p.R1186H or p.T1205K (Table 1 and Fig. 1d). Conversely,
a low direct filipin staining signal was observed in cells
compound heterozygous for a null allele and p.S954L, also
showing a good level of NPC1 protein (patients #19–23).
Of note, in cells from compound heterozygotes for
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p.P1007A, signs of perinuclear cholesterol accumulation
by filipin staining were only revealed after preincubation
of the cell cultures with lipoprotein-deficient serum
followed by LDL loading (diagnostic filipin test).
LDL-induced early rates of cholesteryl ester formation

were often close to nil and < 150 pmol/4.5 h/mg protein

(classical profile) in all cell lines with very low NPC1
protein levels, and showed higher values with a wide
variation in the other cell lines, falling into two previ-
ously described categories [20], intermediate (values 10–
15% of normal) and variant (> 15% of normal, i.e. > 500
pmol/4.5 h/mg protein) (Table 1).

Fig. 1 a NPC1 promoter haplotype variants and respective luciferase reporter activities in %. Reporter activity of pGL3 basic vector was 0.1 ± 0.1%
of Haplotype 1 construct activity. Haplotype 3 is present in controls only. b Immunoreactive NPC1 protein in skin fibroblast lines (Western
blotting). The cell line numbers and phenotypes are indicated on the top. Equal amount of protein (8 μg) was applied per line. Abnormal
banding associated with p.Y276H is indicated by arrowheads. CCD data were used for the quantification. c The mutations are depicted using
crystal structure of NPC1 protein 3JD8 [40] and the domains are color-coded according to Li [11]. A schematic of primary structure of the mature
NPC1 protein is shown below the structure - domain color coding. NTD – N-terminal domain, TM – transmembrane domain, MLD - middle
luminal domain, SSD – sterol sensing domain. The most severe mutations are indicated in bold font. Most of the mutations are in lumenal
domains I and C (color-coded circles beside the mutation labels). d Representative images of human skin fibroblasts of a control and patients
with selected forms of the disease. 1st column: direct filipin stained cultures. 2nd column: confocal microscopy images anti-NPC1 signal. 3rd
column: merge of anti-LAMP2 (red) and anti-NPC1 (green) signal, 4th column: co-localization overlay maps. Values 0 - 1 of the pixels are displayed
using lookup table LUT 0–1. All images were processed equally
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Discussion
In an attempt to correlate molecular and biochemical
phenotypes with the severity of the neurological disease
in NP-C1 disease, we applied to fibroblast cell lines from
well characterized NP-C1 patients [2] a more extensive
array of molecular and biochemical tests than previously
reported.
First we searched for NPC1 promoter variants that

could influence transcription efficiency. NPC1 transcrip-
tion is largely constitutive [42, 43] and its promoter con-
tains a putative TFEB element [44]. Its expression is also
modulated by sterol regulatory element–binding protein

(SREBP) pathway via SREBP-binding elements in the
NPC1 promoter [41, 45]. In steroidogenic cells NPC1 ex-
pression is also regulated by the 3′,5′-cyclic adenosine
monophosphate pathway [46]. None of the variants
defining the four haplotypes identified in our cohort
were located in the putative regulatory elements in the
promoter [41, 44]. Three haplotypes led to mild to mod-
erate decreases of luciferase reporter activity (down to
70% of the wild-type activity in haplotype 1 (Fig. 1a)).
The effects of the haplotypes in vivo could be evaluated
only indirectly from their associations with skewed al-
lelic expression, transcript levels and clinical phenotypes.

Fig. 2 Overview of NP-C1 patient fibroblasts analyses. Strip plots show results of assays for the four phenotypic subgroups. Solid circles represent
individual patient cell lines. Numbers adjacent to the circles represent patient number. The long-dashed and dashed horizontal lines represent
the average control levels and standard error of means, respectively. Asterisks above the boxplots (2a, 2b, 2d, 2e) mark groups that differ
significantly from controls. The groups were compared by one-way ANOVA test followed by post-hoc Tukey’s HSD test adjusted for unequal
sample sizes. a NPC1 mRNA expression level, b NPC1 protein level by Western Blotting, c endosomal / lysosomal localisation of NPC1 protein.
NPC1 vs. LAMP2 Object Pearson’s colocalization coefficient, d unesterified cholesterol / cholesterol ester ratio by MS/MS, e direct filipin staining of
cellular unesterified cholesterol, f cholesterol esterification rate of LDL-derived cholesterol
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Neither of the haplotypes could be convincingly associ-
ated with more severe phenotype or with skewing of
allelic expression ratios in patients carrying missense
mutations. This led us to conclude that in our cohort
causative mutations in the coding region were the major
determinant of the phenotype and promoter haplotypes
played a minor role, if any.
Allelic expression ratios in compound heterozygotes

for two missense NPC1 mutations suggested comparable
stability of the missense transcripts. On the other hand,
ratios in patients carrying a null and a missense muta-
tion were usually skewed in favour of the missense tran-
script, probably due to the degradation of the nonsense
transcript by nonsense-mediated decay (NMD) [47].
This result is supported by our concomitant findings of
decreased NPC1 mRNA level in the presence of a non-
sense mutation. It would also explain that patients carry-
ing certain “mild” NPC1 mutations even in compound
heterozygosity with a null mutation, may exhibit a late,
adolescent/adult onset neurological phenotype [23, 39],
as seen in patient #23.
Additionally, we evaluated the relationship between

the clinical phenotype (Fig. 2, Figure S2) and the cellular
UC/CE ratios and quantitative filipin staining under
steady-state conditions. The differences between con-
trols and early infantile forms have been judged to be
statistically significant for both items, and with late in-
fantile forms for filipin signal. But there was an overlap
between values observed in controls and in patients with
juvenile and adolescent/adult-onset NP-C1 phenotypes.
Such an observation was certainly expected for cell lines
categorized with a “variant” biochemical profile (and
possibly even for those with an “intermediate” profile)
from diagnostic filipin testing and early rate of LDL-
induced cholesteryl ester formation [18, 20, 30]. In the
latter tests, alterations in cellular cholesterol trafficking
are strongly amplified by initial upregulation of LDL-
receptors followed by massive LDL loading. This ampli-
fication is required for diagnostic purposes, and it also
illustrates the existence of an NPC1 deficit, but it does
not necessarily reflects steady-state conditions. Particu-
larly, it has been well shown that kinetics of LDL-
induced cholesteryl ester formation show an initiation
delay, but not a block [20, 48].
Levels and subcellular localization of mutant NPC1

proteins constitute further important pieces of informa-
tion, for which limited data are yet available. A recent
publication [49] evaluated the impact of NPC1 missense
mutations on NPC1 protein trafficking along the
secretory pathway, however, these analyses were per-
formed in COS-1 cells overexpressing NPC1 constructs,
not native mutant fibroblast cell lines. In our study,
similar to other published cohorts [28, 32], fibroblast
protein levels inversely correlated with the severity of

the patients’ neurological phenotype. For missense muta-
tions, this observation likely reflects the degradation of
misfolded mutant NPC1 proteins [50]. The p.R1186H in
homozygous state leads to a severe reduction of NPC1
protein (this study and [32]). It has constantly been asso-
ciated with a severe (early infantile or late infantile)
neurological phenotype, [32, 51] as well as pronounced
abnormalities of cellular cholesterol processing [32, 51].
In compound heterozygosity, the observed protein level
appears to depend on the second allele. It was low in
combination with p.T1205K and p.Y276H alleles, both
corresponding to a severe clinical phenotype. In the
p.[R1186H];[Y276H] cell line, the observed NPC1 pro-
tein must originate from the allele carrying p.Y276H.
The cause of the abnormal banding is not obvious; it is
probably not caused by abnormal glycosylation as there
is no N-glycosylation site in the vicinity of p.Y276H mu-
tation. Protein levels were intermediate for p.R1186H in
combination with p.S954L in 4 patients with a juvenile
clinical phenotype. There was, however, a notable lack
of correlation in line #9 (p.[R1186H];[P1007A]) between
moderately high levels of NPC1 protein properly localis-
ing to LE/LY compartment and the late infantile pheno-
type of the patient suggesting that p.P1007A alleles
express a relatively stable NPC1 protein. In the two cell
lines (#9 and #19) with a combination of a p.P1007A al-
lele and a severe allele, not only protein levels but also
direct filipin staining and UC/CE ratios were at the con-
trol level implying that the cholesterol transport function
is less compromised. The latter findings are in good
agreement with the well-known observation of a correl-
ation between p.P1007A and a near normal cholesterol
trafficking (so-called “variant”) profile, usually even in a
compound heterozygous status [18, 27, 30]. From a clin-
ical point of view, the few patients homozygous for
p.P1007A have shown a juvenile or adult neurological
phenotype [19, 28, 39], but also other more severe phe-
notypes when associated with another allele [3, 19, 28,
30, 33]. In cell line #3 with p.[I1061T];[T1176_S1196del;
S1197_V1198ins15], the above-average mRNA levels and
very low NPC1 protein levels (80–90% reduction) can be
attributed to p.I1061T, as such levels are typical for
p.I1061T homozygotes [28, 31]. Cells carrying p.S954L
and a null mutation, corresponding to 4 patients with a
juvenile or adolescent/adult disease form, showed mod-
erate levels of NPC1 protein, with very decreased tran-
script levels for all four null alleles. In all four lines, the
NPC1 signal strongly co-localized with the lysosomal
marker (LAMP2) suggesting that mutant p.S954L pro-
tein reaches the LE/LY compartment. Similarly, in 3 ho-
mozygotes for mutation p.A927V with late onset NP-C,
the mutant protein localized correctly to LAMP2 posi-
tive vesicles. This mutant was previously characterized
as showing a variant filipin pattern [3]. The later onset
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clinical phenotypes observed for all patients carrying
p.S954L and p.A927V strongly suggest that these mutant
proteins indeed have a residual functionality.

Conclusions
In summary, there is no single cellular biomarker that
can reliably predict NP-C1 severity. As shown here, test-
ing of multiple laboratory variables provides a granular
view of the cellular impacts of NPC1 mutations and can
improve severity predictions. Overall, low immunoreac-
tive NPC1 protein levels were the best predictor of the
severity of the disease. Our results are in agreement with
the general assessment that the amount and residual
cholesterol transport capacity of mutant NPC1 are major
predictors of clinical severity; however, a number of pa-
tients with an adult-onset neurological disease whose fi-
broblasts display a severe block of lysosomal cholesterol
egress have been described (e.g. some homozygotes for
p.I1061T, patients #15, 17, 23, 24 in the Nadjar et al.
study, [39] and patient 2 in Table 5 in [3]), that would
require further investigations. Mutant NPC1 proteins,
particularly in patients with later-onset phenotypes, re-
tain residual functional capacity and thus represent at-
tractive targets to therapeutic proteostatic modulation
[32, 52, 53]. The results thus indicate a potential of the
combinatorial approach for evaluation of impacts of
NPC1 mutations.

Methods
Subjects
We studied 26 skin fibroblast cell lines of NPC1-deficient
patients from 23 non-related families. Twenty-one of the
patients were described by Jahnova and co-workers, [3] to
which we refer the reader for patients’ detailed clinical
and laboratory characteristics. These cell lines are
highlighted in Table S1. Cell lines from 8 healthy controls
were also used.

Analysis of promoter sequence and determination of
haplotypes
A 1.7 kb NPC1 promoter fragment was amplified from
genomic DNA of all NP-C patients in the cohort and
Sanger sequenced on automated capillary sequencers (ABI
Prism 3100-Avant or 3500xL Genetic Analyzer; Life Tech-
nologies). PCR products containing sequence variants
were cloned using a TA cloning kit (TOPO-TA, Thermo
Fisher Scientific) and individual clones were sequenced.
Haplotypes were determined from variants found in indi-
vidual clones. Sequence of primers used for amplifications
and sequencing are available upon request.

Reporter gene assays – promoter activity
Reporter plasmid constructs were prepared as follows.
PCR products containing a 1688 fragment of the predicted

NPC1 promoter were amplified using primers with over-
hangs carrying XhoI sites. Primer sequences were derived
from the genomic sequence of chromosome 18 (GenBank
accession No. NG_012795.1).
Amplified promoter fragments were inserted in both

sense and antisense orientations into the XhoI site of
pGL3basic (luc2CP/Hygro) vector (Promega), at the
polylinker site upstream from the firefly luciferase re-
porter gene, generating pGL3-NPC1. Four constructs
carrying sequence variants forming the four NPC1 hap-
lotypes in the same manner were created, generating
pGL3-NPC1-Hap1 to Hap4.
HepG2 (human hepatoblastoma) cells were grown in

Opti-MEM (Agilent Technologies) medium supplemented
with 10% (v/v) foetal bovine serum (FBS) in 25 cm2 flasks
at 37 °C, and 5% CO2. A total of 5 × 104 HepG2 cells were
seeded per well into 24-well culture plates 24 h prior to
transfection. HepG2 cells were transfected with 166 ng
per well of each construct or the empty pGL3 using the
TfxTM – 20 and FuGene HD Transfection Reagent (Pro-
mega). pRL-TK vector (Promega) harboring the Renilla lu-
ciferase gene was cotransfected as an internal control to
normalize transfection efficiency.
Experiments were done in triplicate and each transfec-

tion was repeated independently at least three times.
After 48 h, transfected cells were washed with PBS and
lysed with 100 μl of Passive lysis buffer (Promega). Lucif-
erase reporter activity was assayed using a Dual-
Luciferase Reporter Assay System (Promega). The inten-
sity of chemiluminescence was measured in the super-
natant using a luminometer (Berthold Technologies).
The results were analyzed using one-tailed t-test.

Quantitative RT/PCR
Total RNA was isolated from skin fibroblast cultures
using standard procedures [54] and reverse transcribed
using High Capacity cDNA Reverse Transcription Kit
(Life Technologies).
Two TaqMan Gene Expression Assays (Applied Bio-

systems), Hs00264835_m1 and Hs00975249_m1, were
used for relative qPCR measurements of NPC1 tran-
script abundance. To identify suitable endogenous con-
trols cDNA samples from 7 NPC1-deficient patients and
7 control individuals using Human Endogenous Control
Array (Applied Biosystems) were tested. The readouts
were analyzed using NormFinder (Aarhus University
Hospital, Aarhus, Denmark) and beta-2 microglobulin
B2M gene was selected as an endogenous control. NPC1
relative expression was measured using 2-ΔΔCt method
[55]. The results were expressed relative to NPC1
expression of a control reference sample which was
assayed simultaneously with each batch of patient sam-
ples. All analyses were carried out using Applied Biosys-
tems 7900 Real Time PCR system (Applied Biosystems).
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Determination of allele expression ratios by deep
sequencing
NPC1 transcript fragments containing pathogenic or
non-pathogenic variants were amplified from the patient
cDNAs by PCR as described previously [3]. The mini-
mum length of PCR products was 300 bp. PCR libraries
were prepared using Nextera XT DNA Sample Prepar-
ation Kit (Illumina) and indexed using Nextera XT Index
Kit (Illumina). The libraries were sequenced using MiSeq
Reagent Nano Kit v2 (2*250) and Nano Flow Cell 500
cycles on MiSeq Sequencer (Illumina).
The reads were aligned to the NPC1 reference se-

quence (NM_000271) and analyzed using NextGENe
software package (SoftGenetics). Only samples with
depth greater than 800 reads were included in the ana-
lysis. The ratio of reads containing wild-type and variant
sequences was calculated after removal of reads carrying
probable sequencing errors at the site of evaluated vari-
ant. Heterozygosity for SNP c.2793C > T rs1140458 was
used for the determination of allele ratio in samples #24
and #26 (genotype p.[A927V];[A927V]). Both the variant
and the mutation localize to NPC1 exon 18.

Cell culture
Fibroblasts from patients and control subjects were cul-
tured according to routine procedures in DMEM/10%
FBS and 5 g/l glucose and penicillin/streptomycin antibi-
otics in 25 cm2 culture flasks and maintained in the
same medium for all experiments except for diagnostic
filipin testing and LDL-induced cholesterol esterification
assays. For non-microscopic studies, confluent cells were
PBS washed and harvested by scraping into PBS and
centrifuged. The cell pellet was kept frozen at − 20 °C
until use.

Western blot analyses
The samples were sonicated and the protein content was
determined by Direct Detect spectrometer (Merck Milli-
pore). Samples were mixed with 6X SDS non-reducing
sample buffer (0.35M Tris, pH 6.8, 10% SDS, 30% gly-
cerol, 0.012% bromophenol blue) and non-boiled sam-
ples (8 μg of whole cell lysates) were resolved by 10%
SDS-PAGE electrophoresis under non-reducing condi-
tions. Protein samples were transferred onto
Immobilon-P PVDF membrane (Merck Millipore) using
a semi-dry electroblotter (Biotec-Fischer). Reversible
Ponceau S was applied to check equal loading of gels.
Immunodetection of NPC1 and beta-actin proteins was
performed using a rabbit monoclonal anti-NPC1 anti-
body (ab134113, Abcam) at a 1:3000 dilution, and a
mouse monoclonal anti-beta-actin antibody (mAbcam
8226, Abcam) at a 1:4000 dilution, respectively. Detec-
tion was performed by chemiluminiscence using Super-
Signal West Femto Maximum Sensitivity Substrate

(Thermo Scientific). Image capture was carried out using
ChemiGeniusQ analysis system and GeneSnap software
(Syngene, Cambridge, UK). Images were analysed using
GeneTools software package (Syngene).

Confocal microscopy
For confocal microscopic co-localization studies, the
cells were seeded onto BD Falcon Cultures Slides
(Becton Dickinson). Next day the fibroblasts were
washed, fixed with ice-cold methanol, blocked with
5% FBS in PBS and co-labelled rabbit monoclonal
anti-NPC1 (1:100, ab134113, Abcam) and mouse
monoclonal anti-LAMP2 (1:500, H4B4, Iowa Hybridoma
Bank) antibodies at 4 °C overnight. Secondary antibodies
were donkey anti-IgG anti-mouse alexafluor555 or anti-
rabbit alexafluor488 conjugates (Pierce) diluted 1:1000.
Leica SP8X laser scanning confocal system equipped with
470 nm–670 nm 80MHz pulse continuum White Light
Laser 2 and HC PL APO 63x/1.40 OIL CS2 (W.D. 0.14
mm) objective was used to image the samples. Image ac-
quisition conditions were: excitation at 496 nm or 553 nm,
one voxel 42.2 × 42.2 × 130 nm, 7 Z-steps (fulfilling
Nyquist sampling theorem), Hybrid detectors at 503–553
nm or 566–650 nm. Acquired confocal images were
deconvolved using theoretical point spread function in
Huygens Professional software (Scientific Volume Imaging
- SVI, Hilversum, The Netherlands). Overlay colocaliza-
tion maps and Object Pearson’s coefficients were com-
puted using Huscript (SVI), the grayscale maps were
converted to colour coding look-up table (LUT) in Fiji/
ImageJ software (NIH, Bethesda).

Direct quantitative filipin staining
Cells were seeded onto BD Falcon culture slides and cel-
lular cholesterol accumulation was visualized and quan-
tified after direct filipin staining [56]. Briefly, cells were
cultured under steady-state conditions as stated above,
washed with PBS, fixed using 4% paraformaldehyde and
stained with 0.1 mg/ml filipin (Sigma) in PBS, prepared
by dilution of a filipin DMSO stock solution prepared
the same day. To decrease filipin photobleaching Pro-
Long Gold Antifade Mountant (LifeTech) was used as
antifade mountant. Slides were examined using a Nikon
Eclipse TI fluorescence microscope equipped with DAPI
filter set and all photographed at constant 100 ms expos-
ure time. The exposure time was optimized using the
most intensive cell samples to prevent pixel saturation.
The fluorescent signal density of individual cells (N = 10
per cell line) was manually acquired using ImageJ (NIH,
Bethesda). Average corrected total cell fluorescence per
one cell line was calculated. The presented values reflect
fold change relative to average of controls.
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Diagnostic filipin testing
Diagnostic filipin testing was performed at the time of
individual diagnostic process as described in Vanier
et al. [20] A main difference with the direct steady-state
procedure was that dual culture slides (Lab-Tek cham-
bers) with cells from each fibroblast line were first incu-
bated in medium supplemented with 10% lipoprotein-
deficient serum (LPDS) for 3 days, and then challenged
for 24 h with (1) medium supplemented with LPDS and
50 μg/ml purified human LDL and (2) medium supple-
mented with 10% fresh total human serum, prior to fili-
pin staining. A control and a typical NP-C cell lines
were included in each diagnostic experiment. Fluores-
cence microscopic examination was performed using a
selective DAPI filter and expert visual evaluation done as
discussed by Vanier and Latour [18].

LDL-induced early rates of cholesteryl ester formation
The test, including complex cell culture conditions, was
performed exactly as described by Vanier et al. [20] Es-
terification rates in Table 1 show values of cholesteryl-
[3H] oleate formed/4.5 h/mg protein. Classification of
the cell lines into biochemical classical, intermediate or
variant NP-C profiles [18, 20] was based on combined
evaluation of diagnostic filipin testing and results of this
assay (both performed in MTV’s laboratory).

Mass spectrometry
Unesterified cholesterol and cholesteryl ester levels were
analysed in fibroblast cultures cultured under steady-
state conditions. Briefly, cells were washed with PBS and
harvested using trypsinization and centrifugation. The
harvested cells were homogenized in water by sonication
and extracted in chloroform:methanol (2:1, v/v) mixture
[57]. The extract was filtered via hydrophilic PTFE filters
(Millex LH filters, Millipore), dried under the stream of
nitrogen and processed for mass spectrometry analysis
by modified method of Liebisch et al. [58] Major
changes were in replacement of chloroform by hexane
and acetylchloride with propionylchloride in the deriva-
tization mixture and the rest of the procedure remained
unchanged. Mass spectrometry analysis was performed
on triple quadrupole tandem mass spectrometer AB/
MDS SCIEX API4000 with electrospray ionization
coupled with Agilent 1290 Infinity UPLC. 200 pmol of
d7-cholesterol and 40 pmol of C17:0 cholesterol ester
were used as internal standards for UC and CE quantita-
tive analysis.

Data analysis and statistics
Statistical computing were performed in R software
v3.5.1 or STATISTICA v12. P-values < 0.05 were consid-
ered statistically significant.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13023-020-01360-5.

Additional file 1: Table S1. Cohort of NP-C1 patients. Correspondence
with patients in Jahnova et al. [3] and full genotypes. Supplementary
Figure 1: Scatter plot of NPC1 protein level semi-quantified byWestern
blot analysis vs. object Pearson colocalization coefficient of NPC1 and
LAMP2. Data labels indicate promoter haplotype allele combinations and
deduced effects of the mutations in NPC1 protein. The dashed lines mark
levels in controls (AVG ± SEM). Supplementary Figure 2: Mutant NPC1
residual function analyses. A scatter plot of Free Cholesterol / Cholesterol
Ester ratio vs. direct filipin staining signal fold-change reflecting impaired
cholesterol transport caused by NPC1 mutations. The combination of
these markers suggest separation of severe infantile phenotypes. Solid cir-
cles represent individual patient cell lines and their grey level indicate
clinical phenotype. Numbers in bold adjacent to the circles represent
values of the LDL-cholesterol esterification rate assessed in the lab. of Dr.
Vanier in Lyon. The dashed lines mark levels in controls (AVG ± SEM).
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