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Abstract

Background: Acquired or genetic abnormalities of the complement alternative pathway are the primary cause of
C3glomerulopathy(C3G) but may occur in immune-complex-mediated membranoproliferative glomerulonephritis
(IC-MPGN) as well. Less is known about the presence and role of C4nephritic factor(C4NeF) which may stabilize the
classical pathway C3-convertase. Our aim was to examine the presence of C4NeF and its connection with clinical
features and with other pathogenic factors.

Results: One hunfe IC-MPGN/C3G patients were enrolled in the study. C4NeF activity was determined by hemolytic
assay utilizing sensitized sheep erythrocytes. Seventeen patients were positive for C4NeF with lower prevalence of
renal impairment and lower C4d level, and higher C3 nephritic factor (C3NeF) prevalence at time of diagnosis
compared to C4NeF negative patients. Patients positive for both C3NeF and C4NeF had the lowest C3 levels and
highest terminal pathway activation. End-stage renal disease did not develop in any of the C4NeF positive patients
during follow-up period. Positivity to other complement autoantibodies (anti-C1q, anti-C3) was also linked to the
presence of nephritic factors. Unsupervised, data-driven cluster analysis identified a group of patients with high
prevalence of multiple complement autoantibodies, including C4NeF.
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Conclusions: In conclusion, C4NeF may be a possible cause of complement dysregulation in approximately 10–
15% of IC-MPGN/C3G patients.

Keywords: C4 nephritic factor, C3 glomerulopathy, Membranoproliferative glomerulonephritis, C3 nephritic factor,
Dense deposit disease, C3 glomerulonephritis

Background
The complement system is an important part of the in-
nate immunity which takes part – among others – in
the immune defence mechanism. All three activation
pathways and the terminal pathway are strictly con-
trolled by several mechanisms to prevent over-activation
[1]. In several conditions, uncontrolled complement
activation may lead to damage of self-structures, for
which some well-known examples are kidney diseases
such as atypical haemolytic uremic syndrome (aHUS)
and complement-mediated membranoproliferative glom-
erulonephritis (MPGN) called C3 glomerulopathy
(C3G). Importantly, loss of complement control may be
linked to acquired and/or genetic factors in these patho-
logic states [2]. C3G is characterized by more than two
magnitude higher C3 staining in immunofluorescence
microscopy than any other immune reactant and it is
divided into C3 glomerulonephritis (C3GN) and dense
deposit disease (DDD), where osmophil dense deposits
are present within the basement membrane on electro-
nmicroscopy [3]. Mutations in the genes encoding the
regulators or components of the complement system,
such as Factor H (CFH), Factor H-related protein 5
(CFHR5), Factor I (CFI), membrane cofactor protein
(CD46), thrombomodulin (THBD), or Factor B (CFB)
and complement C3 protein (C3) are present in about
30% of C3 glomerulopathy patients [4–8], whereas ac-
quired factors (autoantibodies) may be identified as well
in a significant subgroup (40–80%)of these cases [9–11].
The latter include several different autoantibodies that
can be detected in the patients’ sera such as anti-Factor
H, anti-C3b, anti-Factor B [4, 12–16] and C3- or C4
nephritic factors which are present mostly in patients
with complement-mediated renal diseases. Despite sig-
nificant efforts in the past years, a large group of C3G
patients with complement-mediated kidney disease has no
identified pathogenic factors (mutations in the previously
described disease-associated genes or autoantibodies) [11].
The distinction between C3G and IC-MPGN is not always
clear. Alternative pathway abnormalities could be detected
in IC-MPGN as well and repeated biopsies could show
different histological pattern. As in many cases there is no
strict border between the two entities we included both
diseases in our study [2, 3, 17, 18].
The first reported nephritic factors were the C3 neph-

ritic factors (C3NeFs) [19], showing either a properdin-

dependent or a properdin-independent effect, both of
which can stabilize the alternative pathway (AP) C3 con-
vertase. With the prolongation of the half-life of the AP
C3-convertase enzyme complex, C3NeFs can maintain
and prolong the complement activation [20]. These anti-
bodies were detected in around 80% in patients with
DDD and less frequently in C3GN [2, 5, 9]. These anti-
bodies are routinely measured in complement laborator-
ies all over the world, although their exact contribution
to the disease pathomechanism is not entirely known.
Interestingly, C5 nephritic factor is a recently described
antibody which can bind to the C5-convertase and has a
similar function [21]. On the other hand, C4 nephritic
factor (C4NeF) is analogous to C3NeF, this autoantibody
can stabilize the C3-convertase (C4bC2a) shared by the
classical and by the lectin pathways, in a dose-dependent
manner. C4NeF was first described in 1980 by
Halbwachs at al [22]. and there are only a few publica-
tions available about it from the 1980–90’s [23, 24].
C4NeF was detected in acute glomerulonephritis,
systemic lupus erythematosus, chronic proliferative
glomerulonephritis and was also determined in 100
hypocomplementaemic MPGN patients where it was
shown that it could be present with or without C3NeF
[23, 25]. Recently, a case series was published about the
case history of five C4NeF positive patients and about a
laboratory method that is suitable for measuring the
concentration of C4NeF [12, 13]. This antibody is not
yet routinely measured in samples of patients with C3G,
therefore, the information about its prevalence in C3G
cohorts is scarce. In addition, autoantibodies to comple-
ment proteins C1q, Factor B, C3 and the regulator
Factor H have also been measured in patients with
kidney diseases [16, 26–28], but their association with
C4NeF is largely unknown. Therefore, observational data
on C4NeF and its potential association with additional
pathogenic factors in IC-MPGN and C3G would facili-
tate better understanding of the disease pathogenesis.
Our aim was to consecutively measure the C4NeF ac-

tivity in a large cohort of patients with a pathologically
confirmed diagnosis of IC-MPGN/C3G. Our hypothesis
was that patients lacking any identifiable pathogenic
factors (inherited or acquired) may show positivity for
C4NeF. Accordingly, we analyzed all of the currently
known potential genetic or acquired pathogenic factors
in this cohort, together with C4NeF. Although it is
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known that C4NeF is present in MPGN patients, this is
the first observational study describing a large cohort
and examining it together with genetic factors and other
autoantibodies. The novelty of our study lies in this as-
pect, providing a comprehensive overview about genetic
and autoimmune abnormalities. We also explored
whether the presence of C4NeF is associated with gen-
etic variations or with other anti-complement autoanti-
bodies. The potential association of C4NeF with the
recently described clinically relevant clusters [29] was
also explored.

Results
Clinical characteristics and complement profile of the
patients
Sixty-seven patients out of 119 (56.3%) had (IC-MPGN),
12 (10.1%) had DDD and 40 (31.1%) were diagnosed
with C3GN. (Additional files 1: Tables 1 and 2.).
There was no significant difference between sex and

age in the different histological groups. We could not
observe any relevant difference in clinical characteris-
tics of the patients such as hematuria, proteinuria or
renal function. Serum C4 level was significantly lower
in patients with IC-MPGN (p = 0.006), AP was the
lowest in patients with DDD(p = 0.011). The preva-
lence of C4NeF did not differ between the histology-
based groups. (Additional file 1: Table 1).
In 23 (14 with C3G, 9 with IC-MPGN) of our patients

infections, autoimmunity or the presence of paraproteins
were noted. Most of the cases with previous or persist-
ent infections were diagnosed with C3G (10/12) while
signs of autoimmunity occurred more frequently in IC-
MPGN (6/9). Paraprotein was found in one patient with

C3G and in one other with IC-MPGN. Among the etio-
logic factors, likely pathogenic variations (LPVs) of com-
plement genes were found in 20% of the patients, the
following genes were affected: CD46 with 10, CFH with
5, C3 and CFI with 4, THBD with 3, and CFB with 1
LPV, respectively. MLPA analysis of the CFHR gene
complex identified 3 patients with large deletions and re-
arrangements leading to the expression of pathological
hybrid proteins (all of them were C4NeF negative),
whereas the common CFHR1–3 deletion affected 37 pa-
tients (no association with C4NeF). Prevalence of LPVs
was similar among the antibody positive and negative
patient groups. Positivity for C3NeF was observed in
22.7%, other complement autoantibodies such as anti-
C1q in 12.6%, anti-Factor H in 5.1%, anti-C3 in 4.3%
and anti-Factor B in 6% of the patients, respectively. In
47.1% of the IC-MPGN/C3G patients we could not iden-
tify any known etiologic factors (Fig. 1). C4NeF positivity
was detected in 17 patients (14.3%) (Additional files 1:
Tables S1 and S3).

Relationship of C4NeF presence with the clinical and
complement profile
There was no difference in C4NeF prevalence among the
different histology groups (Additional file 1: Table S1).
Therefore, we examined whether there are any differ-
ences between the C4NeF positive and negative
patients’clinical and complement parameters. No dif-
ference was observed regarding the patients’ gender,
age, the presence of hematuria and proteinuria. How-
ever, renal impairment was less frequent at disease
onset in patients with C4NeF (Table 1). By exploring
the C4NeF positive and negative patients’ complement

Fig. 1 Distribution of genes affected by LPVs among the autoantibody negative and autoantibody positive groups of patients. * C3NeF, C4NeF,
anti-C1q, anti-FH, anti-FB, anti-C3. ** CD46, CFH, C3, CFI, THBD, CFB. *** ‘combined’ stands for LPVs in the following genes: C3 and CFH n = 2; CFI
and THBD n = 1; CD46 and THBD n = 1; CD46 and CFB n = 1; CD46 and heterozygous deletion of entire CFH n = 1. P-value was obtained by
chi-square test
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profile (Table 2), there was no difference in the level
of C3 and C4. In regard to the activity of the classical
or the alternative pathway, only a trend can be seen
suggesting decreased activities in patients with
C4NeF; C1q levels and anti-C1q prevalence did not
show any correlation with the presence of C4NeF.
The levels of C4d, an activation split product of C4,
were significantly lower in patients with C4NeF.
Because the prevalence of C3NeF was tendentiously

higher in patients with C4NeF (p = 0.063), we further
analysed 4 groups based on the joint presence or ab-
sence of C3NeF and/or C4NeF, in order to better under-
stand their associations with the disease.
This classification identified 20 patients who were

positive only for C3NeF, 10 patients who were positive
only for C4NeF, 7 patients with double positivity and 82
patients with double negativity for both ofthese autoanti-
bodies (Table 3). There was a significant difference in
age between the groups (p = 0.036), as double positive
patients were younger compared to antibody negative
patients. Renal impairment was less prevalent in patients
with only C4NeF positivity and double positivity at
presentation (1/10 and 0/7 patients, respectively), when
compared to double negative patients (median age 28
years, renal impairment in 35/82 patients, Table 3.).
We examined the potential connection between

C4NeF and different inherited etiologic factors, but
there was no general association between carriage of
LPVs in the complement genes and the presence of
C4NeF (Table 3).
The double positive group was characterized by

lower C3 levels (p = 0.01), whereas no significant dif-
ference was observed in the C4 levels, and C4d levels
were equally low in the groups with single or double
positivity of nephritic factors (Table 3). In line with
these results, the concentration of the terminal com-
plement complex (sC5b-9) was significantly higher in
the double positive group and it was decreased but

still above the reference range in the group of pa-
tients positive for only C4NeF (p < 0.001). AP activity
was significantly lower and classical pathway (CP) ac-
tivity was tendentiously lower in the double positive
group, while it was the highest in the negative group
(CP p = 0.077; AP p = 0.033). Furthermore, AP activity
was also decreased in the single C3NeF positive
group. There was no difference in the levels of other
examined components or activation products (Fac-
tor H, Factor I, Factor B, Factor D, C3a). It is inter-
esting to note that very low degree or absent C1q
staining was observed in immunofluorescence micros-
copy in the single C4NeF positive group (Additional file 1:
Table S4).
Because of the single or parallel presence of C3 and

C4 nephritic factors in patients with IC-MPGN/C3G, we
examined additional complement autoantibodies in our
cohort, whether they have in addition any association
with the nephritic factors (Table 3). The presence of
anti-C1q was the highest in the double positive group
(p = 0.045) along with the highest incidence of anti-C3
antibody (p = 0.011). There was no difference in the
presence of anti-Factor H and anti-Factor B between the
different groups.

Disease characteristics of patients positive for C3NeF and/
or C4NeF
We examined whether C4NeF positivity has any influ-
ence on the patients’ renal survival. Of the 119 patients,
we followed 103 subjects successfully for a median
follow-up of 1.52 years (range: 0.05–18.18 years). At time
of diagnosis 12 patients had renal failure among whom 1
patient was positive for C4NeF (Table 1). During the
follow-up period 17 patients progressed to, or stayed in
ESRD with the need of renal replacement therapy. 14
from these 17 patients belong to the C3NeF/C4NeF
negative group whereas 3 patients were positive only for
C3NeF. There was no difference in the development of

Table 1 Clinical characteristics of IC-MPGN/C3G patients with and without C4NeF

C4NeF positive patients
n = 17

C4NeF negative patients
n = 102

p

sex % men 9 (53) 58 (57) 0.79

age at diagnosis, year 16 (14–31.5) 24 (12.75–41) 0.24

microhematuria, present 11 (65) 59 (58) 0.79

gross-hematuria, present 2 (12) 21 (21) 0.52

nephrotic syndrome, present 7 (41) 54 (53) 0.43

renal impairment, present 1 (6) 44 (43) 0.002

renal failure, present 1 (6) 11 (11) 1

trigger, present 2 (12) 19 (19) 0.73

familiarity, present 1 (6) 9 (9) 1

The data are given as median and interquartile range or number and percentages. P-values are given as the results of χ2 or Mann-Whitney tests
There are some missing values in the following data: proteinuria (n = 3), renal impairment/failure (n = 3), trigger (n = 2), familiarity (n = 1)
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ESRD in subgroups with or without C4NeF (Fig. 2a).
When renal survival was analyzed in C3NeF positive,
C4NeF positive, double positive, and double negative pa-
tients (Fig. 2b), the same observation was made. Remark-
ably, no difference was seen in the patients’ renal
survival between the histology-based groups either (data
not shown). Although we have a few missing data as
regards the patients’ therapy, we could not observe any
significant difference regarding the medication used in
the different group of patients (when analyzing only pa-
tients with complete data).
Based on the clinical, genetic and laboratory data of

our cohort of IC-MPGN/C3G patients, an unsupervised
data-driven cluster analysis was made, similarly to the
study of Iatropoulos et al. [29], and altogether 4 clusters
were generated [30]. We predicted the cluster member-
ship of the 17 C4NeF positive patients of the current
study, and observed that 12 were reclassified into cluster
1, one patient was placed into cluster 3 and four subjects
into cluster 4 (Fig. 3). The distribution of the different
nephritic factors was significantly different between the
clusters (Fig. 3, inserted table, p = 0.008). The increased
prevalence of C4NeF in cluster 1 was statistically signifi-
cant (p = 0.028) compared to the other clusters along
with a higher prevalence of multiple antibodies including
C3NeF, C4NeF, anti-C1q, anti-FH, anti-C3, anti-FB in
this cluster (p = 0.003) (Table 4).

Discussion
Autoantibodies against complement components occur
in a significant proportion of cases with C3G or IC-
MPGN, although only a few large-scale studies have
analyzed their presence in these conditions. Case reports
[4, 12, 16, 21, 23, 24] and case series studies [2], [5, 31, 32]
described the presence of nephritic factors and other
complement autoantibodies, but still, approximately
30 to 60% of the C3G cases remain without identified
pathogenic factors (autoantibodies to complement

components or pathogenic variants of disease-associated
complement genes).
This is the first observational study where the presence

of C4NeF was examined together with its connection
with clinical features, and with other pathogenic factors
(autoantibodies and genetic variants) in a large cohort of
119 consecutive IC-MPGN/C3G patients. Presence of
C4NeF was observed in 17 (14.3%) patients, who were
characterized by a lower prevalence of renal impairment
and C4d level, and tendentiously higher C3NeF preva-
lence at presentation (Tables 1 and 2). None of the
C4NeF positive patients developed ESRD during follow-
up (in contrast to 17/92 in the C4NeF negative group),
but this difference did not reach statistical significance.
Patients with double positivity for C3NeF and C4NeF
had the lowest C3 levels with highest terminal pathway
activation, when compared to single positive or double
negative patients (Table 3). This observation is similar to
that of Ohi and Yasugi [23] confirming the pronounced
terminal pathway activation with hypocomplementemia
in double positive patients. Positivity for anti-C1q or
anti-C3 autoantibodies was also increased in patients
with double positivity for nephritic factors, and inter-
estingly these patients were clustered into cluster
1.The pattern of anti-complement autoantibody posi-
tivity and its association with clinically meaningful
clusters was analyzed in detail (Fig. 3 and Table 4),
and patients with multiple autoantibodies were identi-
fied in cluster 1 (see below).
Our observations on the associations between C4NeF,

C3NeF and complement parameters are intriguing. Pa-
tients with single positive C4NeF had the lowest but
slightly elevated sC5b-9 levels, followed by the double
negative, C3NeF positive and double positive groups. A
similar, contrasting trend in C3 levels (with lowest levels
in double positive group) was observed for C3. Accord-
ing to literature, C4NeF can stabilize the classical/lectin
pathway’s C3- and C5-convertases [23, 33, 34], although

Table 2 Complement parameters of IC-MPGN/C3G patients with and without C4NeF

C4NeF positive patients
n = 17

C4NeF negative patients
n = 102

p

serum C4 (0.15–0.55 g/L) 0.2 (0.12–0.26) 0.23 (0.17–0.32) 0.232

serum C3 (0.9–1.8 g/L) 0.33 (0.19–0.98) 0.73 (0.39–01) 0.115

Classical pathway activity (48–103 CH50/mL) 30 (11–54) 46 (28–61) 0.065

Alternative pathway activity (70–125%) 40 (0–67) 63 (3–87) 0.055

C3NeF positivity (< 10%) 7(41) 20 (19.6) 0.063

C1q (60–180mg/L) 108 (83–138) 102 (83–123) 0.528

anti-C1q (< 52 U/mL) 4 (23.5) 10 (9.8) 0.117

C4d (0.7–6.3 ng/mL) 3.23 (2.6–5.3) 5.46 (3.15–9.27) 0.038

Reference ranges are shown in the first coloumn in parentheses. The data are given as median and interquartile range or number and percentages. P-values are
given as the results of χ2 or Mann-Whitney tests
There are some missing values in the following data: C1q (n = 13), C4d (n = 23), anti-C1q (n = 8)
Significance level was determined at a value of p < 0.05
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the antibody concentration that is sufficient to stabilize
the C5-convertase is 10-fold higher than in case of the
C3-convertase [34]. Another study observed that the
membrane bound C3- and C5-convertase stabilized by
C4NeF was resistant to decay accelerating factor mediated
inactivation [33]. Our results indicate that the C3-
convertase stabilizing capacity of C4NeF alone does not
render classical pathway convertase to obtain C5-
converstase properties, as reflected by lower sC5b-9 levels
in patients with only C4NeF positivity. However, sC5b-9

level is the lowest and C3 concentration is the highest in
patients with only C4NeF positivity but these levels are
not in the reference range supporting the hypothesis that
a complement-mediated process may exist in the back-
ground as well. On the other hand, sC5b-9 levels were the
highest in patients with both C3NeF and C4NeF, indicat-
ing a key role of C3NeF in this process. In that point of
view C4NeF could be responsible for the dysregulation of
C3-convertase without activation of the terminal pathway
which can led to an imbalanced homeostasis.

Table 3 Clinical and complement characteristics of IC-MPGN/C3G patients classified based on their nephritic factor status

C3NeF positive
patients
n = 20

C4NeF positive
patients
n = 10

Double positive patients for C3NeF
and C4NeF
n = 7

Double negative
patients
n = 82

p

sex % men 13 (65) 6 (60) 3 (42.9) 45 (54.9) 0.057

age at diagnosis 15 (9–21)1 14 (11–39) 16 (11–17) 28 (13–41) 0.036

microhematuria, present 12 (60) 7 (70) 4 (80) 47 (58.8) 0.735

gross hematuria, present 6 (30) 2 (20) 0 (0) 15 (18.8) 0.461

nephrotic syndrome, present 12 (60) 5 (50) 2 (28.6) 42 (53.2) 0.552

renal impairment, present 9 (45) 1 (10) 0 (0) 35 (44.3)2,3 0.026

renal failure, present 2 (10) 1 (10) 0 (0) 9 (11.4) 0.824

trigger, present 8 (40) 1 (11.1) 1 (14.3) 11 (13.8) 0.045

familiarity, present 2 (10) 1 (11.1) 0 (0) 7 (8.6) 0.863

serum C3(0.9–1.8 g/L) 0.34 (0.2–0.77)1 0.52 (0.25–0.96) 0.2 (0.17–1.07) 0.84 (0.48–1.04) 0.01

serum C4(0.15–0.55 g/L) 0.25 (0.13–0.33) 0.23 (0.19–0.28) 0.15 (0.11–0.26) 0.22 (0.17–0.31) 0.57

sC5b-9(110–252 ng/mL) 575 (384–1206)1 287 (115–1063) 1716 (1450–2127)1,2 368 (244–553) 0.0004

LPV carriers 5 (27.7) 3 (50) 1 (14.3) 13 (16.5) 0.19

Classical pathway activity(48–103
CH50/mL)

36 (12.5–59) 39 (18–59) 14 (0–46) 47.5 (31–61) 0.077

Alternative pathway activity (70–125%) 1.5 (1–89) 57.5 (0.75–68.5) 1 (0–58) 65 (13–86)3,4 0.033

C1q (60–180mg/L) 108 (93–146) 111 (80.25–145) 104 (73–124.5) 101 (76–121.5) 0.46

Factor H (250–880mg/L) 573.5 (360–697) 546.5 (360–639) 495 (384–763) 538 (370–742) 0.977

Factor I (70–130%) 92.5 (78–103) 82 (67–102.5) 90 (78–107) 92.5 (78–111) 0.598

Factor B(70–130%) 85 (65–98.5) 84 (65–107) 86 (66–107) 86 (65.5–103) 0.971

Factor D (0.51–1.59 μg/mL) 2.15 (1.06–3.72) 1.83 (0.78–5.28) 0.48 (0.33–2.5) 2.44 (0.98–4.13) 0.16

C3a (70–270 ng/mL) 113 (77–274) 124 (72–190) 138 (53–188) 137 (91–221) 0.805

Bb (0.49–1.42 μg/mL) 2.24 (1.52–3.4) 0.93 (0.89–2.27) 1.14 (0.71–2.37) 1.45 (1.01–2.08) 0.079

C4d (0.7–6.3 μg/mL) 3.97 (3.25–8.9) 3.23 (2.66–4.41) 3.71 (0.59–6.2) 5.77 (3.04–9.27) 0.21

anti-Factor H, present 0 (0) 0 (0) 0 (0) 6 (7.3) 0.359

anti-C1q, present 2 (10) 1 (10) 3 (25.2)2 8 (9.7) 0.044

anti-C3, present 1 (5) 0 (0) 2 (28.57)1 2 (2.5) 0.011

anti-Factor B, present 2 (10) 0 (0) 0 (0) 4 (5) 0.608

Any additional antibody to C3NeF
and/or C4NeF

3 (16.6) 1 (11.1) 4 (57.14)3 15 (19.73) 0.09

Reference ranges are shown in the first coloumn in parentheses. The data are given as median and interquartile range or number and percentages. P-values are
given as the results of χ2 or Kruskal-Wallis tests
1 Significantly different from nephritic factor negative patients.2 Significantly different from C4NeF positive patients.3 Significantly different from double positive
patients. 4Significantly different from C3NeF positive patients. LPV: likely pathogenic variant; C3NeF: C3 nephritic factor; C4NeF: C4 nephritic factor.
There are some missing values in the following data: proteinuria (n = 3), renal impairment/failure (n = 3), trigger (n = 2), familiarity (n = 1), sC5b-9 (n = 15), LPV
(n = 9), C1q (n = 13), Factor D (n = 23), C3a (n = 19), Bb (n = 23), C4d (n = 23), anti-Factor H (n = 2), anti-C1q (n = 8), anti-C3 (n = 3), anti-Factor B (n = 3)
Significance level was determined at a value of p < 0.05
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Other antibodies such as anti-C1q and anti-C3 were
present more often together with C3NeF and C4NeF
(Table 3) in our cohort confirming previous observations
[28], which may reflect a polyclonal humoral immune
response. C3G is considered to be related to constant
systemic complement activation [1, 35, 36], therefore,
the observed diversified complement specific immune
response may reflect ongoing epitope spreading driven
by persisting complement coated material. Interestingly,
presence of complement autoantibodies was not associ-
ated with LPV carrier status (Fig. 1), since nearly equal
proportions of the autoantibody negative or positive
groups were carriers of LPVs. Whether all of these anti-
bodies are pathological factors, or these are disease mod-
ifiers or even epiphenomenon of the disease progress in
C3G, the question remains unanswered today. Interest-
ingly, chronic antigenaemia, such as infections, auto-
immune profile, viral markers, evidence of circulating

monoclonal paraprotein such as potential triggers oc-
curred in equal proportions in IC-MPGN and in C3G.
The histology-based classification of our cohort

showed no association with the presence of C4NeF
(Additional file Table S1). Similarly, there was no statis-
tically significant difference in renal survival among
C4NeF positive or negative patients, although not a sin-
gle C4NeF positive patient developed renal failure during
the 5.4 year-long follow-up period of this group. This
may be explained by the short follow-up period, or by
the small number of events in the cohort. However, as
presented on Fig. 2, it is unlikely that single or double
C4NeF positive patients will rapidly progress to ESRD,
whereas 20% of the double negative patients lost kidney
function by year 2 in our cohort.
A potential limitation of this study lies in the rarity of

MPGN, resulting that for some group comparisons p
values are between 0.05 and 0.1, considered generally

Fig. 2 Kaplan-Meier analysis of IC-MPGN/C3G patients’ renal survival in the groups with or without C4NeF (a) and in groups with positivity for
C3NeF and/or C4NeF, and double-negative patients (b). P-value was obtained by log-rank test. (Curve for C4NeF positive and double positive
patients run together)
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Fig. 3 Membership of C4NeF positive patients in the different clusters generated by unsupervised data-driven cluster analysis based on clinical,
genetic and laboratory data [29]. Complete dataset to generate the clusters was available for 92 patients, whereas for 26 patients cluster
membership was predicted by decision-tree analysis based algorithm [29]. Figure: Dotted line represents threshold of positivity for C4NeF (18%),
ANOVA p = 0.0287. Table: P-value was obtained by chi-square test. Cluster membership of patients not included in the cluster analysis were
predicted based on decision tree analysis [30]

Table 4 Complement autoantibody patterns in clusters of 106 IC-MPGN/C3G patients who have full data-set for all of the
autoantibodies

Autoantibody, positivity/
patient

Pattern of autoantibody positivity (number of
patients affected)

cluster 1
(n = 46)

cluster 2
(n = 4)

cluster 3
(n = 20)

cluster 4
(n = 36)

Row total

0 None 17 (28%) 3 (5%) 13 (21%) 28 (46%) 61 (100%)

1 C3NeF (14) 18 (56%) 0 (0%) 6 (19%) 8 (25%) 32 (100%)

C4NeF (8)

anti-FH (3)

anti-C1q (4)

anti-FB (3)

2 anti-C1q + anti-FH (1) 6 (100%) 0 (0%) 0 (0%) 0 (0%) 6 (100%)

anti-C1q + anti-C3 (1)

anti-C1q + C4NeF (1)

C3NeF + C4NeF (3)

> 2 anti-C1q + anti-FH + anti-FB (1) 5 (72%) 1 (14%) 1 (14%) 0 (0%) 7 (100%)

anti-C1q + anti-FH+ anti-C3 (1)

C3NeF + anti-FB + anti- C1q (1)

C3NeF + C4NEF + anti-Cq (2)

C3NeF + C4NeF + anti-C3 + anti-C1q (1)

C3NeF + C4NeF + anti-C3-anti-FB (1)

P = 0.003, chi-square test
Significance level was determined at a value of p < 0.05
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not significant. We interpreted these associations as ‘ten-
dency’, based on the fact that almost all borderline p values
were related to such biological observations, that fit to the
disease pathogenesis. The interpretation of such borderline
p values is supported by the recommendation of the Insti-
tute for Quality and Efficiency in Health Care (link: https://
www.iqwig.de/en/press/press-releases/rare-diseases-no-
reason-for-lower-demands-for-studies.6343.html) to raise
the significance level in case of rare diseases, when enrol-
ment targeted the whole population (as it was in our case
involving all large national centres), and recruitment of
more patients was not feasible.
The novelty of our study also lies in the observation

that C4NeF positivity shows association with a re-
classified group of IC-MPGN/C3G patients, cluster 1
(Fig. 3). Iatropoulos et al. [29] performed a hypothesis-
free cluster analysis based on the patients’ histological,
clinical, genetic and complement parameters in order to
better understand the disease background, and they
could differentiate 4 distinct, clinically meaningful
clusters. In an independent cohort of 92 patients (a
subgroup of the current IC-MPGN/C3G cohort) we
validated the main findings of the original study [29, 30],
and utilized this information to analyze our data in more
depth. Prevalence of C4NeF (12/17) was highest in clus-
ter 1 (Fig. 3), and cluster 1 was also characterized by
higher C3NeF prevalence, by increased frequency of
multiple anti-complement autoantibody positivity
(Table 4 and Fig. 3), and by pronounced complement
activation and consumption (high sC5b-9 and low C3
concentrations, [30]). This is in line with two previ-
ous studies, where decreased C3 and increased sC5b-
9 levels were associated with the presence of C4NeF
[12, 23], especially in case of concomitant C3NeF
positivity. A recent study unravelled additional mech-
anisms underlying complement dysregulation by vari-
ous C3NeFs in C3G and IC-MPGN and showed
higher prevalence of properdin-dependent C3NeF in
cluster 1 patients, which is in line with the observed
elevated sC5b-9 levels and increased complement
consumption in this group [37].

Conclusions
In conclusion, C4NeF may be present in a small propor-
tion of IC-MPGN/C3G patients (14.3% in our cohort)
often together with C3NeF or other complement specific
autoantibodies. C4NeF patients are typically children or
young adults with good renal function at presentation and
lack of rapid progression to ESRD. Presence of C4NeF
was not associated with LPVs of complement genes, but
showed a clear relationship with complement activation
and consumption, especially in case of accompanyingC3-
NeF positivity. An unsupervised, data-driven cluster
analysis identified a group of patients (cluster 1) with high
prevalence of multiple autoantibodies to complement
proteins, including C4NeF. In conclusion, in this observa-
tional study C4NeF is present in MPGN patients and may
be a possible cause of complement dysregulation in ap-
proximately 10–15% of IC-MPGN/C3G patients, but its
causative relationship with disease pathogenesis, and the
demonstration of independent pathogenic role requires
further experiments and clinical studies.

Methods
Patients
Samples of 205 patients were sent to our Research La-
boratory from Hungarian or Central-European clinical
centers with the suspicion of complement-mediated
renal disease for complement investigations, and for
whom genetic analysis was also carried out in our la-
boratory. Eighty-six patients were excluded because of
alternative diagnosis or secondary MPGN. One hundred
nineteen patients with the diagnosis of IC-MPGN and
C3G were enrolled in the study from 34 centers in
Central-Europe from January 2008 to May 2018 (Fig. 4).
C3G was defined based on the C3 glomerulopathy con-
sensus report where C3G was diagnosed when C3 stain-
ing was minimum two order magnitude stronger than
any other immunoreactant [3].
Relevant clinical and laboratory data were collected

from the medical charts. Histology-based diagnosis and
detailed data were collected from pathologists (n = 73),
while if only biopsy descriptions were available (n = 46)

Fig. 4 Flow chart of the enrolled patients
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these were re-evaluated and scored using standardized
questionnaire. Light-, immunofluorescence and electro-
nmicroscopy results were collected. The analysis of the
immunofluorescence microscopy data did not include
kappa, lambda and C4d staining because of the high
number of missing data (kappa 65/119; lambda 64/119;
C4d 15/119). Study protocol was approved by the
Hungarian Medical Research Council (approval’s num-
ber: 55381–1/2015/EKU) and the Institutional Review
Board of the Semmelweis University, Budapest. Written
approvals, based on informed consent, for the diagnostic
tests and genetic analysis were given by the patients or
their parents in accordance with the Declaration of
Helsinki.

Determinations of complement parameters
Samples (serum, EDTA-anticoagulated plasma, and
sodium-citrate-anticoagulated plasma) were taken from
the antecubital vein, or from a central venous catheter.
Cells and supernatants were separated by centrifugation
immediately after the sample was taken, and transferred
to our laboratory. Separated aliquots were stored at −
70 °C until measurements.
The C3 and C4 concentrations were measured by tur-

bidimetry (Beckman Coulter, Brea, CA).
AP activation was measured by a commercially available

kit (Wieslab AP ELISA KITs, EuroDiagnostica, Malmö,
Sweden), according to the manufacturer’s instructions.
Total CP activity (CH50) was measured by a home-

made hemolytic titration testbasedon Mayer’s method
[38]. Radial immunodiffusion was performed to measure
the antigenic concentrations of Factor I and Factor B,
using specific antibodies [39]. Levels of Factor H, C1q
and antibodies against Factor H, C1q, [39–41], as well as
anti-C3 and anti-Factor B were measured with in-house
ELISA methods. Microtiter ELISA plates were coated
overnight with 1 μg/mL commercially available Factor-B
or C3 protein (Quidel) in carbonate buffer, followed by
blocking with PBS and 0.5% BSA. Sample sera were di-
luted 1:50 in PBS 0.05% Tween-20 and added to the
plate for 1 h at room temperature. Bound antibodies
were detected by adding anti-human IgG-horseradish
peroxidase diluted to 1:2500 and followed by TMB sub-
strate. The optical density was detected at 450/620 nm.
The samples were compared to the different dilution of
normal human serum (NHS). Samples positive for any
of the antibodies if they had a significantly increased (>
2SD) OD compared to the NHS with the same dilution,
considered background (1:50).
C3NeF titer was determined based on the original

hemolytic method of Rother et al. [42] where C3NeF ac-
tivity was measured from patients sera.
The C4NeF hemolytic test was performed based on

the protocol of Zhang et al. [12] and modified according

to the C3NeF hemolytic assay [42]. For the measurement
patients’ sera were used instead of purified IgG used by
Zhang et al., because of the lack of enough patients’
sample for IgG purification. To eliminate the effect of
complement in the assay, we tested heat-inactivated
serum as well which did not show significant difference
to the normal sera. C4NeF prevalence was higher in our
cohort compared to the American [12] which difference
can be explained by the differences in the ethnicity of
the studied populations.
In brief, sheep erythrocytes (EA) in Alsever solution

were used, which were sensitized with hemolysin and
washed several times in gelatin veronal buffer (GVB) con-
taining calcium and triethylenetetramine-N,N,N′,N″,N
″‘,N″‘-hexaaceticacid (CaTTHA). NHS (pooled serum
from healthy controls) was added to the solution and in-
cubated at 30 °C for 5min, the buffer (CaTTHA contain-
ing GVB) stopped the reaction at EA +C1 + C4. The cells
were washed in GVB containing Ca2+several times and
were incubated in the buffer at 0 °C for 30min and at
37 °C for 30min. After the incubation, GVB containing
Ca2+and Mg2+buffer was used for washing which enabled
that the 200 μl of the resulting EA + C1 + C4 cells
bind human complement C2 protein (Calbiochem)
which were incubated at 30 °C for 5 min,to generate
the EA + C1 + C4 + C2 cells. The EA + C1 + C4 + C2
cells were suspended in 300 μl EDTA-GVB buffer.
100 μl of the solution was added to 2.4 ml distilled
water, and the optical density (OD) was measured at
541 nm. By using EDTA-GVB for dilution, the cell
number was set to 5 × 108/ml.5–5 μl of patients’
serum samples were added to 15 μl EA + C1 + C4 + C2
cells and were incubated at 30 °C for 10 min. The
cells were washed in EDTA-GVB buffer 4 times and
centrifuged for 5 min at 3000 rpm. 25 μl of rat serum
was added to the cells as the source of complement
components. The cells were incubated at 37 °C for 1
h. The hemolytic reaction was stopped by adding
200 μl cold EDTA-GVB buffer. After centrifugation
for 5 min at 3000 rpm, the ODs of the supernatants
were measured at 415 nm and the hemolysis in the
patient’s samples was given in % of total lysis of
sheep erythrocytes. The threshold of positivity was set
as the mean value ±2 SD of 48 healthy controls, and
determined as 18%.
Further complement components, activation markers

and split products, such as Factor D, sC5b-9, C3a, Bb
and C4d were detected with commercially available
ELISA kits (HyCult Complement Factor D, Human,
ELISA kitHK343–02; MicroVue C3a-desArgEIA, A032;
MicroVue C4d EIA, A008;MicroVue sC5b-9 Plus EIA,
A029; MicroVue Bb Plus EIA, A027, respectively).
All complement parameters determined in this study

are shown in Fig. 5.
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Clinical parameters
Glomerular filtration rate (GFR) was calculated using the
GFR-EPI equation in adults and the creatinine-based “bed-
side Schwartz” equation in children. Renal impairment was
defined as GFR below 60mL/min/1.73m2and above 15mL/
min/1.73m2. Renal failure was defined with GFR under 15

mL/min/1.73m2or with requirement of renal replacement
therapy (dialysis or kidney transplantation).

Genetic analysis
In order to screen for mutations, rare variations or risk
polymorphisms in the coding regions of complement

Fig. 5 Schematic representation of the complement pathways with steps of action of C3NeF and C4NeF, highlighting all complement
investigations performed in this study. Complement parameters investigated in this study are underlined. Complement regulators are shown in red
triangles. Complement autoantibodies are shown in blue. Complement activation products are shown by asterisks. Abbreviations: DAF - decay-
accelerating factor; CR1 - complement receptor type 1; C4BP - C4b-binding protein; MCP - membrane cofactor protein
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Factor H (CFH), Factor I (CFI), membrane cofactor pro-
tein (CD46), thrombomodulin (THBD), Factor B (CFB)
and C3 (C3) ,the samples were analyzed bydirect bidirec-
tional DNA sequencing following PCR amplification, as
described formerly (Szilagyi et al., 2013). Previously
recognized and functionally characterized missense
[43–47], nonsense and splice site mutations were catego-
rized as LPVs. Novel missense variations were considered
as likely pathogenic if they were not found in international
databases such as dbSNP (www.ncbi.nlm.nih.gov/snp),
Exome Variant Server (NHLBI GO ExomeSequencing
Project (ESP), Seattle, WA (http://evs.gs.washington.edu/
EVS/) and 1000Genomes Project phase 3 (http://
browser.1000genomes.org/index.html) or if their minor
allele frequency was < 0.1% and CADD score ≥ 10.
In order to study copy-number alterations (deletions or

duplications) in the chromosomal region of CFHR1,
CFHR2, CFHR3 and CFHR5, multiplex ligation-dependent
probe amplification (MLPA) was performed with the
SALSA MLPA probemix P236-A3 (MRC-Holland,
Amsterdam, the Netherlands) followingthe manufacturer’s
instructions.

Statistical analysis
For descriptive purposes, continuous variables which
were deviated from the normal distribution according to
the results of Shapiro-Wilk tests, are given as median
and 25th–75th percentiles. For categorical variables
numbers and percentages were used. Non-parametric
tests as Mann-Whitney U test or Kruskal-Wallis test
with Dunn’s post hoc test were used for group compari-
sons in case of continuous variables. For categorical
variables Pearson’s χ2 test was performed.
For cluster analysis hierarchical clustering by Ward

method with squared Euclidean distances was used.
For the statistical analysis IBM SPSS Statistics 20 and

Graph Pad Prism 5 software was used. Two-tailed p-
values were calculated and the significance level was
determined at a value of p < 0.05, if not otherwise stated.
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