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Abstract

Background:Congenital Pulmonary Airway Malformation (CPAM) has an estimated prevalence between 0.87 and
1.02/10,000 live births and little is know about their pathogenesis. To improve our knowledge on these rare
malformations, we analyzed the cellular origin of the two most frequent CPAM, CPAM types 1 and 2, and
compared these malformations with adjacent healthy lung and human fetal lungs.

Methods: We prospectively enrolled 21 infants undergoing surgical resection for CPAM. Human fetal lung samples
were collected after termination of pregnancy. Immunohistochemistry and proteomic analysis were performed on
laser microdissected samples.

Results:CPAM 1 and 2 express mostly bronchial markers, such as cytokeratin 17 (Krt17) or� -smooth muscle actin
(ACTA 2). CPAM 1 also expresses alveolar type II epithelial cell markers (SPC). Proteomic analysis on microlaser
dissected epithelium confirmed these results and showed distinct protein profiles, CPAM 1 being more
heterogeneous and displaying some similarities with fetal bronchi.

Conclusion:This study provides new insights in CPAM etiology, showing clear distinction between CPAM types 1
and 2, by immunohistochemistry and proteomics. This suggests that CPAM 1 and CPAM 2 might occur at different
stages of lung branching. Finally, the comparison between fetal lung structures and CPAMs shows clearly different
protein profiles, thereby arguing against a developmental arrest in a localized part of the lung.
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Introduction
Lung development is a complex process allowing paren-
chymal architecture to evolve along the bronchial
organization. To establish correct bud elongation and
airway branching, cellular interactions between epithe-
lial, endothelial and mesenchymal cells are required.
These interactions are dependent on the paracrine secre-
tion of different growth factors or transcription factors.
Growth factors are classified into different groups based

on their cell of origin, such as fibroblast growth factors
(FGF), vascular growth factors (VEGF), and epithelial
growth factors (EGF). Transcription factors, such as SOX2
and SOX9, are recognized to play a role in lung develop-
ment and in particular during branching morphogenesis
[1–5]. During the canalicular stage, expression of SOX2
and SOX9 differ in their localization. Indeed, SOX 2 is
expressed in the proximal airways surrounded with smooth
muscle cells (SMCs) and SOX9 is restricted to the distal
epithelial buds [1]. SMCs surrounding epithelial cells are
crucial in this process due to their ability to contract and to
allow SMCs later to extrude into branches [6, 7].

Congenital lung anomalies (CLA) are a group of devel-
opmental lung alterations thought to result from differ-
ent external factors occurring during pregnancy, such as
toxic exposure, or are associated to preterm birth. In
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these cases, cellular crosstalk can be altered or interrupted
leading to the impairment of lung branching and alveolar
formation [8–12]. Congenital pulmonary airway malfor-
mations (CPAM) belong to a group of rare CLA whose
pathological origin is still poorly understood [13]. In
Western Europe, CPAM have an estimated prevalence be-
tween 0.87 and 1.02/10,000 live births [14]. Depending on
timing of routine ultrasound, CPAM are often detected
around 16 to 20 gestational weeks (GW). CPAM were ini-
tially classified by Stocker et al. in 3 different subtypes of
cystic lung lesions (1 to 3), differing both macroscopically
(cyst size) and on histology [13]. Despite further attempts
at refining the categories, a type 0, or congenital acinar
dysplasia and a type 4 category, representing pneumopul-
monary blastoma instead of CPAM were added [15].
Langston preferred the denomination“large cyst and small
cyst-types”, i.e. type 1 and 2, the definition used in this
paper [16]. It remains as yet unclear whether or not
CPAM 1 and 2 share the same origin.

Based on these considerations, the current research pro-
ject aims at studying by several approaches the cellular ori-
gins of the two most frequent CPAM, CPAM types 1 and
2 (0.85/10,000 and 0.2/10,000 live births, respectively). We
stained surgically removed CPAM specimens and analyzed
markers of alveolar, muscular and bronchial cell differenti-
ation on these samples. Adjacent healthy lung parenchyma
served as control. We found that cystic epithelium from
both CPAM subtypes expresses several bronchial markers.
On the other hand, SPC, a marker of alveolar epithelial
type 2 cells (AECII), was expressed in CPAM 1, but barely
seen in CPAM 2. We then assessed ACTA2 expression
and its distribution in CPAM. Here again, we observed
similarities in terms of ACTA2 expression in SMCs of both
CPAM 1 and bronchi, whereas ACTA2 positive SMCs
were less prevalent in CPAM 2. These results were further
reinforced by proteomic analysis performed on CPAM
cysts, and healthy adjacent normal-appearing lung, as well
as on fetal airspace and bronchial epithelium, after microla-
ser dissection. CPAM 2 protein profile was clearly distinct
from all the other samples. Furthermore, CPAM protein
profiles overlapped partially with those of fetal samples.
Our data provide important insights into CPAM origin
and demonstrate some differences between CPAM types 1
and 2, suggesting that these malformations might occur at
different stages of embryogenesis.

Materials and methods
Study design, subjects and description of types of lesions
Twenty-one children with CPAM diagnosed by antenatal
ultrasound were prospectively enrolled at the Children’s
hospital of Geneva at time of surgery from November
2012 to November 2017. The institutional ethics com-
mittee approved this study and informed consent was
obtained during scheduled hospital visits (CER 12–110).

Classification of the CPAM types was established by the
pathologist upon macroscopic examination of the speci-
mens (Additional file 4). Analyses were performed on
CPAM tissue and on healthy non-cystic adjacent lung,
considered as control lung. Human fetal samples were
collected after termination of pregnancy. The age of the
fetuses ranged from 14 to 16 weeks of gestation. The in-
stitutional ethics committee approved this procurement
and informed consent was obtained from the parents
(PB_2016–00175).

Immunohistochemistry and image acquisition
Five � m slides were cut from formalin-fixed paraffin-
embedded (FFPE) tissue blocs for immunohistochemis-
try (IHC). Samples of CPAM 1, CPAM 2 and control
lung as well as human fetal samples were assayed on two
separate experiments. High-resolution pictures of immu-
nostained slides were acquired using a brightfield slide
scanner microscope (Axioscan Z.1, ZEISS), using a 10x
magnification. Antibodies used and quantification
methods are detailed in the Additional file4.

Protein extraction, laser microdissection (LMD) and mass
spectrometry analysis
For total lung extracts, 34 samples (14 CPAM 1, 7
CPAM 2, 13 control lung) were analyzed across 4 differ-
ent experiments (see Additional file4). Protein extrac-
tion was performed using the mild anionic detergent
RapiGest - SF (Waters Corporation, Massachussets,
USA). For the Laser microdissection experiment, 16
samples (4 CPAM 1 cyst borders, 3 CPAM 2, 3 control
bronchi, 3 control alveolar areas, 3 fetal canaliculi and 3
fetal bronchi) were analyzed across two different experi-
ments. Proteins were reduced, alkylated and digested
with trypsin. Resulting peptides were sequenced by li-
quid chromatography coupled with tandem mass spec-
trometry (LC-MS/MS) at the Proteomic core facility of
the faculty of medicine of the University of Geneva. The
resulting characteristic peptide fragmentation spectra
were then blasted to the SWISSPROT protein sequence
database. Database search was performed with Mascot
Server (Matrix Science Ltd., London, UK) and results
were analyzed and validated using Scaffold software
(Proteome software Inc., Oregon, USA).

Imaging and statistics
Analysis of staining was blinded and independently per-
formed by two of the authors. Ten random epithelial
zones of 3 to 7 different patients/conditions were ana-
lyzed at magnification × 10. Staining quantification was
performed using image J software [17] and a mean ± SD
was calculated for each patient (see Additional file4).
The different means from each patient were then added
to calculate a SEM. Data are presented as average values
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± SEM. Statistical analysis was performed using Graph-
Pad Prism software (GraphPad Software, California,
USA). One-way ANOVA were used to compare groups.
The results were considered significant ifp < 0.05.

Proteomic data analysis
For each sample, the number of peptides assigned to
each protein was normalized to the total number of pep-
tides obtained in the same sample. Unsupervised hier-
archical clustering was computed using the R language
and environment (v 3.5.3) (https://www.r-project.org),
and the “pheatmap” package (v1.0.12) [18]. Functional
annotation was performed using the R packages“Anno-
tationDbi” (v1.44.0), “org. Hs.eg.db” (v 3.7.0) and
“GO.db” (v 3.7.0).

Results
Patient characteristics
A total of 21 patients were included: 14 (56%) CPAM 1
and 7 (28%) CPAM 2. Four CPAM 1 and 5 CPAM 2
were associated with intralobar bronchial sequestration.
Most of patients were born at term (median age 39
weeks of gestation) with a birth weight adapted to the
gestational age (median weight 3290 g) (Table1). Four
patients presented respiratory failure attributable to the
lung lesion and needed mechanical ventilation at birth.
In 3 patients, CPAM were associated with other malfor-
mations. CPAM classification was determined by the
pathologist prior to IHC and proteomic analysis.

Epithelial pulmonary cells express SOX2 and SOX9 during
fetal development and in cystic lung
We first analyzed the expression of the two transcription
factors, SOX2 and SOX9 in fetal lung at 16 GW ob-
tained from human fetuses. Indeed, lung branching de-
pends on the proximal to distal airways gradient of these
different transcription factors that influence epithelial

progenitors [3]. SOX2 was present not only at the tips,
but also partially around the growing buds, similarly to
ACTA 2 a marker of SMCs (Fig.1a). SOX9 was princi-
pally localized at the tips of elongating buds. We then
looked at the expression of SOX2 and SOX9 in CPAM
samples. Both transcription factors were diffusely
expressed in the epithelial cells lining the cysts (Fig.1b).
SOX2 was significantly less expressed in CPAM 2 com-
pared to CPAM 1. In the control lung, SOX2 and SOX9
were also diffusely present in bronchial epithelial cells
and significantly less in alveoli as attested by quantifica-
tion (Fig. 1c).

Smooth muscle cells are present in high amount around
the cysts
SMCs are described to exert a central role in driving
branching morphogenesis, possibly due to their ability to
contract and induce airway peristalsis [16, 19]. In the
adult lung, various layers of smooth muscle surround
the bronchi in a spiral conformation and their thickness
decreases from proximal to distal airways [20]. We ob-
served a different distribution of ACTA2-positive cells
between CPAM 1 and CPAM 2, as shown in Fig.2a. Im-
munoreactivity to ACTA2 was used to determine SMC
thickness in the CPAM cyst walls. In CPAM 2, SMC
thickness assessed by ACTA2 was significantly lower
than in CPAM 1 and in bronchi (p < 0.05) (Fig.2 b). We
then analyzed the ACTA2 positive area fraction in each
sample. ACTA2 positive surface was larger in CPAM 1
than in CPAM 2 (p < 0.05) (Fig.2 c). Cell distribution
around the cysts was also different: CPAM 1 cysts pre-
sented a more continuous SMC layer compared to dis-
continuous ACTA2 SMC layers surrounding bronchi in
CPAM 2. In order to determine whether the presence of
ACTA2 coincides with epithelial proliferation, we co-
stained our samples with ACTA2 and Ki67 (Fig.2 a, d).
We did not detect any differences in cell proliferation

Table 1 Patient characteristics

Lesion Type CPAM 1 CPAM 2

Number 14 7

Birthweight (1) 3400 [1650–3770] 3290 [1910–4000]

Male sex 5 4

GA at birth (2) 39 [31–40] 40 [36–41]

Antenatal diagnostic age (3) 20 [17–27] 23 [21–27]

Need for mechanical ventilation (4) 3 1

Associated sequestrations 4 5

Other malformations/ syndromes n = 2 (lung hypoplasia, vertebral anomaly)n = 1 (palatine cleft, cardiac malformation, cerebral malformation)

1. Birthweight reported in grams– median [range]
2. Gestational age (GA) reported in weeks– median [range]
3. Age reported in weeks of gestation- median [range]
4. Patients with a medical indication other than the lung malformation were excluded from this column
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Fig. 1 (See legend on next page.)

Barazzone-Argiroffoet al. Orphanet Journal of Rare Diseases         (2019) 14:272 Page 4 of 13



in the diagnosis of CPAM subtypes in unclear clinical
cases.

Future work including more patients and quantita-
tive proteomic analyses could pave the way to a more
in-depth delineation between CPAM types 1 and 2. In
conclusion, the description and classification of
CPAM lesions remains a real challenge, the main is-
sues being adequate management decisions for these
patients.

Supplementary information
Supplementary information accompanies this paper athttps://doi.org/10.
1186/s13023-019-1192-4.

Additional file 1: Figure S1. Illustration of the recovered samples
obtained by laser microsdissection. A. Selected areas B. Area cut with
laser microdissection (Dissected area, lower panels). Red scale bars:
100� m.

Additional file 2: Figure S2. List of the 50 recovered proteins. A. List of
proteins present in CPAM 1 and CPAM 2 B List of proteins present in
CPAM 1, CPAM 2 and control tissue C. List of proteins present in fetal
canaliculi and bronchi at 16 GW.

Additional file 3: Figure S3. List of protein candidates. A. List of
proteins significantly upregulated in CPAM 1 and fetal bronchi, as
compared to CPAM 2 and fetal canaliculi determined with the GO tool
from PANTHER (GO consortium, PANTHER, maintained by Thomas
laboratory, University of Southern California). B. List of proteins
significantly upregulated in CPAM 2 and the possible pathways in which
they are involved, determined with the GO tool from PANTHER (GO
consortium, PANTHER, maintained by Thomas laboratory, University of
Southern California).

Additional file 4. Supplementary material and methods.
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