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Abstract

Background: Mosaic variegated aneuploidy (MVA) syndrome is a chromosomal instability disorder that leads to
aneuploidies of different chromosomes in various tissues. Type 1 MVA (MVA1) is caused by mutations in the
budding uninhibited by benzimidazoles 1 homolog beta (BUB1B) gene. The main clinical features of MVA1
syndrome are growth and mental retardation, central nervous system anomalies, microcephaly, and predisposition
to cancers. There have been no reports of hematopoietic stem cell transplantation (HSCT) in MVA patients.

Results: We report an 11-year old boy diagnosed with MVA1 syndrome. The BUB1B gene mutations c.498_
505delAAACTTTA and c.1288 + 5G > A were detected using the next generation sequencing (NGS) method. The
patient presented with cytopenia soon after birth, but remained stable until 9 years of age, when he developed
myelodysplastic syndrome associated with monosomy of chromosome 7. Due to severe dependence on blood
transfusions, a TCRαβ+/CD19+ depleted HSCT was performed from a matched unrelated donor (MUD) using a
treosulfan-based reduced intensity conditioning (RIC) regimen. The engraftment occurred, and no severe toxicity
was observed soon after the HSCT, but on day + 47, graft rejection was detected. It was followed by prolonged
pancytopenia and sepsis with multi-organ Enterococcus faecium infection, which led to the patient’s death on day
+ 156 after HSCT.

Conclusions: In conclusion, we demonstrate that RIC HSCT with TCRαβ+/CD19+ depletion was well tolerated and
resulted in complete hematologic recovery in our MVA1 patient, but, unfortunately, it was followed by rapid graft
rejection. This fact needs to be taken into consideration for HSCT in other MVA patients.

Keywords: Mosaic variegated aneuploidy syndrome, BUB1B gene., Hematopoietic stem cell transplantation.,
TCRαβ+/CD19+ graft depletion.

Background
Mosaic variegated aneuploidy (MVA) syndrome is a
group of rare disorders in which chromosomal instability
leads to aneuploidies (predominantly trisomies and
monosomies) of different chromosomes in various tis-
sues. Several genetic defects underlying MVA have been
described.
MVA type 1 (MVA1) (OMIM #257300) is an auto-

somal recessive disorder caused by biallelic mutations in

the budding uninhibited by benzimidazoles 1 homolog
beta (BUB1B) gene [1]. Budding uninhibited by
benzimidazole-related 1 (BUBR1) protein, which is
encoded by BUB1B gene, is involved in regulating the
mitotic spindle checkpoint during cell division, which
maintains the correct number of chromosomes [2, 3]. In
mice, full BUB1B gene knockout is known to be lethal in
embryogenesis [4]. The first MVA1 cases described were
caused by compound heterozygous mutations of the
BUB1B gene [1]. There is also a report of a group of pa-
tients with monoallelic BUB1B mutations, which are hy-
pothesized to be the cause of their MVA1 because it has
been demonstrated that these patients have decreased
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levels of BUB1B transcript and protein [5]. The clinical
features of MVA1 syndrome are growth retardation and
microcephaly (often detected prenatally using ultrasound
[6]), mental retardation, anomalies of the central ner-
vous system (mostly Dandy-Walker malformation),
mildly dysmorphic facial features, and predisposition to
cancer [1], [5], [7]. The most frequent malignancies as-
sociated with MVA syndrome are embryonal rhabdo-
myosarcoma, Wilms tumor, and acute lymphoid
leukemia (ALL), all of which have been reported to
manifest in early childhood [ [8, 9]]. The somatic hetero-
zygous mutations of the BUB1B gene have also been
found to be associated with the development of adult
cancers [10–12]. To date, there have been only several
reports of MVA1 patients with known genetic defects [1,
5, 6], and to our knowledge, there has been no experi-
ence with hematopoietic stem cell transplantation
(HSCT) in these patients.
Herein, we present our experience with HSCT in a pa-

tient with MVA1 complicated by myelodysplastic
syndrome.

Methods
The two novel mutations of the BUB1B gene were found
via whole exome sequencing performed using a next
generation sequencing (NGS) method. DNA was ex-
tracted from EDTA blood using a QIAamp DNA Mini
Kit (Qiagen; Hilden, Germany). Libraries were generated
according to the manufacturer’s protocols using Tru-
Sight One kits (Illumina; San Diego, CA, USA). Sequen-
cing was conducted on the NextSeq500 platform
(Illumina). An in-house custom analysis pipeline was
used to filter and prioritize variants. The annotations in-
cluded but were not limited to reference databases from
The Genome Aggregation Database (gnomAD), ClinVar
pathogenicity annotations, and Online Mendelian Inher-
itance in Man (OMIM) disorders as gene-based annota-
tions. The mutations were confirmed in the patient
using Sanger sequencing, and each mutation was de-
tected in a heterozygous state in the respective parent.
The function of the mutant proteins was predicted as
being pathological but was found not to have been re-
ported using searches of the Human Gene Mutation
Database and the relevant scientific literature.
Mutations of the NBN (nibrin) gene had previously

been excluded using Sanger sequencing. Karyotyping
was performed as previously described [13]. Fluorescent
in situ hybridization (FISH) analysis was performed
using a Vysis LSI D7S486/CEP7 (Abbott Laboratories;
Edmonds, WA, USA) DNA probe according to the man-
ufacturer’s instructions.
The lymphocyte subsets were assessed using standard

flow cytometry and monoclonal antibodies (Becton
Dickson; Franklin Lakes, NJ, USA) on BD FACSCanto II

(Becton Dickson). The levels of serum immunoglobulin
were measured using the nephelometry technique on a
BN ProSpec (Siemens; Berlin, Germany).
The anti-human leukocyte antigen (anti-HLA) anti-

bodies were assessed using a Luminex multiplex bead
array assay and Immucor (Norcross, GA, USA) according
to the manufacturer’s instructions. The hematopoietic
stem cell graft was derived from peripheral blood mono-
nuclear cell fraction (obtained from matched unrelated
donor using apheresis after a standard regimen of stem
cell mobilization with granulocyte colony-stimulating fac-
tor (G-CSF)). TCRαβ+ and CD19+ graft depletion was
performed using a CliniMACS Prodigy instrument (Milte-
nyi Biotec; Bergish Gladbach, Germany) according to the
manufacturer’s recommendations.
For neutrophil and platelet engraftment assessment

standard definitions were used [14].
To analyze donor chimerism, whole blood and bone

marrow (BM) cells with CD3+ and CD34+ fractions
were tested using real-time quantitative polymerase
chain reaction assessment of the insertion/deletion short
tandem repeats polymorphisms. The graft rejection was
confirmed by detecting more than 90% of the patient’s
cells in the CD34+ BM fraction.

Results
We report the case of a boy born in 2005 to healthy
nonconsanguineous parents and no relevant family his-
tory. At 2 months of age, the boy presented with
leukopenia (2.3 х 10*9/l) and thrombocytopenia (80 х
10*/l). Repeated BM investigations during the first year
of life revealed BM hypoplasia, two sequential cytogen-
etic tests demonstrated clones with monosomy 7 with
no other clonal anomalies. The patient remained stable
and was followed conservatively. At age 9, he developed
severe pancytopenia with a granulocytes level < 0.3 х
10*9/л, anemia, and thrombocytopenia and required
regular transfusions of red blood cells and platelets. A
BM aspirate investigation showed multilineage myelo-
dysplasia with 2–3% of blast cells and 50% of all cells
containing monosomy 7. Myelodysplastic syndrome
(MDS) which fitted the definition of refractory cytopenia
of childhood (RCC) [15] was diagnosed. At age 10, the pa-
tient was admitted to our Center. His phenotypic features
included microcephaly, growth retardation (height – 2nd
percentile, weight – 3rd percentile), facial anomalies
(frontal bossing, a triangular face, and micrognathia), mul-
tiple areas of skin café au lait hyperpigmentation, alopecia,
and mental retardation. Magnetic resonance imaging of
the brain detected the Dandy-Walker malformation.
Complete blood count and all lymphocyte subsets were
proportionally decreased, and dysgammaglobulinemia was
demonstrated (Table 1). Because of microcephalia, cytope-
nia and Slavic origin of the patient, Sanger sequencing on
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the NBN gene (Nijmegen breakage syndrome) was per-
formed, no mutations were found. The patient’s profound
cytopenia precluded correct interpretation of the diepoxy-
butane test due to low number of mitoses.
Although the patient’s underlying genetic defect was

unknown at the time, HSCT was considered as the
only option to cure the MDS. During his lifetime, the
patient received multiple blood transfusions, and posi-
tive anti-HLA antibodies were found. Before the
HSCT, rituximab (375 mg/m2) was given once per
week four times. It decreased the frequency of plate-
let transfusions, but patient remained cytopenic with
hypoplastic BM, with blast cells level 0,8-1,6%. The
conditioning regimen included treosulfan (30 g/m2),
fludarabin (150 mg/m2), and thymoglobulin (5 mg/kg).
According to the institutional protocol, the peripheral
stem cells from a 10/10 HLA matched unrelated
donor (MUD) after TCRαβ+/CD19+ graft depletion
procedure were infused. Following depletion the graft
contained: nuclear cells 4,33 х10*8/kg, CD34+ cells
9,4 х10*6/kg, CD3+ cells 5,1 х10*6/kg, TCRαβ+ cells
18 х10*3/kg.
Post-transplant immunosuppression consisted of ta-

crolimus from day − 1 (planned to be administrated till
day + 45). After the HSCT, the patient developed mild
treosulfan-related toxidermia and had a mild increase in
liver enzymes, which resolved after a short pause in the
tacrolimus therapy, but no signs of other organ toxicity.
The platelet engraftment occurred on day + 16 and the
neutrophil engraftment on day + 21 after the HSCT. The
maximum platelet and neutrophil counts after engraft-
ment were 129 х10*9/l and 0,72 х10*9/l, respectively.
On day + 30 after the HSCT, the patient had mixed BM
cell chimerism, with total of 48% of the donor cells, in

CD34+ − 4% of the patient’s cells, in CD3+ 88% of the
patient’s cells. On day + 47, graft rejection was detected,
followed by prolonged pancytopenia with absolute neu-
trophil count 0, high dependence on blood transfusions
(daily platelet and one in 2–3 days red blood cell transfu-
sions), and no response to hematopoietic stimulating
factors (G-CSF – filgrastim and thrombopoietin receptor
agonist – romiplostim). BM investigation demonstrated
aplastic features and no cells containing monosomy 7.
Interestingly, after the HSCT, the resolution of the pa-
tient’s alopecia was observed.
In parallel, whole exome sequencing was performed

using patient’s stored pretransplant blood sample. The
results obtained after the HSCT showed two heterozy-
gous mutations in the BUB1B gene: c.498_505delAAAC
TTTA and c.1288 + 5G > A. These mutations have not
been described previously, yet the frame shift
(c.498_505delAAACTTTA) and splice site (c.1288 +
5G > A) mutations were predicted to be pathogenic. In-
vestigation of the patient’s fibroblasts revealed a normal
karyotype and no cytogenetic abnormalities. Mutations
in the genes SAMD9 and GATA2, which are frequently
associated with monosomy 7 and MDS in early child-
hood [16, 17] were not detected by exome sequencing of
the patient’s pre-HSCT blood sample. Yet SAMD9L gene
was not tested.
After the graft rejection, a second transplantation from

another MUD was planned, but the patient developed
sepsis and multiorgan Enterococcus faecium infection
and had no response to a combination of antimicrobial
therapy and donor granulocyte transfusions. Unfortu-
nately, the patient died of infectious complications on
day + 156 after the HSCT.

Discussion
MVA1 is a rare condition caused by BUB1B mutations,
which were found in our patient in the compound het-
erozygous state. Although MVA1 patients are highly pre-
disposed to malignancies, to our knowledge, so far, there
has been only one report of myelodysplasia in an MVA1
patient [8]. The patient described by Jacquemont et al.
had severe cytopenia and signs of myelodysplasia in the
BM, which were detected in the first days of life, and
multiple trisomies and monosomies in the fibroblasts,
BM, and peripheral blood cells. At age three, that patient
developed acute lymphoid leukemia and died three
months later of the disease’s progression. Interestingly,
our patient had remained cytopenic for several years
with persistence of the clone with monosomy 7 and no
evidence of progression to acute leukemia. Therefore, in
our patient, the indications for HSCT were severe BM
aplasia and high dependence on transfusions of blood
components, rather than long-lasting monosomy 7 asso-
ciated myelodysplasia.

Table 1 Lymphocyte Subsets and Serum Immunoglobulin
Levels in MVA1 Patient

Patient’s levels Normal ranges

CD3+, х10a9/l 0.297 1.4–2,0

CD4+, х10a9/l 0.159 0.7–1.1

CD8+, х10a9/l 0.05 0.6–0.9

CD19+, х10a9/l 0.042 0.3–0.5

CD3-CD16 + CD56+, х10a9/l 0.063 0.1–1.3

IgA, g/l 3.62 0.9–1.9

IgM, g/l 2.66 0.8–1.9

IgG, g/l 5.79 8.7–11.7

Hemoglobina, g/l 57 115–140

Plateletsa, х10a,9/l 0 150–400

White blood cells, х10a9/l 0.42 6–9.8

Neutrophils, х10a9/l 0.02 1.5–8.5

Monocytes, х10a9/l 0.04 0.09–0.6
aminimal level before transfusion
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Despite the fact that his genetic defect was unknown
at the time, based on his clinical features and micro-
cephaly our patient was suspected to have had one of
the chromosomal instability syndromes. Hence, we per-
formed an HSCT with a reduced intensity conditioning
(RIC) regimen and a TCRαβ+/CD19+ graft depletion.
Importantly, after the HSCT, no significant toxicity was
observed, which would be expected in patients with
chromosomal instability syndromes [18]. Unfortunately,
on day + 47 after the HSCT, graft rejection occurred.
The graft rejection might have been caused by the RIC
being not immunoablative enough to clear patient’s re-
sidual lymphocytes. The persistence of the anti-HLA
antibodies were also considered to be a factor that con-
tributed to the graft rejection. In our previous study of
TCRαβ+/CD19+ depleted HSCT in patients with pri-
mary immunodeficiencies high incidence of graft rejec-
tion after RIC regimens with one alkylating agents was
observed [19]. We also have reported 3 of 15 patient
with Nijmegen breakage syndrome to reject the graft
after Fanconi anemia adopted conditioning regimen [20].
However, this group of patients was too small to evalu-
ate the role of depletion procedure in the graft failure.
Despite the clearance of monosomy 7 clone, after graft

rejection the patient failed to recover his hematopoiesis
and remained profoundly cytopenic for the next five
months. The explanation for this phenomenon could be
preexisted long-term BM aplasia with an exhaustion of
hematopoiesis, as well as prolonged infectious complica-
tions after the HSCT. We also consider the contribution
of defective function of the BM precursors, that carried
the BUB1B mutations. The important role of BUBR1 in
hematopoiesis has previously been demonstrated in the
BUB1B hypomorphic allele (H/H) mouse model [21].
Interestingly, although the patient had been considered
as having no obvious clinical signs of immunodeficiency
before the HSCT, his alopecia resolved after transplant-
ation, likely proving its autoimmune pathogenesis.
Cytogenetic anomalies were found in our patient’s

bone marrow cells, as they were in the hematopoietic
and somatic cells of the patients reported previously.
Therefore, we conducted a cytogenetic analysis of our
patient’s fibroblasts, which revealed no aneuploidy. This
fact can be explained by the variegation of the aneu-
ploidy in different cells in MVA1 patients [5].
A variety of primary immunodeficiencies and congenital

BM failure syndromes (predominantly with DNA repair
impairment), including Nijmegen breakage syndrome, Lig-
ase 4, Cernunnos, Rad50 deficiencies, Fanconi anemia,
and some others, combine the symptoms of microcephaly
and cytopenia [22, 23]. Most of these syndromes are char-
acterized by high predisposition to malignancies. In these
patients, HSCT is a well-established curative treatment
for immunodeficiency and/or BM failure, and it also has

been shown to reduce the risks of development or relapse
of lymphoid or myeloid malignancies [20]. Because the pa-
tients with the aforementioned syndromes frequently have
increased organ toxicity after myeloablative conditioning
due to the abnormal DNA repair, the use of RIC regimens
has demonstrated better survival after transplantation [18,
24]. However, the visceral toxicity of a conditioning regi-
men may be quite different in patients who have pheno-
typically overlapping, but genetically different,
chromosomal-instability syndromes, with some patients
tolerating well myeloablative regimens that are nearly full
dose [20]. Given this, it is critical to know the diagnosis
prior to the HSCT in order to choose a maximally mye-
loablative and a minimally toxic conditioning regimen, es-
pecially in the context of T-cell depletion, which confers a
higher risk of rejection in patients with fully or partially
preserved immunity. Thus, the next generation sequen-
cing is the method of choice for confirming diagnoses in
so variable a group of syndromes, as this case
demonstrates.

Conslusion
In conclusion, we report the first experience with an
HSCT in a patient with mosaic variegated aneuploidy 1
syndrome and myelodysplasia who had a good tolerance
for the reduced intensity conditioning regimen but who
unfortunately experienced graft rejection later.
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