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Abstract

Background: While extraocular muscles are affected early in myasthenia gravis (MG), but respond to treatment, we
observe a high incidence of treatment-resistant ophthalmoplegia (OP-MG) among MG subjects with African genetic
ancestry. Previously, using whole exome sequencing, we reported potentially functional variants which associated
with OP-MG. The aim of this study was to profile the expression of genes harbouring the OP-MG associated variants
using patient-derived subphenotype-specific ‘myocyte’ cultures.

Methods: From well-characterised MG patients we developed the ‘myocyte’ culture models by transdifferentiating
dermal fibroblasts using an adenovirus expressing MyoD. These myocyte cultures were treated with homologous
acetylcholine receptor antibody-positive myasthenic sera to induce muscle transcripts in response to an MG stimulus.
Gene expression in myocytes derived from OP-MG (n = 10) and control MG subjects (MG without ophthalmoplegia;

n = 6) was quantified using a custom gPCR array profiling 93 potentially relevant genes which included the putative
OP-MG susceptibility genes and other previously reported genes of interest in MG and experimental autoimmune
myasthenia gravis (EAMG).

Results: OP-MG myocytes compared to control MG myocytes showed altered expression of four OP-MG susceptibility
genes (PPP6R2, CANX, FAM136A and FAMG9A) as well as several MG and EAMG genes (p < 0.05). A correlation matrix of
gene pair expression levels revealed that 15% of gene pairs were strongly correlated in OP-MG samples (r > 0.78, p < 0.
01), but not in control MG samples. OP-MG susceptibility genes and MG-associated genes accounted for the top three
significantly correlated gene pairs (r = 0.98, p < 1x 10~ °) reflecting crosstalk between OP-MG and myasthenia
pathways, which was not evident in control MG cells. The genes with altered expression dynamics between
the two subphenotypes included those with a known role in gangliosphingolipid biosynthesis, mitochondrial
metabolism and the IGF1-signalling pathway.

Conclusion: Using a surrogate cell culture model our findings suggest that muscle gene expression and co-expression
differ between OP-MG and control MG individuals. These findings implicate pathways not previously considered in
extraocular muscle involvement in myasthenia gravis and will inform future studies.
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Background

Myasthenia gravis (MG) is a rare antibody-mediated
neuromuscular disease in which predominantly acetyl-
choline receptor (AChR) antibodies target the muscle
endplate resulting in fatigable weakness of skeletal mus-
cles. Antibody-mediated complement activation results
in muscle endplate damage and ultrastructural changes
in all muscle groups, including extraocular muscles
(EOMs) [1]. EOMs, which are particularly susceptible to
complement mediated damage in MG due to their rela-
tive deficiency of complement inhibitors and other fac-
tors, are commonly involved early in the disease but
typically respond to therapy [2, 3].

Though the incidence of MG in sub-Saharan Africa is
comparable to world figures [4], we observe a high fre-
quency of treatment-resistant ophthalmoplegia in this
region characterized by severe, persistent eye muscle
weakness, which we refer to as OP-MG [5]. In our clin-
ical experience, OP-MG most commonly affects subjects
with juvenile onset, but otherwise characteristic AChR
antibody-positive MG (i.e. generalized muscle weakness
which responds to treatment) [6]. The OP-MG subphe-
notype results in significant impairment of visual func-
tion and ranges from severe paresis of most EOMs to
complete paralysis of all EOMs (complete ophthalmople-
gia) with ptosis in severe cases. The pathogenesis of the
OP-MG subphenotype remains unknown.

We hypothesize that OP-MG might result from exces-
sive complement-mediated damage of muscle endplates
coupled with impaired regeneration in the EOMs [5].
Previously we found that a subset of OP-MG individuals
harbour functional regulatory region variants in the
decay accelerating factor (DAF or CD5S5) [7] and trans-
forming growth factor beta 1 (TGFBI) genes [8] which
lower their respective expression levels. Impaired upreg-
ulation of DAE a complement regulatory protein which
mitigates complement activation, and TGFB1, a promin-
ent myokine which also upregulates DAF expression in
the orbital environment [9], suggests that potentiated
complement mediated injury and altered healing of the
EOMs may contribute to OP-MG pathogenesis.

We also performed extended whole exome sequencing
(WES) in a well characterized cohort of OP-MG and
control MG individuals, all AChR antibody-positive and
differing only by the responsiveness of their EOMs to
standard therapy. This approach identified a number of
potentially functional OP-MG associated regulatory re-
gion variants which were more common in OP-MG
compared to control MG individuals [10]. The gene
list containing these candidate variants was filtered
and putative OP-MG susceptibility genes were priori-
tised based on whether their expression was detected
in a RNA microarray of normal human extraocular
muscle tissue [11].
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Because of the difficulty in obtaining relevant EOM
tissue, we developed a phenotype and MG disease spe-
cific muscle cell culture model through transdifferentia-
tion of primary dermal fibroblasts into myocytes. The
focus of the present study was to compare the expres-
sion of relevant genes in OP-MG vs control MG samples
using this model of the myotranscriptome. Relevant
genes included those harbouring OP-MG susceptibility
variants and additional genes differentially expressed in
MG or experimental autoimmune MG (EAMG) based
on published studies.

Material and methods

OP-MG and control MG definition

Sixteen individuals (10 OP-MG and 6 control MG) all
with African-genetic ancestry (black or mixed-African
ancestry as previously described [5, 10]) and generalized
AChR-antibody positive MG with prolonged follow-up
at the myasthenia gravis clinic at Groote Schuur
Hospital, University of Cape Town, South Africa do-
nated skin biopsies. OP-MG was defined as individuals
with otherwise characteristic generalized MG, but in
whom the EOMs remained treatment-resistant whereas
control MG individuals may have had typical EOM
weakness as part of their initial MG presentation, but
responded to therapy and have since remained free of
persistent extraocular muscle weakness [5, 8]. There was
no significant difference (p > 0.05) in black and mixed-Afri-
can ancestry proportions, age at MG onset, years of follow
up or age at skin biopsy between the OP-MG and control
MG groups. There was a higher proportion of female
subjects in the control MG compared to the OP-MG
group (100% vs 40%, p = 0.033) (Table 1).

Ethics and consent

The study was approved by the University of Cape Town
Health Sciences Faculty Research Ethics committee
(HREC 257/2012) and all individuals (or their parents if
< 18 years) signed informed consent to participate.

Table 1 Clinical characteristics of the 16 skin biopsy donors by
subphenotype

control MG OP-MG p value

female n (%) 6 (1) 4 (0.40) 0.033
male n (%) 0 6 (0.60)

M/A n (%) 4(0.67) 5 (0.50) 0633
B n (%) 2(033) 5 (0.50)

age at MG onset (yrs), mean (IQR) 21 (18-24) 18 (11-22) 0576
years of follow up, mean (IQR) 13 (5-10) 15 (10-17) 0679
age at skin biospy (yrs), mean (IQR) 31 (25-30) 30 (23-34) 0947

M/A mixed-African ancestry, B black/indigenous African ancestry, yrs. years, IQR
interquartile range. Continous data was compared with an unpaired Student’s
t-test while categorical data was compared with Fisher’s exact test
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Skin biopsies and primary dermal fibroblast culture

Skin punch biopsies (3 mm full thickness) were obtained
from the scapular area of each donor. The epidermis
and superficial dermal layer was separated from the sub-
cutaneous tissue, manually minced with surgical blades
and cultured under sterile coverslips (explant method)
in 35mm dishes with growth medium (high glucose
Dulbecco’s modified Eagle’s medium (DMEM) + 10%
foetal bovine serum + 1% penicillin/streptomycin (P/S))
until fibroblasts emerged.

Development of subphenotype-specific myocyte models
To compare gene expression between OP-MG and
control-MG subphenotypes, we developed a muscle cell
culture model for each subject. Briefly, 2 x 10° dermal fi-
broblasts (passage 4) were seeded in 6 cm dishes coated
with 0.1 mg/ml Matrigel® in 4 ml growth medium and
incubated overnight at 37 °C and 5% CO,. The next day
the fibroblasts, at 80—-90% confluency, were transduced
with a RGD fiber modified adenovirus containing a human
MyoD transgene and expressing a green fluorescent protein
(GFP) reporter (Ad(RGD)-MyoD-GFP) (VectorBiolabs,
Philadelphia, USA) at a multiplicity of infection (MOI) of
200. This achieved >90% transduction efficiency (%GFP+
fibroblasts determined by FACS analysis) (data not shown).
Transduced fibroblasts were maintained in differentiation
medium (DMEM + 5% horse serum + 1% P/S) and differ-
entiated for either 48 h (early muscle model) or 5 days (late
muscle model) to generate myocytes.

After 5days of differentiation, myocytes showed
morphological features of myogenic differentiation in-
cluding widespread immunostaining of cells with an
ME-20 antibody that recognizes all isoforms of sarco-
meric myosin (data not shown). However, contrary to
the skeletal muscle differentiation program in vivo,
not all trans-differentiated dermal fibroblasts exhibited
branched, multinucleated myotube formation. The term
‘myocyte’ rather than ‘myotube’ was therefore used to
refer to our muscle cell culture model since the morpho-
logical features of complete terminal differentiation were
not observed.

To mimic patient-specific MG-induced muscle
pathway responses in vitro, we stimulated 48 h and
5days differentiated myocyte cultures with 5% hom-
ologous treatment-naive AChR-antibody positive MG
sera for 24 h before harvesting RNA (early and late
MG model) (Fig. 1). The sera sample was sourced
from an AChR antibody-positive, treatment-naive
MG patient with generalized myasthenia and severe
extraocular muscle involvement.

RNA extraction, quantification and quality control
RNA was extracted from myocytes (n=64) using the
HighPure RNA extraction kit (Roche) according to the
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kit protocol. RNA concentration and purity were deter-
mined using the Nanodrop® ND1000 spectrophotometer
(Thermo Scientific). All RNA samples had concentra-
tions >40ng/pl and ratios within the recommended
ranges (A260/280 = 1.8-2.0; A260/230 > 1.7). RNA sam-
ple integrity was determined using the Agilent Bioanaly-
zer Eukaryote Total RNA Nano assay (Agilent). 57/64
samples had a RNA integrity number (RIN) >7 while
the remaining 7/64 samples had a RIN >5 which is still
acceptable for downstream qPCR analysis [12].

Custom gene expression array

Gene expression profiling of 93 genes and 3 RNA quality
controls using proprietary assays (primer sequences not
available) was performed using custom 384 well RT? Pro-
filer PCR array plates (Qiagen) at the Centre for Prote-
omic and Genomic Research (CPGR), Cape Town, South
Africa. Figure 2 shows the 93 genes profiled in the expres-
sion array grouped according to various categories which
is largely based on their association with the OP-MG sub-
phenotype and/or their involvement in biological pro-
cesses with potential relevance to OP-MG pathogenesis.
“Muscle markers” (n = 3) includes genes which are specific
to the myotranscriptome. “OP-MG genes” (n=17) in-
cludes susceptibility genes containing variants suggestive
of association with OP-MG (p < 0.055) previously identi-
fied by WES [10]. “OP-MG pathways” (n =20) includes
genes which are functionally related to the OP-MG genes
identified by WES. These pathway candidates were se-
lected largely from panels of differentially expressed genes
identified through muscle expression profiling studies in
passive and active transfer animal models of MG [13, 14],
with a particular focus on genes with differential expres-
sion patterns in EOM (as opposed to limb muscle). “MG/
autoimmune” (n = 23) includes genes harboring MG asso-
ciated variants identified through candidate gene and gen-
ome wide association studies and genes which were
differentially expressed in muscle tissue from MG patients
compared to healthy controls. “EAMG” (n = 11) includes a
selection of genes which were shown to be differentially
expressed in experimental autoimmune MG (EAMG)
across all muscle groups while “EAMG EOM” (n=9) in-
cludes a selection of genes from EAMG studies which were
differentially expressed in EOM as opposed to limb muscle.
“Reference genes” (n=10) includes a gene panel included
for normalization of target gene expression levels.

Quantitative real-time PCR

400ng total RNA was reverse transcribed to cDNA
using the RT? First Strand Kit (Qiagen) according to the
manufacturer’s specifications. Quantitative PCR was per-
formed on the cDNA samples using RT?> SYBR Green
Mastermix (Qiagen) on the 7900HT Fast Real-Time
PCR System (Applied Biosystems). A genomic DNA
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OP-MG (n=10) + control MG (n=6)

| Primary dermal ﬁbroblastsl

transduction

l adenovirus

differentiation
5% MGS (24hrs) = + = +
L . 48 hrs
early muscle model
L 1
early MG model
5% MGS (24hrs) - + N + 5 days
L ]
late muscle model
L 1

late MG model
Fig. 1 Experimental design. Primary dermal fibroblasts from OP-MG (n = 10) and control MG (n = 6) donors were transduced with MyoD-adenovirus
and differentiated into myocytes for either 48 h (early muscle model) or 5 days (late muscle model). At each differentiation time point, myocytes from
each subphenotype were either left untreated or stimulated with 5% MG sera for 24 h (MG model) before RNA was harvested for analysis of gene
expression by quantitative PCR

control (GDC), reverse transcription control (RTC) and
positive PCR control (PPC) were included for each sam-
ple. All the C, values for these controls were within the
acceptable reference ranges.

Selection of reference genes

Given the heterogeneity of the RNA samples (OP-MG
vs control MG subphenotype, potential variability in the
degree of myogenic differentiation, untreated vs MG sera

exposure) and in accordance with the Minimum Infor-
mation for Publication of Quantitative Real-Time PCR
Experiments (MIQE) guidelines [15], we screened a
panel of 10 reference genes for their expression stability
in all 64 RNA samples. These included 5 reference genes
commonly used in the literature in a wide variety of tis-
sue contexts (TFRC, HPRT1, B2M, ACTB, GUSB) and 5
reference genes which have validated expression stability
during normal and diseased cell culture models of

Genes

MYOD1, CHRNA1, MYOG

Category

muscle marker

HLA-DRBS5, HLA-DRB1, HLA-DQA1, HLA-DPB1, FAM136A, FAM8A1, DDX17,

QP=MG ST8SIA1, SPTLC3, KCTD9, ADNP, FAM69A, P2RY1, CANX, FBX09, SIPA1L3,
genes
PPP6R2
OP-MG TGFB1', HDAC4? SPTLC?? SPTLC2, SPHK1?, GM2A, BAGALNT1, UGCG,
o B4GALT6, ST3GAL5, ST3GAL6”, TRIM63?, FBXO32>, NCAM1, PITX2, PAX3, PAX7,
p Y NEU2%, SMAD2, SMAD3

CD55', CD59, IL6R®, IL6ST®, SLC2A4°, IGF1°, IGF1R°, MAP4K5°, AKT1°, AKT2,
MUSK, CHRNG, TNF, IL-20°, TNIP1’, CAV3®, CTSL2®, CTLA4"°, TNFRSF11A",
BAFF", vAv1", cD86"", LGALS1"

COL25A1°, IGFBP3?, TIMP13 U(:M2313 ANGPTL423 PDK423 PIK3R1%®,
GADD45A>*"3, ANKRD1>*"* GRNMB**" CYP4B1°

KLK7?, RBP7?, SMYD2*, SPP1*3, C3* ACSL5>'®, MGP*'®, FSD1°, RUNX1®

MG/autoimmune

E muscle markers

0O OP-MG gene/pathway
B MG/autoimmune

B EAMG

00 EAMG (EOM)

O reference genes

EAMG

EAMG (EOM)

reference genes | TFRC, HPRT1, B2M, ACTB, GUSB, RPLPO'®, TBP'®, PPIA'®, CSNK2A2"", AP3D1"

1. Nel et al., 2016. 2. Kaminski et al., 2016. 3. Zhou et al., 2014. 4. Heckmann et al., 2010. 5. Maurer et al., 2015. 6. Uzawa et al., 2016. 7. Gregersen et al., 2012.
8. lwasa et al., 2016. 9. Viken et al., 2007. 10. Renton et al., 2015. 11. Avidan et al., 2014. 12. Pal et al., 2010. 13. Fischer et al., 2005. 14. Kusner et al., 2010.
15. Liu et al., 2013. 16. Stern-Straeter et al., 2009. 17. Hildyard et al., 2014.

Fig. 2 Genes profiled in the expression array grouped according to categories. Expressed genes (Cq < 35 in all samples) are indicated in bold.
"OP-MG genes" refers to genes containing OP-MG susceptibility variants and “OP-MG pathways” refers to genes in OP-MG susceptibility pathways
[10], MG = myasthenia gravis, EAMG = experimental autoimmune myasthenia gravis, EOM = extraocular muscle
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myogenesis (RPLPO, TBB PPIA, CSNK2A2, AP3DI)
[16, 17]. Three methods were used to comprehensively
assess the stability of each reference gene: 2“4 method
[18], geNorm [19] and BestKeeper [20]. While the expres-
sion of all 10 candidate reference genes was similar across
all 64 samples (Cq SD < 1), subgroup analysis enabled the
identification of ideal candidates which is necessary to de-
tect small differences in target gene expression. The early
and late muscle models were used to assess the impact of
differentiation on reference gene stability. The impact of
MG sera treatment on reference gene stability was per-
formed separately for the early (48 h) and late (5 days)
models. The results of this analysis are summarized in
Additional file 1: Table S1 and Figure S1. For subpheno-
type comparisons in the muscle and MG models, target
gene expression levels were normalized to RPLPO and
B2M for the early model and AP3D1 and CSNK2A2 for
the late model. For comparisons between the early and
late muscle models, target gene expression levels were
normalized to GUSB and TFRC.

Data analysis

Differential CHRNA1 isoform expression in myocytes by
subphenotype

CHRNAI encodes the alpha subunit of the acetylcholine
receptor and is transcribed as two major muscle iso-
forms (P3A+ and P3A-), which are distinguished by the
inclusion or exclusion of an additional exon P3A. To de-
termine the expression ratio of these two CHRNAI tran-
scripts, standard curves were generated for two
CHRNAI primer pairs which amplified total CHRNAI
(P3A+ and P3A-) or only the P3A+ isoform. These were
used to interpolate the absolute CHRNAI transcript num-
bers and the ratio P3A+:(P3A+ and P3A-) was used to cal-
culate the % P3A+ isoform expression in myocytes
according to the method described by Masuda et al. [21].

Differential gene expression analysis

Raw C, values were analysed in Microsoft® Excel for
Mac. Genes with an undetermined Cq value in =1 sam-
ple were excluded from the analysis. Differential gene
expression between control MG and OP-MG was
assessed independently for the four sepafrate experimen-
tal models (early muscle model, early MG model, late
muscle model, late MG model) according to the method
described by Schmittgen and Livak [18]. Individual data
points were calculated as 2“9, where ACq = target gene
Cq - reference gene Cq. For each subphenotype group
(control MG and OP-MQ@G), the mean and SD of these
data points was used to calculate a fold change in gene
expression (mean OP-MG 2%/ mean control MG
272C%)  The 95% confidence interval (CI) of the fold
change was calculated using the Graphpad online calcu-
lator (https://www.graphpad.com/quickcalcs), which is
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based on Fieller’s theorem [22]. To examine the effect of
MG sera on gene expression, 2" values for each group
(untreated and MG sera treated) were compared accord-
ing to the same method for both the early and late
models. For normally distributed data the Student’s t-test
was used to assess whether gene expression differences
were statistically significant; unpaired two-tailed test for
OP-MG vs control MG comparisons and paired two-
tailed test for MG sera treated vs untreated comparisons
(since the treated and untreated sample were paired for
each individual). If data was not normally distributed
(Shapiro-Wilk normality test p < 0.05), the Mann-Whitney
test was used for comparisons. Uncorrected p values are
presented with significance set at p < 0.05.

Differential gene correlation analysis

As a secondary analysis, and after excluding genes with
an undetermined Cq value in >1 sample, the correlation
in AC, values for every possible target gene pair was de-
termined for each subphenotype group (control MG and
OP-MG) in each of the four separate experimental
models (early muscle model, early MG model, late
muscle model, late MG model) using RStudio version
1.0.136. The linear correlation between gene pairs was
calculated by computing a Pearson correlation co-effi-
cient (r) using the rcorr function in the Harrel Miscel-
laneous (Hmisc) R package. The statistical significance
of the linear correlation of gene pairs is approximated by
p values using the t or F distributions. P-values were ad-
justed using the Benjamini-Hochberg procedure (FDR <
0.01). To aid visualization of differential gene correlation
by subphenotype, correlation matrices were constructed
using the corrplot function in R.

Results

Gene expression in myocytes

Expressed genes were defined as those with Cq <35 in
all samples (Fig. 2, indicated in bold) (see Additional file 1:
Table S2). The following genes were expressed in both
early and late model myocytes: 3/3 muscle markers, 13/17
OP-MG genes (all selected genes excluding HLA genes),
17/20 genes in OP-MG pathways, 16/23 ‘MG/auto-
immune genes, 10/11 EAMG genes, 7/9 EAMG (EOM)
genes and 10/10 reference genes.

Myocytes express muscle specific genes

To validate the myotranscriptome and ensure that any
detectable differences in target gene expression levels
between control MG and OP-MG myocytes reflect the
subphenotypic myotranscriptome signatures and not
underlying differences in the degree of myogenic differ-
entiation, we sought to determine the levels of 3 ‘muscle
markers’ (CHRNAI, MYOD1, MYOG) at both early (48
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h) and late (5 days) differentiation time points. MYODI
and MYOG encode muscle-specific transcription factors.

In keeping with the transcriptional events which or-
chestrate myogenesis in vivo, myocytes express muscle
specific genes which are undetectable in dermal fibro-
blasts (data not shown) and show dynamic changes in
expression as differentiation progresses from 48 h to 5
days: MYODI ~2-fold downregulated (p<1x10™?),
MYOG ~160-fold upregulated (p<1x10~>) (Fig. 3a).
Importantly, there were no differences in the expression
of these three muscle specific genes between control
MG and OP-MG in both the early and late models indi-
cating a similar degree of myogenic differentiation in
both subphenotypes) (Fig. 3b).

In addition, the CHRNA1 P3A+:P3A- transcript ra-
tio in both control MG and OP-MG myocytes was
similar in both subphenotypes (=50%) (Fig. 3c) and to
in vivo muscle splicing patterns in normal [23] and
MG samples [24].

MG sera induces gene expression changes in the myocyte
model which are consistent with those in EAMG

To induce MG-specific pathway responses we stimulated
myocytes with 5% MG sera. The top upregulated tran-
scripts (> 1.5-fold) in response to MG sera were similar
in control MG and OP-MG myocytes in the early model
representing 48 h differentiated myotubes treated with
MG sera (ANGPTL4~4-fold upregulated p<1x10 2,
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SPHK1I =~ 2-fold upregulated p<0.01, SMAD3 ~2-fold
upregulated p < 0.05) (Fig. 4). In previous EAMG studies,
ANGPTL4 was the highest upregulated transcript across
3 muscle groups (limb, diaphragm and EOM) and also
expressed at the highest level in EOM [13, 14]. Although
SPHK1 was included in the array as an OP-MG pathway
gene, it was also found to be upregulated in EOM in
EAMG models [13, 14]. Taken together, this suggests
that our ‘MG model’ captures some of the gene expres-
sion signatures associated with EAMG and supports its
use as a model to profile OP-MG pathways. In contrast,
the 5-day differentiated model did not show any signifi-
cant gene expression changes in response to MG sera.

Control MG and OP-MG myocytes show different gene
expression profiles at basal levels and following exposure
to MG sera

We found the expression of 14 genes (from all 5 gene
categories) differed between OP-MG and control MG
myocytes (> 1.5-fold, p <0.041, Fig. 5 and Additional
file 1: Figure S2). Seven of the 14 differentially regulated
genes were either OP-MG genes (n =4: PPP6R2, CANX,
FAM136A and FAM69A) or genes in OP-MG pathways
(n=3: PAX3, SPTLC1, UGCG). Most differences in gene
transcript levels between the two subphenotypes were de-
tected in the early muscle model in response to MG
sera where ACSLS5, CANX, SPTLC1 and AKT2 genes

A Il control MG Il control MG (o]
@ OP-MG = OP-MG
10 = 10- S 100+
-3 n
o p<1x103t §; NS ?
< ~ — o
é 8 £ g ‘6.
2 3 3 75
c g NS NS
S e+ - £
= — — =
E S 6 2
S 4 2 h T 2 5 22 .
£ NS  p<ix10? 5 ’ - - =
5 B NS NS s e o
E 24 2 r L | %
e 3 o S 25
£ i ] I :
o 2 P
[ o
2 ® o ]

" CHRNA1 MYOD1 MYOG

CHRNA1 MYOD1 MYOG CHRNAT

na—
MYOD1 MYOG

control MG OP-MG

L ———

48 hrs untreated

Fig. 3 a and b. Expression of muscle gene transcripts in myocytes by subphenotype in early (48 h) and late (5 days) differentiation models. RNA
was extracted from untreated control MG (n = 6) and OP-MG (n = 10) myocytes after 48 h and 5 days of differentiation as described. For each
differentiation time point, expression levels of CHRNAT, MYODT and MYOG target genes were determined using relative quantification (2<%

5 days untreated 5 days untreated

where AC,, represents target gene Cq — average GUSB/TFRC Cq (the reference genes which were not influenced by prolonged differentiation of
myocytes). a Combined log, fold change for both subphenotypes (mean 2785°4 where AACq represents 5 days ACq - 48 h ACq) were compared
to assess differences in gene expression levels between the early and late differentiation models. b Comparison of gene expression levels (279
between subphenotypes in the early and late differentiation models. ¢ CHRNAT P3A+ isoform expression in OP-MG and control MG myocytes
represents in vivo muscle splicing signatures. RNA was extracted from control MG (n = 6) and OP-MG (n = 10) myocytes after 5 days of differentiation
as described. gPCR was performed using two sets of primers for CHRNAT: 1 set which recognizes total CHRNAT transcripts (P3A+ and P3A-) and
another which is specific for P3A+ transcripts. Cq values were used to interpolate absolute transcript numbers from standard curves, then
the ratio of P3A+:(P3A+ and P3A-) was calculated for each sample (expressed as %). Error bars show mean and SEM. Student’s t test was
used for comparisons where the data was normally distributed, otherwise Mann-Whitney test was used (t) where Shapiro-Wilk normality test p < 0.05
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Fig. 4 MG sera induces gene expression changes in patient-derived
myocytes. RNA was extracted from untreated and MG sera (MGS)
treated control MG (n=6) and OP-MG (n = 10) myocytes after 48 h
differentiation as described. Target gene expression levels were
determined using the custom gPCR gene expression array and a
fold change in gene expression was calculated (MG sera treated/
untreated) for each gene following normalization. Genes with
statistically significant (p < 0.05) fold changes (> 1.5 up or downregulated)
for both control MG and OP-MG are shown. Error bars show mean and
95% Cl. Student’s paired t-test was used to compare gene expression
levels (MGS vs untreated) for each subphenotype. *p < 0.05, ** p < 001,
#* p<1x10 2 1 datapoint has been excluded from the graph as it lies
beyond the y-axis limits

fold change in gene expression (MGS treated / untreated)

o

had lower expression in OP-MG myocytes compared
to controls (p <0.020) (Fig. 5).

The early MG model showed different gene expression
correlations by subphenotype

In addition to identifying differences in gene expression
levels between the cell models derived from the two sub-
phenotypes, we also investigated whether we could dis-
tinguish the two subphenotypes based on a correlation
analysis of gene pair expression levels. This is relevant as
differential gene co-expression, particularly in the absence
of detecting differentially expressed genes, can be an in-
formative signal to differentiate diseased from non-dis-
eased samples [25] which may identify novel disease-
related genes and pathways [26].

In the early MG model, we found that a subset of gene
pairs (n =328, 15%) were highly positively correlated
among OP-MG samples (r>0.77, unadjusted p <0.01),
both within and between gene categories (Fig. 6). These
positive intra- and inter-correlations of gene pair expression

Page 7 of 11

levels were evident as co-expression modules within a cor-
relation matrix of gene pair expression levels. In contrast,
control MG samples showed few, isolated, mostly negative
gene pair correlations.

We applied the Benjamini-Hochberg procedure to iden-
tify the most highly correlated gene pairs among OP-MG
samples (z =100, r > 0.90, FDR < 0.01). Cross-correlations
between OP-MG genes, genes in OP-MG pathways and
MG/autoimmune genes accounted for 59 of the gene pairs
in this group (37 OP-MG gene/pathway ~ MG/auto-
immune gene pairs and 22 OP-MG gene ~ OP-MG path-
way gene pairs). While the high number of correlated
OP-MG gene and OP-MG pathway genes is expected, the
fact that a larger number of OP-MG and MG/auto-
immune genes are correlated suggests that significant
crosstalk exists between OP-MG and MG pathways. For
example, correlations between OP-MG susceptibility
genes (CANX, DDX17, TGFBI) and MG genes (TNIPI,
AKT1) accounted for the top three significantly correlated
gene pairs (r>0.98, p<1x 10" °).

Discussion

Because of the difficulties in obtaining EOM tissue, we de-
veloped an in vitro muscle model, at two differentiation
time points, to compare MG subphenotype-specific
‘myo’-transcriptomic responses to active MG sera by in-
terrogating the expression of previously reported OP-MG
genes and genes in related pathways. The early differenti-
ation model (48 h) exhibited “myoblast type” gene expres-
sion patterns (high levels of MYODI) while the late
differentiation model (5days) model exhibited “myocyte
type” gene expression patterns (low levels of MYODI and
high levels of MYOG which induces the expression of ter-
minal differentiation genes) [27]. Using these models we
found evidence of different muscle transcript expression
dynamics between the OP-MG and control MG derived
myocytes which could represent functional differences in
gene expression networks.

We detected expression differences in four OP-MG
genes (identified by WES) between OP-MG and control
MG myocytes (Fig. 5; Additional file 1: Figure S2):
PPP6R2 and CANX in the early model and FAMI36A
and FAM69A in the late model. These genes harbour
putative 3'UTR OP-MG susceptibility variants which
may alter microRNA binding in OP-MG subjects to ei-
ther increase or decrease their expression levels. Not-
ably, OP-MG genes were prioritised based on their
expression in EOM since the OP-MG subphenotype spe-
cifically involves EOM rather than limb muscle. It may
be reasonable to conclude that our model may not have
been adequate to capture differences in the expression
of other OP-MG genes if this is only altered in the
unique EOM transcriptome. Similarly, of the EAMG
(EOM) genes included in the array due to their
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differential expression in EOMs in experimental MG
models [13, 14], only one (ACSL5) showed significant
changes in gene expression between the OP-MG and
control MG myocytes in response to MG sera. Overall,
the most informative model was the early muscle model
(48 h differentiation) in response to MG sera, which
showed more gene expression differences between the
two subphenotypes than the late model. This may sug-
gest that early myogenesis regenerative events are im-
paired in OP-MG individuals following MG induced
muscle damage.

Human EOMs, compared to other skeletal muscles,
have significantly more mitochondria due to their energy
requirements. In the early model the expression of
UCP3, which encodes a mitochondrial uncoupling pro-
tein, was significantly downregulated in OP-MG com-
pared to control MG myocytes. UCP3 may reduce the
production of reactive oxygen species (ROS) and protect
mitochondria under conditions of EAMG [13] which
suggests that lower basal levels of UCP3 in OP-MG
myocytes may impair this protective mechanism.

We previously interrogated CD55 (DAF) due to its
critical role in muscle endplate damage in myasthenia
[28] and its relatively lower expression in the EOMs
compared to limb muscle [3, 28]. Here we found an up-
regulation of CD55 expression in OP-MG myocytes
compared to control MG which was similar to our pre-
vious observations in lymphoblastoid cell lines from the
two subphenotypes; however, previously we showed that
CD55 was significantly repressed in response to lipopoly-
saccharide (representing an immune stimulus) in OP-MG
derived cells [7].

Despite the limitation of not having EOMs to interro-
gate, we found in OP-MG myocytes, but not control
MG, different patterns of gene co-expression (inferred
from expression correlation) between the unbiased
OP-MG genes/ OP-MG pathways and genes known to
be involved in MG/autoimmune and EAMG pathways.
For example, 53% (16 of 30) of the expressed OP-MG
genes showed significant cross-correlations of expression
levels (FDR <0.01) with 42% (11 of 26) of the EAMG
and MG/autoimmune genes in OP-MG myocytes (Fig. 6).
This observation of gene expression correlation across a
group of individuals (such as OP-MQG cases) may suggest
that these genes are functionally related [24], perhaps
within the same pathway(s).

For presentation of the gene co-expression data, we
grouped genes in the matrix (Fig. 6) by biological func-
tion or pathway. For example, ST8SIAI and SPTLC3
(OP-MG genes identified in our previous WES study
[10]) encode enzymes involved in gangliosphingolipid
biosynthesis and as such they were grouped with other
candidates in this pathway. This visual organisation
highlighted the fact that genes in the same pathway were
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strongly correlated in OP-MG, but not control MG. Al-
though gangliosphingolipids are not known to play a
role in MG they are critical in maintaining the integrity
of the muscle endplate through their formation of lipid
rafts which stabilize membrane bound receptors and sig-
naling molecules such as AChR [29], GP130 (or IL6ST)
[30], CD55 (DAF) and CD59 [31, 32]. The initial reac-
tion in sphingolipid synthesis requires the enzyme serine
palmitoyltransferase (SPT) which is encoded by SPTLCI,
SPTLC2, and SPTLC3 genes. Interestingly, SPTLC1 ex-
pression was lower in OP-MG compared to control MG
myocytes which may suggest that the sphingolipid syn-
thesis pathway is impaired in OP-MG myocytes in re-
sponse to M@ sera.

Several genes related to IGF1-signalling were included
in the array as this pathway has already been implicated
in MG [33], though not specifically considered in the
pathogenesis of EOM involvement in MG. Interestingly,
the expression of OP-MG genes strongly correlated with
several genes from this pathway (IGFI1, AKT1, AKT2).

Since we used a transdifferentiation model, the snap-
shot of the myotranscriptome obtained in both the
muscle- and MG-models may not accurately capture the
biological signal or the magnitude of putative signals of
altered gene/pathway function in OP-MG EOM:s, even if
the effect sizes are substantial. Nevertheless, the
MG-muscle model showed expression differences in sev-
eral functionally related genes between OP-MG and
controls which provides a basis for exploring these puta-
tive pathogenic pathways in future work.

Conclusion

Using a surrogate cell culture model our findings suggest
that muscle gene expression and co-expression differ be-
tween OP-MG and control MG individuals in response
to MG sera. These findings implicate pathways not pre-
viously considered in extraocular muscle involvement in
myasthenia gravis and will inform future studies.

Additional file

Additional file 1: Supplementary notes. Table S1. Summary of algorithms
used to assess reference gene expression stability in myocytes. () untreated
myocytes at early and late differentiation time points, (Il) early untreated
and MG sera (MGS) treated myocytes and (lll) late untreated and MGS
treated myocytes. Figure S1. Comparison of reference gene expression
between the early and late muscle and MG models. Table S2. Statistical
analysis of differentially expressed genes: Average Cq values and
assessment of data distribution (normality testing) for differentially
expressed genes. Figure S2. Additional genes with statistically
significant (p<0.05) expression differences between OP-MG and
control MG myocytes. (DOCX 436 kb)

Abbreviations

A: Delta; 3" UTR: Three prime untranslated region; AChR: Acetylcholine receptor;
Cq: Threshold cycle value; CV: Coefficient of variation; DMEM: Dulbecco’s
modified Eagle’s medium; EAMG: Experimental autoimmune MG; EDL: Extensor


https://doi.org/10.1186/s13023-019-1003-y

Nel et al. Orphanet Journal of Rare Diseases (2019) 14:24

digitorum longus; EOMs: Extraocular muscles; FACS: Fluorescence-activated cell
sorting; FDR: False discovery rate; GFP: Green fluorescent protein; HLA: Human
leukocyte antigen; MG: Myasthenia gravis; MIQE: Minimum information for
publication of quantitative real-time PCR experiments; OP-MG: Ophthalmoplegic
myasthenia gravis; P/S: Penicillin streptomycin; gPCR: Quantitative PCR; RIN: RNA
integrity number; ROS: Reactive oxygen species; SD: Standard deviation;
WES: Whole exome sequencing

Acknowledgements
The authors wish to thank Prof Jennifer Morgan (UCL) for her technical advice
in establishing the muscle model.

Funding

This study was jointly funded by the French Muscular Dystrophy Association
(AFM Téléthon) grant number 20049 (JMH), the National Research Foundation
of South Africa JMH, SP) and the South African Medical Research Council JMH).

Availability of data and materials
The datasets used and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Authors’ contributions

MN contributed to the study design and performed the laboratory work,
data analysis and drafting of the manuscript. SP supervised the laboratory
work and revised the manuscript. JMH contributed to the conception and
design of the study, the analysis and interpretation of the data and revised
the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Ethics approval for this study was obtained from the University of Cape
Town Health Sciences Faculty Research Ethics committee (REC 257/2012)
and all individuals (or their parents if < 18 years) signed informed consent to
participate.

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Neurology Research Group, Division of Neurology, E8-30, New Groote
Schuur Hospital, Department of Medicine, Faculty of Health Sciences,
University of Cape Town, Cape Town 7925, South Africa. 2Departmem of
Human Biology, Faculty of Health Sciences, University of Cape Town, Cape
Town 7925, South Africa. >Division of Neurology, E8-74, New Groote Schuur
Hospital, Department of Medicine, Faculty of Health Sciences, University of
Cape Town, Cape Town 7925, South Africa.

Received: 20 April 2018 Accepted: 21 January 2019
Published online: 29 January 2019

References

1. Rautenbach RM, Pillay K, Murray ADN, Heckmann JM. Extraocular muscle
findings in myasthenia gravis associated treatment-resistant
Ophthalmoplegia. J Neuro-Ophthalmology. 2017;37:414-7.

2. Europa TA, Nel M, Heckmann JM. Myasthenic ophthalmoparesis: time to
resolution after initiating immune therapies. Muscle Nerve. 2018;58:542-9.

3. Soltys J, Gong B, Kaminski HJ, Zhou Y, Kusner LL. Extraocular muscle
susceptibility to myasthenia gravis: unique immunological environment?
Ann NY Acad Sci. 2008;1132:220-4.

4. Mombaur B, Lesosky MR, Liebenberg L, Vreede H, Heckmann JM. Incidence
of acetylcholine receptor-antibody-positive myasthenia gravis in South
Africa. Muscle Nerve. 2015;51:533-7.

5. Heckmann JM, Nel M. A unique subphenotype of myasthenia gravis. Ann N
Y Acad Sci. 2018;1412:14-20.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Page 10 of 11

Heckmann JM, Hansen P, Van Toorn R, Lubbe E, Janse van Rensburg E,
Wilmshurst JM. The characteristics of juvenile myasthenia gravis among
south Africans. South African Med J. 2012;102:532-6.

Heckmann JM, Uwimpuhwe H, Ballo R, Kaur M, Bajic VB, Prince S. A
functional SNP in the regulatory region of the decay-accelerating factor
gene associates with extraocular muscle pareses in myasthenia gravis.
Genes Immun Nature Publishing Group. 2010;11:1-10.

Nel M, Buys J, Rautenbach R, Mowla S, Prince S, Heckmann JM. The African-
387 C>T TGFB1 variant is functional and associates with the ophthalmoplegic
complication in juvenile myasthenia gravis. J Hum Genet Nature Publishing
Group. 2016,61:307-16.

Cocuzzi ET, Bardenstein DS, Stavitsky A, Sundarraj N, Medof ME. Upregulation
of DAF (CD55) on orbital fibroblasts by cytokines. Differential effects of TNF-
beta and TNF-alpha. Curr Eye Res. 2001;23:36-92.

Nel M, Jalali Sefid Dashti M, Gamieldien J, Heckmann JM. Exome sequencing
identifies targets in the treatment-resistant ophthalmoplegic subphenotype of
myasthenia gravis. Neuromuscul Disord. 2017;27:816-25.

Fischer MD, Budak MT, Bakay M, Gorospe JR, Kjellgren D, Pedrosa-Domellf
F, et al. Definition of the unique human extraocular muscle allotype by
expression profiling. Physiol Genomics. 2005;22:283-91.

Fleige S, Pfaffl MW. RNA integrity and the effect on the real-time qRT-PCR
performance. Mol Asp Med. 2006,27:126-39.

Zhou Y, Kaminski HJ, Gong B, Cheng G, Feuerman JM, Kusner L. RNA
expression analysis of passive transfer myasthenia supports extraocular
muscle as a unique immunological environment. Investig Ophthalmol
Vis Sci. 2014;55:4348-59.

Kaminski HJ, Himuro K, Alshaikh J, Gong B, Cheng G, Kusner LL. Differential
RNA expression profile of skeletal muscle induced by experimental autoimmune
myasthenia gravis in rats. Front Physiol. 2016;7:524.

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The
MIQE guidelines: minimum information for publication of quantitative real-
time PCR experiments. Clin Chem. 2009;,55:611-22.

Stern-Straeter J, G a B, Hormann K, Kinscherf R, Goessler UR. Identification of
valid reference genes during the differentiation of human myoblasts. BMC
Mol Biol. 2009;10:66.

Hildyard JCW, Wells DJ. Identification and Validation of Quantitative PCR
Reference Genes Suitable for Normalizing Expression in Normal and
Dystrophic Cell Culture Models of Myogenesis. PLoS Curr. 2014;6:1-23.
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative
CT method. Nat Protoc. 2008;3:1101-8.

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al.
Accurate normalization of real-time quantitative RT-PCR data by geometric
averaging of multiple internal control genes. Genome Biol. 2002;3:
RESEARCHO0034.

Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable
housekeeping genes, differentially regulated target genes and sample
integrity: BestKeeper--excel-based tool using pair-wise correlations.
Biotechnol Lett. 2004;26:509-15.

Masuda A, Shen X-M, Ito M, Matsuura T, Engel AG, Ohno K. hnRNP H
enhances skipping of a nonfunctional exon P3A in CHRNAT and a
mutation disrupting its binding causes congenital myasthenic syndrome. Hum
Mol Genet. 2008;17:4022-35.

Fieller EC. The biological standardization of insulin. Suppl to J R Stat Soc.
1940;7:1-64.

MacLennan C, Beeson D, Vincent A, Newsom-Davis J. Human nicotinic
acetylcholine receptor alpha-subunit isoforms: origins and expression.
Nucleic Acids Res. 1993;21:5463-7.

Guyon T, Levasseur P, Truffault F, Cottin C, Gaud C, Berrih-Aknin S. Regulation
of acetylcholine receptor alpha subunit variants in human myasthenia gravis.
Quantification of steady-state levels of messenger RNA in muscle biopsy using
the polymerase chain reaction. J Clin Invest. 1994,94:16-24.

Ho JWK, Stefani M, Dos Remedios CG, Charleston MA. Differential variability
analysis of gene expression and its application to human diseases. Bioinformatics.
2008;24:390-8.

Choi JK, Yu U, Yoo OJ, Kim S. Differential coexpression analysis using
microarray data and its application to human cancer. Bioinformatics.
2005;21:4348-55.

Bentzinger CF, Wang YX, M a R. Building muscle: molecular regulation of
myogenesis. Cold Spring Harb Perspect Biol. 2012;4:1-16.

Howard JF. Myasthenia gravis: the role of complement at the neuromuscular
junction. Ann N'Y Acad Sci. 2018;1412:113-28.



Nel et al. Orphanet Journal of Rare Diseases

29.

30.

32.

33.

(2019) 14:24

Gallegos CE, Pediconi MF, Barrantes FJ. Ceramides modulate cell-surface
acetylcholine receptor levels. Biochim Biophys Acta. 2008;1778:917-30.
Yanagisawa M, Nakamura K, Taga T. Roles of lipid rafts in integrin-
dependent adhesion and gp130 signalling pathway in mouse embryonic
neural precursor cells. Genes Cells. 2004;9:801-9.

Ohmi Y, Tajima O, Ohkawa Y, Mori A, Sugiura Y, Furukawa K, et al. Gangliosides
play pivotal roles in the regulation of complement systems and in the
maintenance of integrity in nerve tissues. PNAS. 2009;106:22405-10.
Ohmi Y, Tajima O, Ohkawa Y, Yamauchi Y, Sugiura Y, Furukawa K, et al.
Gangliosides are essential in the protection of inflammation and
neurodegeneration via maintenance of lipid rafts: elucidation by a
series of ganglioside-deficient mutant mice. J Neurochem. 2011;116:
926-35.

Maurer M, Bougoin S, Feferman T, Frenkian M, Bismuth J, Mouly V, et al. IL-6
and Akt are involved in muscular pathogenesis in myasthenia gravis. Acta
Neuropathol Commun. 2015;3:1-14.

Page 11 of 11

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Material and methods
	OP-MG and control MG definition
	Ethics and consent
	Skin biopsies and primary dermal fibroblast culture
	Development of subphenotype-specific myocyte models
	RNA extraction, quantification and quality control
	Custom gene expression array
	Quantitative real-time PCR
	Selection of reference genes
	Data analysis
	Differential CHRNA1 isoform expression in myocytes by subphenotype
	Differential gene expression analysis
	Differential gene correlation analysis


	Results
	Gene expression in myocytes
	Myocytes express muscle specific genes
	MG sera induces gene expression changes in the myocyte model which are consistent with those in EAMG
	Control MG and OP-MG myocytes show different gene expression profiles at basal levels and following exposure to MG sera
	The early MG model showed different gene expression correlations by subphenotype

	Discussion
	Conclusion
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

