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Abstract

Background: MicroRNAs (miRNAs) have been associated with the Hirschsprung disease (HSCR) pathogenesis,
however, the findings are still inconclusive. We aimed to investigate the effect of miRNA-206 and its targets,
fibronectin 1 (FN1), serum deprivation response (SDPR), and paired box 3 (PAX3) expressions on multifactorial HSCR in
Indonesia, a genetically distinct group within Asia.

Methods: We determined the miRNA-206, FN1, SDPR and PAX3 expressions in both the ganglionic and aganglionic
colon of HSCR patients and control colon by quantitative real-time polymerase chain reaction (qRT-PCR).

Results: Twenty-one sporadic HSCR patients and thirteen controls were ascertained in this study. The miRNA-206
expression was up-regulated (2-fold) in the ganglionic colon and down-regulated (0.5-fold) in the aganglionic colon
compared to the control group (ΔCT 12.4 ± 3.0 vs. 14.1 ± 3.9 vs. 13.1 ± 2.7), but these differences did not reach
significant levels (p = 0.48 and p = 0.46, respectively). Interestingly, the FN1 expression was significantly increased in
both the ganglionic (38-fold) and aganglionic colon (18-fold) groups compared to the control group ΔCT 5.7 ± 3.0
vs. 6.8 ± 2.3 vs. 11.0 ± 5.0; p = 0.001 and p = 0.038, respectively). Furthermore, the expressions of SDPR were similar in
the ganglionic, aganglionic and control colon groups (ΔCT 2.4 ± 0.6 vs. 2.2 ± 0.4 vs. 2.1 ± 0.6; p = 0.16 and p = 0.39,
respectively), while no change was observed in the PAX3 expression between the ganglionic, aganglionic, and
control colon groups (ΔCT 3.8 ± 0.8 vs. 4.1 ± 0.8 vs. 3.7 ± 1.1; p = 0.83 and p = 0.44, respectively).

Conclusion: Our study is the first report of aberrant FN1 expressions in the colon of patients with HSCR and
supplies further insights into the contribution of aberrant FN1 expression in the HSCR pathogenesis.
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Background
Hirschsprung disease (HSCR: MIM# 142623) is a com-
plex genetic disorder characterized by the absence of
ganglion cells in the intestines, resulting in a functional
obstruction in children. HSCR is classified as follows:
short-segment HSCR, long-segment HSCR, and total co-
lonic aganglionosis [1, 2]. The incidence of HSCR varies
among ethnic groups with 1.5, 2.1, and 2.8 cases per
10,000 live births in European, African and Asian ances-
try cases, respectively [1, 2].
At least 15 genes have been associated with the patho-

genesis of HSCR, with the RET gene as primarily

responsible for HSCR [1, 2]. However, the majority of
those genes make minor contributions to HSCR [3–5].
Recent studies have proposed some microRNAs (miRNAs)
targets contribute important roles in the pathogenesis of
HSCR, but the findings are still inconclusive [6–8].
miRNA is a small non-coding RNA that deregulates gene
expression at the posttranscriptional level. It is stable and
easily measureable in the patients’ tissue and blood speci-
mens, including HSCR patients’ colon [6–8].
miRNA-206 has been shown to be down-regulated and

targeted three genes, named fibronectin 1 (FN1), serum
deprivation response (SDPR), and paired box 3 (PAX3),
in HSCR patients in Chinese population [7]. In addition,
some genetic differences might exist among Asian popu-
lation [9] and our previous study revealed that the im-
pact of SEMA3 rs11766001 variant differs among ethnic
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groups[10]. Therefore, we aimed to investigate the ex-
pressions of miRNA-206 and its targets, FN1, SDPR, and
PAX3, in HSCR patients in Indonesia, a genetically dis-
tinct group within Asia.

Material and methods
Patients
This study was conducted at Dr. Sardjito Hospital, a re-
ferral and academic hospital in Yogyakarta, Indonesia.
All children with the age of < 18 years old with diagnosis
of HSCR according to clinical findings, contrast enema

and histopathology were involved in this study, except
those that had low quality of total RNA [4, 5, 10–12].
The ganglionic and aganglionic colon of HSCR pa-

tients were collected at definitive surgery, while the con-
trol colon samples were obtained at stoma closure from
anorectal malformation patients [12].
A written informed consent was signed by the HSCR

patients’ and control parents to ascertain this study. The
Institutional Review Board of the Faculty of Medicine,
Public Health and Nursing, Universitas Gadjah Mada/
Dr. Sardjito Hospital gave approval for this study (KE/
FK/786/EC/2015).

Total RNA isolation and quantitative real-time polymerase
chain reaction (qRT-PCR)
The miRCURY™ RNA Isolation Kit-Tissue (Exiqon A/S,
Denmark) was used to extract the total RNA from colon
tissue. Subsequently, the total RNA was measured using
a NanoDrop 2000 Spectrophotometer (Thermo Scien-
tific, Wilmington, DE, USA). Only high quality RNAs
with the OD260/280 ratios of 1.8 to 2.0 were utilized for
the subsequent experiment.
The qRT-PCR was performed to determine the expres-

sion of miRNA-206, FN1, SDPR, and PAX3 using the
BioRad CFX Real-Time PCR System (California, USA),
the Universal cDNA Synthesis Kit II (Exiqon A/S,
Denmark), ExiLENT SYBR® Green Master Mix Kit (Exi-
qon A/S, Denmark), and miRCURY™ LNA™ Universal RT
microRNA PCR System (Exiqon A/S, Denmark). U6 small
nuclear RNA (snRNA) served as a control for analysis of
miRNA-206 expression, while glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was utilized as a reference gene

Table 1 Clinical characteristics of Indonesian HSCR patients
involved in this study

Characteristic n (%); months ± SD

Gender

Male 12 (57)

Female 9 (43)

Aganglionosis type

Short 19 (90)

Long 2 (10)

Total colon aganglionosis 0

Age at diagnosis 14.3 ± 31.2

Colostomy 5 (28)

Age at definitive surgery 22.1 ± 34.1

Definitive surgery

Transanal endorectal pull-through 16 (76)

Duhamel 3 (14)

Soave 2 (10)

Fig. 1 The miRNA-206 expression was up-regulated (2-fold) in the ganglionic colon and down-regulated (0.5-fold) in the aganglionic colon
compared to the control group, but these differences did not reach significant level
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for analysis of FN1, SDPR, and PAX3 expression. All
qRT-PCR reactions were performed in duplicate.
The hsa-miRNA-206 and U6 snRNA primers were

5’-ACGAGTTTAGAGCCGGATAGCCACACAC-3′
(RT), 5’-TGACGAGTTTAGAGCCGGATAG-3′ (for-
ward), and 5’-GCGTTGTCTGGAATGTAAGGAAGT
-3′ (reverse); and 5’-CTCGCTTCGGCAGCACA-3′
(forward) and 5’-AACGCTTCACGAATTTGCGT-3′
(reverse), respectively [13], while the primer sequence
for FN1, SDPR, PAX3, and GAPDH were 5′-CAAG
CCAGATGTCAGAAGC-3′ (forward) and 5′-GGAT
GGTGCATCAATGGCA-3′ (reverse); 5′-AGTCACGGT
GCTCACGCTCC-3′ (forward) and 5′- GTTGCTGGT
GGAGGCCTGGT-3′ (reverse); 5'-ACCACCTTCA-
CAGCAGAACA-3' (forward) and 5'-CAGCTTG
CTTCCTCCATCTT-3' (reverse); and 5′-GCACCGTCA
AGGCTGAGAAC-3′ (forward) and 5′-TGGTGAAGA
CGCCAGTGGA-3′ (reverse), respectively [12, 14–17].
The Livak (2-ΔΔCT) method was used to analyze the

miRNA-206, FN1, SDPR, and PAX3 expression level
[18].

Statistical analysis
The miRNA-206, FN1, SDPR, and PAX3 expressions
were determined as mean values ± standard deviation
(SD) and t-tests were used to determine any statistical

differences between the ganglionic and aganglionic colon
of HSCR patients and control groups. A p-value < 0.05
was considered statistically significant.

Results
We obtained twenty-one colon samples from sporadic
non-syndromic HSCR patients, of whom 12 and 9 were
males and females, respectively, and thirteen colon spec-
imens from non-HSCR patients. Most (90%) patients
had short-segment HSCR and underwent transanal
endorectal pull-through (76%) (Table 1).
Although the miRNA-206 expression was up-regulated

(2-fold) in the ganglionic colon and down-regulated
(0.5-fold) (Fig. 1) in the aganglionic colon compared to the
control group (ΔCT 12.4 ± 3.0 vs. 14.1 ± 3.9 vs. 13.1 ± 2.7),
but these differences did not reach significant levels
(p = 0.48 and p = 0.46, respectively) (Table 2).
Interestingly, the FN1 expression was significantly

up-regulated in both the ganglionic (38-fold) and agan-
glionic colon (18-fold) (Fig. 2) groups compared to the
control group (ΔCT 5.7 ± 3.0 vs. 6.8 ± 2.3 vs. 11.0 ± 5.0;
p = 0.001 and p = 0.038, respectively) (Table 3).
Furthermore, the expressions of SDPR were similar in

the ganglionic, aganglionic and control colon groups
(ΔCT 2.4 ± 0.6 vs. 2.2 ± 0.4 vs. 2.1 ± 0.6; p = 0.16 and
p = 0.39, respectively) (Table 4), while no change was

Table 2 The miRNA-206 expression in both the ganglionic and aganglionic colon of HSCR patients and control colon

ΔCT ± SD ΔΔCT (95% CI) 2-ΔΔCT (Fold change) p-value

Ganglionic colon 12.4 ± 3.0 −0.8 (−3.0–1.4) 2.0 0.48

Aganglionic colon 14.1 ± 3.9 1.0 (− 1.7–3.6) 0.5 0.46

Control colon 13.1 ± 2.7

Fig. 2 The FN1 expression was increased in both the ganglionic (38-fold) and aganglionic colon (18-fold) groups compared to the control group,
with p-value of 0.001 and 0.038, respectively. *, p < 0.05
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observed in the PAX3 expression between the ganglionic,
aganglionic, and control colon groups (ΔCT 3.8 ± 0.8 vs.
4.1 ± 0.8 vs. 3.7 ± 1.1; p = 0.83 and p = 0.44, respectively)
(Table 5).

Discussion
We describe new data on the miRNA-206 expression in
Indonesian HSCR patients. We were unable to find evi-
dence of the impact of miRNA-206 in the pathogenesis of
HSCR in Indonesian population, although its expression
was ~ 2-fold up-regulated and ~ 0.5-fold down-regulated
(Fig. 1) in the ganglionic and the aganglionic colon of
HSCR patients, respectively, compared to the control
colon. These results are different with previous report [7].
It has been shown that the miRNA expression significantly
differed between two populations, CEU (Utah residents
with northern and western European ancestry) and YRI
(Yoruba people from Ibadan, Nigeria) [19]. In addition,
miRNA-26a expression was also different between the
prostate cancer cell lines derived from African American
ancestry and those derived from Caucasian ancestry [20].
Interestingly, the population differences in miRNA expres-
sion are affected by genetic variants [19]. Therefore, the
miRNA-206 expression differences between previous re-
port and our study might relate to Indonesian genetic
structure ethnicity [9, 10].
The down-regulation of miRNA-206 has been hypoth-

esized to be involved in the pathogenesis of HSCR pa-
tient through the SDPR up-regulation resulting in the
deformation of the caveolae of neural crest cells in the
intestines [7]. Our study reveals a new evidence oppos-
ing this hypothesis by providing data from a population
genetically different from previous study [7]. However,
our results should be interpreted with some caution
since our study had a different approach from the previ-
ous report [7]; we determined the miRNA-206 expres-
sion in the colon tissue using RT-PCR only (vs. they also
performed in vitro study employing the human 293 T
and SH-SY5Y cell lines). Also, it should be noted the

main weakness of our study is the small sample size,
which suggests that a larger sample size needs to be in-
volved to clarify and confirm our results.
Although several miRNAs have been shown to have a

role in HSCR pathogenesis, however, the evidence for
actual etiology remains inconclusive [6–8]. Therefore, in
the meanwhile, it is always challenging to determine
which miRNAs have the strongest impact on the HSCR
pathogenesis. Those miRNAs may serve as potential bio-
markers and/or molecular therapy for patients with HSCR
in the future since the miRNAs are stable and easily mea-
sureable in the patients’ tissue and blood specimens.
Moreover, our study showed that the expression of

PAX3 did not differ between the HSCR and the control
groups. PAX3 has been associated with syndromic HSCR,
i.e. Waardenburg syndrome [21]. Our cohort patients are
non-syndromic HSCR, therefore, it might be important to
conduct a study involving the syndromic HSCR to clarify
the results.
Intriguingly, the expression of FN1 was strongly

up-regulated in both the ganglionic and aganglionic colon
of HSCR patients compared to the control colon. To the
best of our knowledge, this report is the first study of ab-
errant FN1 expressions in the colon of HSCR patients. It
has been shown that FN1 is up-regulated by enteric glial
cells in the proliferating intestinal epithelial cells [22].
HSCR is a developmental defect of the enteric nervous
system (ENS). HSCR pathogenesis might involve the com-
promised condition of genes responsible for gangliogenesis
of the ENS [1–4] and/or their interactions [1, 2, 5, 23]. Fur-
thermore, integration of different pathways synchronizing
neurogenesis and gliogenesis is also important for the
proper development of ENS and defects in any of these sig-
naling elements might result in HSCR [24, 25]. Gui et al.
showed that GDNF stimulates neuronal differentiation,
while NRG1 strongly induces the glial differentiation of en-
teric neural crest cells (ENCCs) [24], whereas Ngan et al.
revealed that Ptch1 knockout in mouse ENCCs promotes
up-regulated Dll1 expression and stimulates the Notch

Table 3 The FN1 expression in both the ganglionic and aganglionic colon of HSCR patients and control colon

ΔCT ± SD ΔΔCT (95% CI) 2-ΔΔCT (Fold change) p-value

Ganglionic colon 5.7 ± 3.0 −5.3 [− 8.2 – (−)2.3] 38 0.001*

Aganglionic colon 6.8 ± 2.3 −4.1 [− 8.1 – (−)0.2] 18 0.038*

Control colon 11.0 ± 5.0

*, p < 0.05 is considered statistically significant

Table 4 The SDPR expression in both the ganglionic and aganglionic colon of HSCR patients and control colon

ΔCT ± SD ΔΔCT (95% CI) 2-ΔΔCT (Fold change) p-value

Ganglionic colon 2.4 ± 0.6 0.3 (−0.1–0.8] 0.8 0.16

Aganglionic colon 2.2 ± 0.4 0.2 (− 0.2–0.6) 0.9 0.39

Control colon 2.1 ± 0.6
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signaling, resulting in a premature gliogenesis and reduced
ENCC progenitors in intestines [25]. Therefore, further in
vitro assay of FN1 knockdown in primary culture of gan-
glion (mixture of neurons and glial cells) are necessary to
see the effect of FN1 knockdown on the proliferation, dif-
ferentiation and survival of both neurons and glial cells,
and the balance of neurogenesis and gliogenesis. Unfortu-
nately, we do not have any data on in vitro assay of FN1
knockdown in primary culture of ganglion due to resource
limitations in our laboratory.

Conclusion
Our study is the first report of aberrant FN1 expressions
in the colon of patients with HSCR and supplies further
insights into the contribution of aberrant FN1 expres-
sion in the HSCR pathogenesis.
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