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Abstract

Background: SLIT2 is a protein ligand for the Roundabout (ROBO) receptor and was found to play a major role in
repulsive midline axon guidance in central nervous system development. Based on studies utilizing knockout
models, it has been postulated that SLIT2 is important for preventing inappropriate axonal routing during
mammalian optic chiasm development.

Methods: Case report.

Results: Here, we report a case of congenital myopia, anisometropia, and obesity in a patient with a SLIT2 point
mutation. Examination of the patient’s skin biopsy revealed abnormalities in elastin and collagen fibrils that suggest
an underlying connective tissue disorder. Structural modeling placed the novel mutation (p.D1407G) in the EGF-like
domain 8 and was predicted to affect interactions with SLIT2 binding partners.

Conclusions: To the authors’ knowledge, this is the first report of a SLIT2 variant in the context of these ocular
findings.
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Background
Myopia is the most common ocular disorder.
High-grade myopia is a leading cause of visual impair-
ment and blindness worldwide, particularly due to asso-
ciated comorbidities that include retinal detachment,
localized retinal degeneration, premature cataract and
glaucoma. Multiple genetic syndromes with extraocular
findings manifest with myopia as a clinical feature, in-
cluding the autosomal dominant connective tissue disor-
ders Marfan syndrome and Stickler syndromes type 1
and 2, all of which can be traced back to defects in fibril-
lin, COL2A1, and COL11A1 genes, respectively [1].
Non-syndromic high-grade myopia is frequently early

onset and congenital. Congenital myopia is generally
regarded as a multi-factorial polygenic disorder. The role
of genetic factors in the development of non-syndromic
congenital myopia is not clearly understood due to the
wide clinical spectrum and genetic heterogeneity of this
condition. Multiple twin studies demonstrated evidence
of the heritability of myopia, including increased con-
cordance of refractive error and refractive components
(axial eye length, corneal curvature, lens power, anterior
chamber depth) in monozygotic twins compared with
dizygotic twins [2]. The estimated heritability estimates
from twin studies range from 0.5 to 0.96. The chance of
an individual having myopia if their sibling is affected,
expressed as a ratio to the general population, is approxi-
mately 4.9 to 19.8 for siblings for high-grade myopia (− 6.00
spherical D or greater), and approximately 1.5 to 3 for
low-grade or common myopia (approximately − 1.00 to
− 3.00 spherical D), suggesting the presence of genetic
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risk factors for both high-grade myopia and low-grade
myopia [3].
Additionally, multiple genetic loci associated with my-

opia are identified. The largest linkage scan to date for
familial high-grade myopia utilized whole exome se-
quencing data from 254 families from five independent
sites, demonstrating linkage replication of the high my-
opia loci MYP1, MYP3, MYP6, MYP11, MYP12, and
MYP14, and identifying a novel locus at chromosome
9q34.11 [3, 4]. Other studies have identified implicated
genes. For example, autosomal-recessive high-grade my-
opia was reported in a large consanguineous Israeli Bed-
ouin kindred. Genetic analysis and sequencing of the
exons of six genes identified a point mutation c.1523G >
T in the exon 10 of the LEPREL1 gene [5]. The
uromodulin-like 1 (UMODL1) gene, which was previ-
ously prioritized during a whole-genome case-control
association analysis in high-myopia Japanese patients,
has been found to have one significant SNP within its
frequent recombinant region, supporting the gene’s po-
tential role as a disease susceptibility gene. A case con-
trol study of mixed ethnicities showed an association
between myopia and 2 SNPs in the collagen 2 alpha 1
gene (COL2A1), which maps to chromosome 12q13.11
and has been associated with familial Stickler syndrome
type 1. A retrospective analysis of patients with type II
collagenopathy chondrodysplasia further revealed that
over 85% are myopic, suggesting that myopia may result
from defects in type II collagen in these cases [4]. These
studies underscore the inherent complexity of myopia
and the potential genetic factors contributing to refract-
ive error.
The SLIT2 protein is a major ligand for the Round-

about (ROBO) receptor and was initially found to play a
major role in repulsive midline axon guidance in CNS
development [6–10]. In humans, SLIT Homolog 2
(SLIT2), was mapped to chromosome 4p15.2 [6, 7]. In
healthy individuals, SLIT2 is expressed in a wide variety
of tissues, such as connective and adipose tissue, heart,
brain, eye, vasculature, and kidney. SLIT/ROBO paired
signaling is now known to be critical for a wide variety
of morphogenetic processes, such as chemotaxis, angio-
genesis, kidney and cardiac development. It has also
been shown to impede the pathologic formation of
blood vessels [11–15]. SLIT2 is also now known to be
important for the establishment of the polarity of newly
differentiated retinal ganglion cells (RGC) along the
optic pathway [16]. Further, the full-length SLIT2 pro-
tein (180 kDa) is cleaved into a 130 kDa N-terminal
fragment (termed SLIT2-N) and a 50 kDa C-terminal
fragment (SLIT2-C). The SLIT2-C fragment has been
found to play a key role in regulating glucose homeostasis
and energy expenditure in adipocytes by activating
PKA-dependent signaling pathways [17]. Human mutations

in SLIT2 have been previously-identified in patients with
congenital abnormalities of the kidney and urinary tract
(CAKUT) and recurrent mutations have been detected in
patients with small-cell lung cancer [18, 19]. In this case
study, we report a novel tetrad of congenital myopia, aniso-
metropia, obesity, and connective tissue abnormalities in a
patient with a variant in SLIT2, c.4220A >G (p.D1407G).

Methods
Phenotypic ascertainment
The patient underwent an ophthalmic examination
which included spectral domain-optical coherence tom-
ography (SD-OCT) images and fundus autofluorescence
(AF) images, which were acquired using a Spectralis
HRA +OCT (Heidelberg Engineering, Heidelberg,
Germany). Full field electroretinograms (ffERG) were
obtained using the Diagnosys Espion Electrophysiology
System (Diagnosys LLC, Littleton, MA, USA) and Ganz-
field stimulation per international standards. The pupils
were maximally dilated before full-field ERG testing
using guttate tropicamide (1%) and phenylephrine
hydrochloride (2.5%). Additionally, the corneas were
anesthetized with guttate proparacaine 0.5%.

Genetic testing
Whole exome sequencing, bioinformatics analysis, and
filtering based on autosomal and X-linked dominant and
recessive and Y-linked inheritance models of the pro-
band, mother, father and maternal aunt were conducted
at Ambry Genetics Laboratory. Manual review to rule
out sequencing artifacts and polymorphisms along with
medical interpretation to rule out genes lacking clinical
overlap with the patient’s evaluated phenotype resulted
in one candidate gene with likely clinical relevance that
was selected for further investigation via co-segregation
analysis.

Structural modeling of human SLIT2
The leucine-rich repeat domains (LRR1–4; residues 30–
909) were modelled off the mouse Toll-like receptor-9
structure (PDB: 3WPF; 24% sequence identity) [20]. and
the human SLIT2 dimerization domain D4 (PDB: 2WFH;
100% sequence identity) using MODELLER 9.14 [21, 22].
The structure of the EGF-like repeats 1–6 (residues 918–
1157) were modelled off the Notch1 crystal structure
(PDB: 5UK5; 39% sequence identity) [23]. The structure of
the laminin C domain was modeled off the laminin alpha
structure (PDB: 1OKQ; 31% sequence identity) [24]. The
structure of EGF-like repeats 7–9 were modelled off the
Notch1 ligand Delta-like 1 structure (PDB: 4XBM; 98% se-
quence identity) [25]. There were no homologous struc-
tures in the Protein Data Bank for the C-terminal cysteine
knot (CTCK) domain. We therefore modeled this domain
using an ab initio approach in Phyre2 [26]. The individual
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domain models were then assembled through ab initio do-
main assembly using the AIDA program [27]. In silico
mutagenesis was performed using FoldX [28]. Electro-
static potentials were calculated using APBS [29]. Protein
and solvent dielectric constants were set to 2.0 and 78.0,
respectively. PyMOL generated all structural figures [30].

Results
A 15-year-old boy presented to the Harkness Eye Institute
electroretinography clinic. Initially, best-corrected visual
acuity was 20/50 in the right eye and 20/40 in the left eye.
His past medical history was significant for obesity and
conception through IVF (Additional file 1: Table S1) [31].
Family history was unremarkable. His older brother was
unaffected and had no visual complaints (Fig. 1a). Sys-
temic evaluation showed mild joint laxity bilaterally in the
upper and lower extremities and mildly doughy skin par-
ticularly in the ears. There were no known congenital kid-
ney anomalies reported by history. The proband never
achieved 20/20 vision as per history. The proband’s vision
was 20/50 in the right eye and 20/40 in the left eye since
18-months-of-age. His mother has been patching the left
eye since 18-months-of-age. Yearly follow-up examina-
tions showed no signs of either strabismus or nystagmus.
The anterior segment examination appeared to be quiet
and without cataracts. The corneas were clear and extrao-
cular eye movements were symmetric and full. On dilated

fundus examination, the patient’s optic nerve presented
with a good rim and peripapillary atrophy, a common
finding in the general population, and is shown on spec-
tral domain optical coherence tomography (SD-OCT)
(Fig. 1b). Multifocal electroretinogram testing was per-
formed per ISCEV standards with 61 hexagons. The wave-
forms were mildly reduced compared to normal and were
consistent with macular dysfunction. The axial length of
patient’s right eye increased from 26.94 mm in January
2010 to 27.75 mm 3 years later, further increasing to
28.55 mm as measured in his latest clinic visit on January
2017. The axial length of patient’s left eye has increased
from 25.67 mm in January 2010 to 26.75 mm 3 years later,
further increasing to 27.73 mm on January 2017. Refrac-
tion was − 7 sphere with − 4 cylinder at 22 degrees and −
4.25 sphere with − 2.25 cylinder at 142 degrees for the
right and left eye, respectively. On examination in January
2017, refraction progressed to − 9 sphere with − 4.75 cy-
linder at 25 degrees and − 7 sphere with − 3.5 cylinder at
152 degrees for the right and left eye, respectively.
Full field electroretinogram (ffERG) testing showed

scotopic rod specific ERG b-wave amplitudes were 159
microvolts in the right eye and 156 microvolts in the left
eye. Photopic 30 Hz flicker ERG had amplitudes were 25
microvolts in the right eye and 29 microvolts in the left
eye. Scotopic and photopic responses exhibited no impli-
cit time delays (Fig. 2). After three-years, the patient’s
visual acuity was found to be best corrected to 20/40 in
the right eye and 20/30 in the left eye, remaining rela-
tively stable over follow-up.
A skin biopsy was performed and examined by light

microscopy. Examination by light microscopy revealed
multiple abnormalities. A considerably thickened epithe-
lium was present, particularly near the hair follicles
(Fig. 3a), along with a high density of collagen in the
papillary dermis (Fig. 3b). Furthermore, there are large
deposits of microfibrils adjacent to the basement mem-
brane, which is often seen in tissue that is repeatedly in-
jured. The elastin in the shallow and deep papillary
dermis is moth-eaten and lacks associated microfibrils,
which would not be expected in a child (Fig. 3c). The bi-
opsy also showed macrophages adjacent to the capillar-
ies (Fig. 3d) and dimples at the cores of the elastin fibrils
that indicated a higher than normal density of elastin fi-
brils in the reticular dermis (Fig. 3e). The collagen fibrils
in the reticular dermis were also abnormally small and
uniform in diameter (Fig. 3f ).
Whole exome sequencing was performed on the per-

ipheral blood of the proband and his family members,
including parents, brother and maternal aunt. No coding
variants were identified in known myopia, Bardet-Biedl
syndrome or retinitis pigmentosa genes. There was a novel
heterozygous variant identified in exon 36 of the SLIT2
gene of the proband, c.4220A >G, p.D1407G. The

Fig. 1 Clinical examination of a patient with myopia, anisometropia,
obesity, and connective tissue abnormalities: a Pedigree of the
proband family. The patient in this family is the only one presenting
with ocular disease. The (+) denotes family members who
underwent whole exome sequencing. b Dilated fundus examination
reveals peri-papillary atrophy of the optic nerve, seen also in SD-OCT
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unaffected mother, father, brother and maternal aunt did
not carry this mutation, indicating a likely de novo occur-
rence in the patient (Additional file 1: Tables S2-S5). A
primary sequence analysis in SIFT [32] and PolyPhen-2
[33] predicted the mutation to be tolerated, while PRO-
VEAN [34] predicted deleterious effects on SLIT2 func-
tion (Additional file 1: Tables S6-S8).
We performed computer-based structural modeling to

gain insight into the pathogenicity of our patient’s SLIT2
mutation [35–37]. SLIT2 gene encodes a 1529 amino acid
extracellular protein which contains no transmembrane se-
quence [6, 7]. All SLIT proteins share a common structure
which includes an N-terminal signal peptide (SS), four tan-
dem leucine-rich repeats (LRR), a sequence of EGF repeats,
a conserved ALPS spacer (laminin G) followed by a
C-terminal cysteine knot (CTCK), which serves as a
dimerization motif (Fig. 4a) [6, 7]. Structures of several

human SLIT2 domains have been solved by x-ray
crystallography, but the full-length structure remains to be
determined [9, 21, 38]. We therefore generated a
three-dimensional model of the full-length SLIT2 structure
using a domain assembly approach [39] (Fig. 4b; Additional
file 1). Our structural model placed the p.D1407G mutation
on the SLIT2-C fragment in the 8th EGF-like repeat do-
main. Previously-identified CAKUT mutations (A98T,
S566 N, and K904 N) were all located on the LRR domains
of the SLIT-N fragment [19]. The D1407 amino acid was
shown to be highly conserved throughout vertebrates,
consistent with the evolutionary conservation of exon 36
measured in PhyloP [40] (Additional file 1: Table S9). This
finding suggested that mutation of this amino acid from as-
partate to a different amino acid would not be well toler-
ated and likely lead to negative effects, such as those
observed in the patient (Fig. 4c). Further analysis showed

Fig. 2 Electroretinogram: Full field electroretinogram results performed using DTL recording electrodes and Ganzfeld stimulation per
international standards
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that the D1407 residue is restrained by an adjacent
cysteine-disulfide bridge, one of three highly-conserved di-
sulfide linkages in this domain (Fig. 4d). The p.D1407G
mutation is predicted to cause a decrease in stability (ΔΔG
of − 0.35 kcal/mol), likely due to the increased conform-
ational flexibility of the substituted glycine (Fig. 4d) [28].
Additionally, this substitution leads to a loss of negative
charge (Fig. 4e). Since EGF-like domains are known to be
involved in mediating protein-protein interactions, this loss
of charge may affect interactions to SLIT2 binding partners
that are critical to its molecular function [41, 42].

Discussion
In this case we present a 15-year old boy with a tetrad of
congenital myopia, anisometropia, obesity, and connective
tissue abnormalities. The patient’s skin biopsy indicated an
absence in the coordination of elastic fiber formation and
the integration of elastin fibers with collagen fibers, suggest-
ing an underlying connective tissue disorder. Whole exome

sequencing revealed a novel heterozygous variant in exon
36 of the SLIT2 gene of the proband, c.4220A >G,
p.D1407G. The heterozygous nature of the variant associ-
ated with the patient’s phenotype suggests, most likely, a
potential gain of function in the expressed protein, although
paternity was not tested in the pedigree. Based on data
from the NHLBI Exome Sequencing Project (ESP), the
c.2240A >G alteration in SLIT2 was not observed among
6503 individuals tested (0.0%) (assessed December, 2017).
Furthermore, the D1407 amino acid was shown to be
highly conserved throughout vertebrates, meaning that evo-
lution of this amino acid from aspartate to a different
amino acid is likely not well tolerated and leads to negative
effects.
It is now known that the SLIT2/ROBO4 paired signaling

impedes the pathologic formation of blood vessels and
reduces vascular leakage in mouse models [43]. These
pathological processes are hallmarks of age-related macu-
lar degeneration, premature retinopathy, and diabetic

Fig. 3 Histological analysis reveals connective tissue abnormalities: a Skin biopsy showing considerably thickened epithelium, particularly near the hair
follicles. Image taken at 220× magnification; scale bars = 10 μm. b Skin biopsy showing high density of collagen in the papillary dermis. Image taken at
19000× magnification; scale bars = 500 nm. c Skin biopsy showing elastin in the shallow and deep papillary dermis that is moth eaten and lacks
associated micro-fibrils. Image taken at 50000× magnification; scale bars = 500 nm. d Skin biopsy showing macrophages adjacent to the capillaries.
Image taken at 3500× magnification; scale bars = 2 μm. e Skin biopsy showing dimples at the cores of the elastin fibrils that seem to indicate a higher
than normal density of elastin fibrils in the reticular dermis. Image taken at 3500× magnification; scale bars = 2 μm. f Skin biopsy showing collagen
fibrils in the reticular dermis are abnormally small and uniform in diameter. Image taken at 29000× magnification; scale bars = 500 nm
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Fig. 4 Structural modeling of patient SLIT2 mutation: a Diagram of SLIT2 domains. The SLIT2 protein is processed into two fragments, SLIT2-N
and SLIT2-C. The approximate site of proteolytic cleavage is shown. b Structural model of the full-length human SLIT2 protein generated through
a domain assembly approach (see Additional file 1). The p.D1407G mutation is located in the SLIT-C region in the EGF-like domain 8. c
Multiple sequence alignment of SLIT2 EGF-like 8 domains from multiple species reveals conservation of the D1407 residue. EGF-like domains
contain six conserved cysteine residues (highlighted by the blue outline) that form three disulfide bridges that provide structural rigidity to
the domain. d The D1407 residue is located adjacent to a disulfide bridge which would restrain the residue. Substitution with glycine would
lead to more conformational flexibility at this site and potentially destabilize the domain by altering disulfide bond formation. e In addition
to destabilizing the EGF-like domain, the p.D1407G mutation disrupts a negative charge at this site. Electrostatic surface potentials calculated
using APBS software highlight the loss of negative charge in this region, which may be critical for maintaining interactions with SLIT2-C
binding partners
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retinopathy. The SLIT2/ROBO receptor signaling also
helps to guide retinal ganglion cell axons to extend into
the optic fiber layer in the dorsal periphery of the retina
and project toward the optic disc [44]. Furthermore, it has
been shown that Slit binds to type IV Collagen, and that
this interaction stabilizes the Slit molecule in the base-
ment membrane at the surface of the tectum, contributing
to the retinotectal architecture. Collagen IV appears to
organize the cellular scaffold at the surface of the tectum,
which consists of radial glial end feet and secreted factors
such as Slit, which together, serve as laminar positional
cues to ingrowing retinal axons [45]. It is well established
that myopia can be caused by increased axial length of the
eye and pathologic changes in the sclera, including scleral
thinning, particularly in the posterior pole of the eye. The
sclera is a dense connective tissue that maintains the eye
shape and is comprised mainly of extracellular matrix
which is primarily made up of collagen. In the develop-
ment of myopia, there is a significant loss of scleral tissue
weight that is associated with a narrowing and disconnec-
tion of collagen fiber bundles and a reduction in the num-
ber of them, especially at the posterior pole. As myopia
continues to develop, the thinning of existing collagen
fiber bundles is accompanied by a shift in collagen fiber
diameter distribution such that the sclera contains more
small collagen fibers, which accounts for the lower tensile
strength of the tissue [46]. These pathologic findings re-
lated to collagen in myopia development, along with the
findings in this case of the SLIT2 mutation and abnormal
collagen in the patient’s skin biopsy, suggest a potential
role of the SLIT2 mutation in defective connective tissue
formation, indicating a more systemic genetic syndrome
that encompasses the patient’s congenital myopia.
The long-term systemic consequences of SLIT2

c.4220A > G, p.D1407G in connective tissue, the heart,
brain, eye, vasculature, and the kidney are unknown.
SLIT2 is found in the extracellular matrix of these or-
gans. A single mutation in another extracellular matrix
protein, fibrillin, initially causes myopia in children and
then predisposes systemic complications later in life [1].
Structural modeling of this mutation has provided some
initial insight into its pathogenicity. Our analysis sug-
gests that this mutation destabilizes SLIT2 interactions
with its binding partners by disrupting a highly con-
served residue in the EGF-like domain 8. This mutation
is distinct from previously-published CAKUT mutations
(which are located in the LRR domains) and offer a
potential explanation for the tissue specificity of their re-
lated phenotypes [19].

Conclusions
This case provides compelling evidence of the SLIT2
point mutation as a novel gene associated with the identi-
fied ocular findings and connective tissue abnormalities.

These conclusions are limited, as they are derived from a
singular case thus far, and there exists the possibility that
there are other unidentified variants contributing to
aspects of the patient’s phenotype, such as obesity, that
may be unrelated to the SLIT2 mutation [47]. This further
underscores the importance of future studies to shed light
on the role of SLIT2 in connective tissue pathophysiology,
obesity, and ocular disease.
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sequencing results. Table S4. Familial genetic co-segregation analysis by
whole exome sequencing. Table S5. Variant filtering based on bioinfor-
matics and interpretation. Table S6. Prediction of effects of SLIT2 muta-
tions using the SIFT server. Table S7. Prediction of effects of SLIT2
mutations using the PolyPhen-2 server. Table S8. Prediction of effects of
SLIT2 mutations using the PROVEAN server. Table S9. PhyloP conserva-
tion scores for SLIT2. (DOCX 35 kb)

Abbreviations
AF: Autofluorescence; CAKUT: Congenital abnormalities of the kidney and
urinary tract; COL2A1: Collagen 2 alpha 1 gene; CTCK: C-terminal cysteine
knot; ESP: Exome sequencing project; ffERG: Full-field electroretinogram;
ROBO: Roundabout receptor; SD-OCT: Spectral domain optical coherence
tomography; UMODL1: Uromodulin-like 1 gene

Acknowledgements
We wish to thank Irene H. Maumenee and Lynn Sakai for technical
assistance.

Funding
Supported, in part, by grants from National Eye Institute, NIH [P30EY019007,
R01EY018213, R01EY024698, R01EY026682, R21AG050437, R24EY019861],
National Cancer Institute Core [5P30CA013696], the Research to Prevent
Blindness (RPB) Physician-Scientist Award, unrestricted funds from RPB, New
York, NY, USA. J.D.S is supported by the RPB Medical Student Eye Research
Fellowship. S.H.T. is a member of the RD-CURE Consortium and is supported
by the Tistou and Charlotte Kerstan Foundation and the Schneeweiss Stem
Cell Fund, New York State [C029572]. VBM and AGB are supported by NIH
grants [R01EY026682, R01EY024665, R01EY025225, R01EY024698 and
R21AG050437], The Doris Duke Charitable Foundation Grant #2013103, and
Research to Prevent Blindness (RPB), New York, NY. GV is supported by NIH
grants [F30EYE027986 and T32GM007337].

Availability of data and materials
The data generated during and/or analyzed during the current study are
available in the supplemental online content and from the corresponding
author on reasonable request.

Authors’ contributions
Study concept and design: SHT. Acquisition of data: KYL, JDS, GV, and RJ.
Analysis and interpretation of data: KYL, JDS, GV, RJ, AGB, VBM, and SHT.
Drafting of the manuscript: KYL, JDS, GV, RJ, AGB, VBM, and SHT. Critical
revision of the manuscript for important intellectual content: AGB, VBM, and
SHT. Bioinformatic analysis: GV. Obtained funding: SHT. Administrative,
technical, and material support: SHT. Study supervision: SHT. All authors read
and approved the final manuscript.

Ethics approval and consent to participate
This retrospective case study was approved by the Columbia University
Medical Center Internal Review Board, protocol AAAB6560, and adhered to
the tenets of the Declaration of Helsinki.

Liu et al. Orphanet Journal of Rare Diseases  (2018) 13:138 Page 7 of 9

https://doi.org/10.1186/s13023-018-0885-4


Consent for publication
Written and verbal informed consent was obtained from participants. The
Data presented in this study, including images and genetic testing results,
are not identifiable to individual patients.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Stony Brook University School of Medicine, Stony Brook, NY, USA. 2Jonas
Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory,
New York, USA. 3Department of Ophthalmology, Columbia University, New
York, NY, USA. 4Department of Medicine, Reading Hospital, West Reading, PA,
USA. 5Omics Laboratory, Stanford University, Palo Alto, CA, USA. 6Department
of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA.
7Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA.
8Weill Cornell Medical College, New York, NY, USA. 9Departments of
Molecular and Medical Genetics and Biochemistry and Molecular Biology,
Oregon Health and Science University and Shriners Hospital for Children,
Portland, USA. 10Department of Pediatrics, University of Iowa, Iowa City, IA,
USA. 11Palo Alto Veterans Administration, Palo Alto, CA, USA. 12Department
of Pathology and Cell Biology, Stem Cell Initiative (CSCI), Institute of Human
Nutrition, College of Physicians and Surgeons, Columbia University, New
York, NY, USA. 13Harkness Eye Institute, Columbia University Medical Center,
635 West 165th Street, Box 212, New York, NY 10032, USA.

Received: 3 October 2017 Accepted: 31 July 2018

References
1. Guggenheim JA, Kirov G, Hodson SA. The heritability of high myopia: a

reanalysis of Goldschmidt's data. J Med Genet. 2000;37(3):227–31.
2. Young TL. Dissecting the genetics of human high myopia: a molecular

biologic approach. Trans Am Ophthalmol Soc. 2004;102:423–45.
3. Li YJ, Guggenheim JA, Bulusu A, Metlapally R, Abbott D, Malecaze F, Calvas

P, Rosenberg T, Paget S, Creer RC, et al. An international collaborative
family-based whole-genome linkage scan for high-grade myopia. Invest
Ophthalmol Vis Sci. 2009;50(7):3116–27.

4. Hornbeak DM, Young TL. Myopia genetics: a review of current research and
emerging trends. Curr Opin Ophthalmol. 2009;20(5):356–62.

5. Mordechai S, Gradstein L, Pasanen A, Ofir R, El Amour K, Levy J, Belfair N, Lifshitz
T, Joshua S, Narkis G, et al. High myopia caused by a mutation in LEPREL1,
encoding prolyl 3-hydroxylase 2. Am J Hum Genet. 2011;89(3):438–45.

6. Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-
Lavigne M, Kidd T. Slit proteins bind Robo receptors and have an
evolutionarily conserved role in repulsive axon guidance. Cell. 1999;96(6):
795–806.

7. Li HS, Chen JH, Wu W, Fagaly T, Zhou L, Yuan W, Dupuis S, Jiang ZH, Nash
W, Gick C, et al. Vertebrate slit, a secreted ligand for the transmembrane
protein roundabout, is a repellent for olfactory bulb axons. Cell. 1999;96(6):
807–18.

8. Marillat V, Cases O, Nguyen-Ba-Charvet KT, Tessier-Lavigne M, Sotelo C,
Chedotal A. Spatiotemporal expression patterns of slit and robo genes in
the rat brain. J Comp Neurol. 2002;442(2):130–55.

9. Morlot C, Thielens NM, Ravelli RB, Hemrika W, Romijn RA, Gros P, Cusack S,
McCarthy AA. Structural insights into the slit-Robo complex. Proc Natl Acad
Sci U S A. 2007;104(38):14923–8.

10. Wang KH, Brose K, Arnott D, Kidd T, Goodman CS, Henzel W, Tessier-
Lavigne M. Biochemical purification of a mammalian slit protein as a
positive regulator of sensory axon elongation and branching. Cell. 1999;
96(6):771–84.

11. Fish JE, Wythe JD, Xiao T, Bruneau BG, Stainier DY, Srivastava D, Woo S. A slit/
miR-218/Robo regulatory loop is required during heart tube formation in
zebrafish. Development. 2011;138(7):1409–19.

12. Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin GR.
SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site.
Dev Cell. 2004;6(5):709–17.

13. Kramer SG, Kidd T, Simpson JH, Goodman CS. Switching repulsion to
attraction: changing responses to slit during transition in mesoderm
migration. Science. 2001;292(5517):737–40.

14. London NR, Li DY. Robo4-dependent slit signaling stabilizes the vasculature
during pathologic angiogenesis and cytokine storm. Curr Opin Hematol.
2011;18(3):186–90.

15. Ypsilanti AR, Zagar Y, Chedotal A. Moving away from the midline: new
developments for slit and Robo. Development. 2010;137(12):1939–52.

16. Thompson H, Camand O, Barker D, Erskine L. Slit proteins regulate distinct
aspects of retinal ganglion cell axon guidance within dorsal and ventral
retina. J Neurosci. 2006;26(31):8082–91.

17. Svensson KJ, Long JZ, Jedrychowski MP, Cohen P, Lo JC, Serag S, Kir S,
Shinoda K, Tartaglia JA, Rao RR, et al. A secreted Slit2 fragment regulates
adipose tissue thermogenesis and metabolic function. Cell Metab. 2016;
23(3):454–66.

18. Peifer M, Fernandez-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, Plenker
D, Leenders F, Sun R, Zander T, et al. Integrative genome analyses identify
key somatic driver mutations of small-cell lung cancer. Nat Genet. 2012;
44(10):1104–10.

19. Hwang DY, Kohl S, Fan X, Vivante A, Chan S, Dworschak GC, Schulz J, van
Eerde AM, Hilger AC, Gee HY, et al. Mutations of the SLIT2-ROBO2 pathway
genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney
and urinary tract. Hum Genet. 2015;134(8):905–16.

20. Ohto U, Shibata T, Tanji H, Ishida H, Krayukhina E, Uchiyama S, Miyake K,
Shimizu T. Structural basis of CpG and inhibitory DNA recognition by toll-
like receptor 9. Nature. 2015;520(7549):702–5.

21. Seiradake E, von Philipsborn AC, Henry M, Fritz M, Lortat-Jacob H,
Jamin M, Hemrika W, Bastmeyer M, Cusack S, McCarthy AA. Structure
and functional relevance of the Slit2 homodimerization domain. EMBO
Rep. 2009;10(7):736–41.

22. Webb B, Sali A. Comparative Protein Structure Modeling Using MODELLER.
Curr Protoc Protein Sci. 2016;86:2 9 1–2 9 37.

23. Luca VC, Kim BC, Ge C, Kakuda S, Wu D, Roein-Peikar M, Haltiwanger RS,
Zhu C, Ha T, Garcia KC. Notch-jagged complex structure implicates a catch
bond in tuning ligand sensitivity. Science. 2017;355(6331):1320–4.

24. Wizemann H, Garbe JH, Friedrich MV, Timpl R, Sasaki T, Hohenester E.
Distinct requirements for heparin and alpha-dystroglycan binding revealed
by structure-based mutagenesis of the laminin alpha2 LG4-LG5 domain pair.
J Mol Biol. 2003;332(3):635–42.

25. Kershaw NJ, Church NL, Griffin MD, Luo CS, Adams TE, Burgess AW. Notch
ligand delta-like1: X-ray crystal structure and binding affinity. Biochem J.
2015;468(1):159–66.

26. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web
portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10(6):
845–58.

27. Xu D, Jaroszewski L, Li Z, Godzik A. AIDA: ab initio domain assembly for
automated multi-domain protein structure prediction and domain-domain
interaction prediction. Bioinformatics. 2015;31(13):2098–105.

28. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX
web server: an online force field. Nucleic Acids Res. 2005;33(Web Server
issue):W382–8.

29. Konecny R, Baker NA, McCammon JA. iAPBS: a programming interface
to Adaptive Poisson-Boltzmann Solver (APBS). Comput Sci Discov. 2012;
5(1).

30. PyMOL, New York. http://www.pymol.org/.
31. Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei

Z, Wei R, Curtin LR, Roche AF, Johnson CL. CDC growth charts for the
United States: methods and development. Vital Health Stat 11. 2000;
2002(246):1–190.

32. Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server:
predicting effects of amino acid substitutions on proteins. Nucleic Acids
Res. 2012;40(Web Server issue):W452–7.

33. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of
human missense mutations using PolyPhen-2. Curr Protoc Hum Genet.
2013;Chapter 7:Unit7 20.

34. Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional
effect of amino acid substitutions and indels. Bioinformatics. 2015;31(16):
2745–7.

35. Moshfegh Y, Velez G, Li Y, Bassuk AG, Mahajan VB, Tsang SH. BESTROPHIN1
mutations cause defective chloride conductance in patient stem cell-
derived RPE. Hum Mol Genet. 2016;25(13):2672–80.

Liu et al. Orphanet Journal of Rare Diseases  (2018) 13:138 Page 8 of 9

http://www.pymol.org/


36. Cox AJ, Darbro BW, Laxer RM, Velez G, Bing X, Finer AL, Erives A, Mahajan
VB, Bassuk AG, Ferguson PJ. Recessive coding and regulatory mutations in
FBLIM1 underlie the pathogenesis of chronic recurrent multifocal
osteomyelitis (CRMO). PLoS One. 2017;12(3):e0169687.

37. Toral MA, Velez G, Boudreault K, Schaefer KA, Xu Y, Saffra N, Bassuk AG,
Tsang SH, Mahajan VB. Structural modeling of a novel SLC38A8 mutation
that causes foveal hypoplasia. Mol Genet Genomic Med. 2017;5(3):202–9.

38. Morlot C, Hemrika W, Romijn RA, Gros P, Cusack S, McCarthy AA. Production
of Slit2 LRR domains in mammalian cells for structural studies and the
structure of human Slit2 domain 3. Acta Crystallogr D Biol Crystallogr. 2007;
63(Pt 9):961–8.

39. Velez G, Tsang SH, Tsai YT, Hsu CW, Gore A, Abdelhakim AH, Mahajan M,
Silverman RH, Sparrow JR, Bassuk AG, et al. Gene therapy restores Mfrp and
corrects axial eye length. Sci Rep. 2017;7(1):16151.

40. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of
nonneutral substitution rates on mammalian phylogenies. Genome Res.
2010;20(1):110–21.

41. Stenflo J, Stenberg Y, Muranyi A. Calcium-binding EGF-like modules in
coagulation proteinases: function of the calcium ion in module interactions.
Biochim Biophys Acta. 2000;1477(1–2):51–63.

42. Darbro BW, Mahajan VB, Gakhar L, Skeie JM, Campbell E, Wu S, Bing X,
Millen KJ, Dobyns WB, Kessler JA, et al. Mutations in extracellular matrix
genes NID1 and LAMC1 cause autosomal dominant Dandy-Walker
malformation and occipital cephaloceles. Hum Mutat. 2013;34(8):1075–9.

43. Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA, Wythe
JD, Suh W, Larrieu-Lahargue F, Mukouyama YS, et al. Robo4 stabilizes the
vascular network by inhibiting pathologic angiogenesis and endothelial
hyperpermeability. Nat Med. 2008;14(4):448–53.

44. Down M, Willshaw DA, Pratt T, Price DJ. Steerable-filter based quantification
of axonal populations at the developing optic chiasm reveal significant
defects in Slit2(−/−) as well as Slit1(−/−)Slit2(−/−) embryos. BMC Neurosci.
2013;14:9.

45. Xiao T, Staub W, Robles E, Gosse NJ, Cole GJ, Baier H. Assembly of lamina-
specific neuronal connections by slit bound to type IV collagen. Cell. 2011;
146(1):164–76.

46. Yang Y, Li X, Yan N, Cai S, Liu X. Myopia: a collagen disease? Med
Hypotheses. 2009;73(4):485–7.

47. Posey JE, Harel T, Liu P, Rosenfeld JA, James RA, Coban Akdemir ZH,
Walkiewicz M, Bi W, Xiao R, Ding Y, et al. Resolution of disease
phenotypes resulting from multilocus genomic variation. N Engl J Med.
2017;376(1):21–31.

Liu et al. Orphanet Journal of Rare Diseases  (2018) 13:138 Page 9 of 9


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Phenotypic ascertainment
	Genetic testing
	Structural modeling of human SLIT2

	Results
	Discussion
	Conclusions
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

