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Abstract

of Chinese patients with pediatric cataract.

and available family members.

Of the 23 causative variants, over half were novel.

sporadic and subtle syndromal cases.

Background: Pediatric cataract is a clinically and genetically heterogeneous disease which is a significant cause of
lifelong visual impairment and treatable blindness. Our study aims to investigate the genotype spectrum in a group

Methods: We enrolled 39 families with pediatric cataract from October 2015 to April 2016. DNA samples of the probands
were analyzed by target next-generation sequencing. Variants were validated using Sanger sequencing in the probands

Results: In our cohort of 39 cases with different types of pediatric cataract, 23 cases were found to harbor putative
pathogenic variants in 15 genes: CRYAA, CRYBAT, CRYBA4, CRYBBI1, CRYGC, CRYGD, MIP, GCNT2, IARS2, NHS, BCOR, BFSP2,
FYCO1, MAF, and PAX6. The mutation detection rates in the familial and sporadic cases were 75 and 47.8%, respectively.

Conclusions: This is a rare report of systematic mutation screening analysis of pediatric cataract in a comparably large
cohort of Chinese patients. Our observations enrich the mutation spectrum of pediatric cataract. Next-generation
sequencing provides significant diagnostic information for pediatric cataract cases, especially when considering
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Background

Pediatric cataract is often referred to as congenital or in-
fantile cataract, characterized by any opacity of the lens
presenting at birth or in the first year of life. With a glo-
bal prevalence of 3-6 in 10,000 live births and account-
ing for 10% of childhood blindness worldwide, pediatric
cataract is one of the most common causes of visual im-
pairment and blindness in children [1-3]. Pediatric cata-
ract either occurs as a systemic (syndromic) disease or
as an isolated (non-syndromic) disease with or without
other ocular malformations such as microcornea,
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microphthalmia, or anterior segment dysgenesis [4, 5].
While autosomal dominant inheritance is most com-
mon, autosomal recessive and X-linked inheritance have
also been reported, indicating some degree of genetic
heterogeneity in pediatric cataract. However, only 8—-25%
of cases have cataract-linked, inherited mutations [6].
Approximately 81.2% of pediatric cataract cases do not
have a family history, suggesting that a significant pro-
portion of cases are sporadic, but many of these cases
lack a known underlying genetic cause [7].

Mutations in over 318 genes associated with cata-
racts had been reported prior to 29 January 2018
(http://cat-map.wustl.edu/), including genes coding for
crystallins, intermediate filament proteins, cytoskel-
eton proteins, gap junction proteins, lens membrane
proteins, and lens-associated transcription factors [8].
In this study, we characterize the clinical manifesta-
tions and identify pathogenic variants in a cohort of
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39 pediatric cataract cases with a variety of inherit-
ance patterns, including a high proportion of sporadic
cases in non-consanguineous families. Determining
the precise genetic causes of pediatric cataract has
significant clinical relevance for defining clinical diag-
noses, implementing early treatment strategies, and
guiding genetic counseling.

Methods

Participants

Thirty-nine probands with bilateral pediatric cataract
were investigated as part of this study, including 22 total
cataracts, three perinuclear cataracts, two nuclear cata-
racts, one posterior polar cataract, and 11 undetermined
types. All patients with histories of intrauterine infection,
drug exposure, metabolic disorders, or malnutrition
were excluded. A positive family history was observed in
41.02% (16/39), and non-syndromic cataract was the
most common presentation (34/39). A pedigree analysis
of the 16 familial cases suggested that 13 were caused by
an autosomal dominant mode of inheritance and the
remaining three were likely caused by autosomal reces-
sive variants with no consanguinity. While 38 probands
were diagnosed within the first year of life, the
remaining proband was diagnosed at 5 years old. 15 pro-
bands also had nystagmus, six had microphthalmia and/
or microcornea, and five had extra-ocular features.

Panel design, library preparation and next-generation
sequencing
A panel of amplicons, targeting the coding exons and 25 bp
flanking intronic sequences of 80 cataract-associated genes,
was designed by combining data from the Online
Mendelian Inheritance in Man (https://omim.org/) and
an independent search of PubMed literature (https://
www.ncbi.nlm.nih.gov/pubmed). The gene list is shown
in Additional file 1: Table S1. The panel included 1811
amplicons with lengths ranging from 125 to 375 base
pairs, covering 98.16% of the bases in the target regions.
Libraries were constructed using the Ion AmpliSeq
Library Kit v2.0, and DNA fragments from individual
samples were ligated with barcoded sequencing adaptors
using the Ion Xpress Barcode Adapter 1-16 Kit accord-
ing to the manufacturer’s instructions. Bar-coded librar-
ies were selectively amplified by emulsion PCR, and ion
sphere particles with qualified DNA were isolated and
sequenced on Ion 318 Chips using the vendor-provided
sequencing kit on the Ion Personal Genome Machine
Sequencer (Life Technologies, Carlsbad, CA). Variants
were initially called using Ion Torrent Variant Caller ver-
sion 4.0 software and subsequently visualized using the
Integrative Genomics Viewer to facilitate the detection
of false variant calls. Confirmed variants were annotated
using ANNOVAR  (http://wannovar.wglab.org/), and
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respective minor allele frequencies were assesed in dbSNP
(http://www.ncbi.nlm.nih.gov/projects/SNP), 1000genomes
(http://www.1000genomes.org/), Exome Variant Server
(http://evs.gs.washington.edu/EVS/) and Exome Aggrega-
tion Consortium (ExAC) databases (http://exac.broadinsti
tute.org/). Heterozygous variants with minor allele frequen-
cies >0.01 were filtered out. Variants were validated using
Sanger sequencing in the probands and available family
members, and then analyzed for possible pathogenic signifi-
cance according to the 2015 American College of Medical
Genetics and Genomics (ACMG) guidelines [9].

Haplotype analysis and allele specific PCR

Six short tandem repeat (STR) microsatellite markers
flanking PAX6 were genotyped in family #12, and six
STR markers flanking GCNT2 were genotyped in family
#9 and sporadic case #5. PCR products were separated
by electrophoresis on 8% denaturing polyacrylamide gel,
and allele fragments were detected with routine silver
staining. Haplotypes were determined based on each in-
dividual’s genotype and kinship. To examine the
low-level mosaicism in the unaffected parents in family
#12, allele-specific PCR was performed with primers de-
signed for the mutant allele. PCR products were de-
tected by agarose gel electrophoresis. The primer
sequences are listed in Additional file 2: Table S2.

Results

Targeted region analysis

Next-generation sequencing (NGS) was performed on
DNA from the 39 perdiatric cataract probands to detect
variants. NGS yielded an output of 5.38G bases with an
average of 5.3 M reads/ chip. At least 230,000 reads with
a quality score of AQ20 were obtained per sample, with
a coverage of approximately 98.15% for the targeted re-
gions and an average depth of 160. The mean read
length was 211 bp (Additional file 3: Table S3).

Identification of suspected causative variants

Twenty-three of the 39 cases tested harbored putative
pathogenic variants (Table 1), with mutation detection
rates in the familial and sporadic cases of 75% (12/16)
and 47.8% (11/23) (Fig. 1), respectively. These variants
were spread over 15 cataract-associated genes, with vari-
ations in crystallins (CRYAA, CRYBAI, CRYBA4,
CRYBBI, CRYGC, CRYGD) accounting for 39.13% (9/23)
of the cases. In addition, likely causative variants were
found in MIP in three families; GCNT2, IARS2, and
NHS in two families each; and BCOR, BFSP2, FYCOI,
MAF, and PAX6 in one family each. Among the 23
causative variants identified in this study, 12 variants
were novel, with the remaining 11 variants already re-
ported. According to the ACMG mutation guidelines, all
of the variants were classified as “pathogenic” or “likely
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Fig. 1 Mutation spectrum of familial and sporadic pediatric cataract cases. The mutation detection rates in the familial and sporadic cases were 75 and
47.8%, respectively. Mutations were found in 15 different genes, with high-penetrance mutations distributed in crystallins, MIP, GCNT2, IARS2, and NHS
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pathogenic”. Additionally, four variants classified as
“uncertain significance” were identified in two familial and
two sporadic cases (Additional file 4: Table S4 and
Additional file 5: Figure S1). Two familial cases and 10 in-
dividuals with sporadic pediatric cataract had no variants
of interest found in the 80 cataract-associated genes
screened through this study (Additional file 5: Figure S1).

Variants in crystallin genes

Variants in the crystallin genes were the most frequent
mutations found in this study, with nine patients pre-
senting likely causative variants in crystallin genes, six in
familial cases, and three in sporadic cases. All respective
familial cases were caused by autosomal dominant muta-
tions, with the results suggesting that the sporadic cases
are new cases of autosomal dominant inheritance. Six of
these were caused by missense mutations, two from
frameshifts, and one from a nonsense mutation (Fig. 2).
Additionally, four of the nine variants were novel:
CRYBAI c¢.552_557delinsGGAGG; p.(Cys185Glufs*33),
CRYBA4 ¢.277 T > C; p.(Ser93Pro), CRYBBI ¢.508G > T;
p-(Aspl70Tyr), and CRYGC c.233C>T; p.(Ser78Phe).
All novel missense mutations occurred within a Greek
Key motif and might impact on protein folding. The
novel heterozygous deletion and insertion in CRYBAI
(c.552_557delinsGGAGG; p.(Cys185Glufs*33)) is pre-
dicted to lead to a premature stop codon, deleting
three-fifths of the fourth Greek Key and all of the
C-terminal domain of CRYBA3/Al. Five variations of
crystallin (CRYBAI c¢.552_557delinsGGAGG; p.(Cys185
Glufs*33), CRYBA4 ¢.277 T > C; p.(Ser93Pro), CRYBBI
¢.508G > T; p.(Asp170Tyr), CRYGD ¢.309dup; p.(Glu104
Argfs*4), and CRYGD c418C>T; p.(Argl40*)) caused
total cataract with or without microphthalmia and

nystagmus. CRYGC ¢.233C > T; p.(Ser78Phe) caused nu-
clear cataracts, and CRYAA ¢.61C > T; p.(Arg21Trp) pro-
duced perinuclear cataracts and microphthalmia. A
hotspot mutation ¢.70C > A; p.(Pro24Thr) and a previ-
ously reported mutation c.134 T >C; p.(Leud5Pro) in
CRYGD were identified in family #5 and sporadic case
#2, with no phenotypic information available [10-12].

Variants in transcription factor genes MAF and PAX6
A likely de novo novel heterozygous missense mutation
c. 950A > G; p.(Glu317Gly) in the bZIP domain of MAF
was identified in the sporadic case #11(Fig. 3a) who was
diagnosed with bilateral posterior polar cataracts.
Another novel variant, ¢.113G > A; p.(Arg38Gln), in
the paired domain of PAX6, was found in both the pro-
band of family #12 and his affected brother with cataract
and nystagmus, but this variant was not observed via
Sanger sequencing in either normal parent. The haplo-
type analysis demonstrated that both siblings inherited
the same PAX6 allele from their mother, indicating that
their mother may be gonadal mosaic for the disorder,
and allele specific PCR confirmed that the variant was
indeed present in the asymptomatic mother (Fig. 3b).

Variants in non-syndromal cataract genes BFSP2, FYCO1,
GCNT2, and MIP
The BFSP2 gene encodes phakinin, a lens-specific inter-
mediate filament-like protein. An in-frame deletion
€.697_699del; p.(Glu233del) in the intermediate filament
rod domain of BFSP2, previously reported by Jakobs PM
and Zhang Q [13, 14], was identified in all affected indi-
viduals of family #11 with total cataract (Fig. 4a).

Novel compound heterozygous variants c. 808C > T;
p.(Gln270*) and ¢3587+1G>T in FYCOI were
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\

identified in the sporadic case #10, with parental segre-
gation subsequently confirmed (Fig. 4b). The nonsense
mutation c. 808C > T; p.(GIn270") was predicted to trun-
cate most of the coiled-coil region, as well as the entire
FYVE zinc-finger and GOLD domain. Additionally, the
G-to-T transversion located in the conserved intron 12
donor splice site (c.3587 + 1G > T) might affect splicing.
Homozygous or compound heterozygous mutations in
GCNT?2 caused cataract associated with the rare adult i
blood group [15, 16]. The recurrent compound hetero-
zygous mutations ¢.1043G>A; p.(Gly348Glu) and
c1148G > A; p.(Arg383His) in GCNT2, previously

reported by Yu [15], were found in two patients from
family #9 and sporadic case #5, and parental segregation
was subsequently confirmed. Haplotype analysis revealed
that the c.1043A allele of family #9 and sporadic case #5
was likely due to a founder effect, and the c.1148A allele
origins of these two families were independent (Fig. 4c).
1/i blood group typing was not performed since we had
no access to fresh blood from the patients.

MIP is a less frequently investigated cataract-associated
gene, but likely causative variants in MIP were identified
in three patients, accounting for 13.04% (3/23) of the cases
in this study. Two variants were familial and the third was
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Fig. 3 Pedigree and variants in transcription factor genes MAF and
PAX6. The schematics show the encoded domain structure of MAF
or PAX6, and the variants are illustrated above the schematics. MAF
c950A > G; p.(Glu317Gly) was identified in sporadic case #11 (a). PAX6

113G > A p.(Arg38GIn) was identified in family #12 (b). Patients 111
and 112 from family #12 inherited the same PAX6 allele from their
unaffected mother. Allele specific PCR demonstrated that the variant
was present in the asymptomatic mother. Probands are indicated by
arrows. ¥~ indicates heterozygous individuals, ~~ for individuals
testing negative, /> " indicates a mosaic case besides the normal
sequence “G" also chromosomes are found containing “A". WT: Wild
Type, MT: Mutant Type

a sporadic case of pediatric cataract. While the two mis-
senses mutations, ¢530A>G; p.(Tyrl77Cys) and
494G > A; p.(Glyl65Asp), have been previously de-
scribed [17, 18], the nonsense mutation ¢.612C > G;
p.(Tyr204) in family #8 is a novel variant (Fig. 4d), it
might prevent MIP protein transport and reduce the for-
mation of available water channels as well as p.(Lys228-
Glufs*4), which recently reported by Long X [19]. The
cataract types of the patients harboring c.494G > A;
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p.(Gly165Asp) and c.612C > G; p.(Tyr204") were not avail-
able, while the patient with mutation ¢.530A > G;
p-(Tyr177Cys) had total cataract. In addition, all patients
with MIP variants identified in this study had nystagmus.

Variants in syndromal cataract genes BCOR, IARS2, and NHS
In sporadic case #9, a likely de novo frameshift mutation
¢.4706dup; p.(Gly1570Argfs 7), was found in BCOR (Fig. 5a),
the gene responsible for X-linked oculo-facio-cardio-dental
(OFCD) syndrome [20]. Although c.4706dup; p.(Glyl5
70Argfs7) was not reported in the literature, it is in-
cluded in ClinVar database. The proband had bilateral
total cataracts, microphthalmia, and microcornea, with
additional dental and facial features consistent with
OFCD syndrome. Her mother reported that she tired
easily, but she did not undergo any cardiological tests.
BCOR c.4706dup; p.(Glyl570Argfs’7) is predicted to
delete part of the Ankyrin repeat-containing domain
and the entire PCGF1 binding domain, which is neces-
sary and sufficient for interaction with PCGF1, a com-
ponent of the Polycomb group (PcG) multiprotein
BCOR complex. This interaction is required to main-
tain the transcriptionally repressive state of BCL6 and
CDKNI1A [21].

Two novel compound heterozygous mutations in
IARS2, a nuclear gene encoding mitochondrial isole
ucyl-tRNA synthetase [22], were found in family #10
and sporadic case #6 (Fig. 5b). The compound
heterozygous variants ¢.607G > C; p.(Gly203Arg) and
¢.2575 T > C; p.(Phe859Leu) were identified in the spor-
adic case #6, who developed a sporadic case of peri-
nuclear cataracts without other anomalies, and the
mutations ¢.2446C > T; p.(Arg816) and c¢.2575 T > C;
p.(Phe859Leu) were identified in two affected brothers
in family #10, both of which had bilateral cataracts with-
out other anomalies. p.(Gly203Arg) lies in the class Ia
aminoacyl-tRNA synthetases domain, p.(Phe859Leu) lo-
calizes to the anticodon-binding domain, and
p.(Arg816) would result in a truncated protein lacking
the anticodon RNA-binding domain. Segregation studies
revealed that both parents were heterozygous for the
variants, confirming that these variants were in trans.

Two novel hemizygous frameshift mutations were
identified in NHS, the gene responsible for X-linked
Nance Horan syndrome (NHS) [23, 24]: ¢.3207_3208del;
p. (Alal070Phefs'16) and c.2739del; p.(Phe913Leufs9),
in sporadic cases #7 and #8, respectively (Fig. 5¢). Both
frameshift mutations in NHS were predicted to lead to
protein truncations. While ¢.3207_3208del was a likely
de novo mutation, ¢.2739del was heterozygous in the pa-
tient’s mother. The sporadic case #7 had bilateral cata-
racts, microphthalmia, microcornea, and nystagmus, as
well as an asymmetric long narrow face, small nose, mild
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Fig. 4 Pedigree and variants in BFSP2, FYCO1, GCNT2, and MIP. These schematics show the encoded domain structure of BFSP2 (a), exonic and
protein domain structure of FYCOT (b), encoded protein domain structure of GCNT2 (c) and MIP (d). Mutations found in this study are illustrated
above the schematics, with novel variants indicated in red characters. Probands are indicated by arrows, *~ indicates heterozygous individuals,
=~ for individuals testing negative. WT: wild type, MT: mutant type, W1: Wild Type 1, W2: Wild Type 2, M1: Mutant Type 1, M2: Mutant Type 2

+/-

|
A MTMQ&M

anteverted pinnae, and dental anomalies. His develop-
ment and intelligence were normal. The sporadic case
#8 had bilateral total cataracts, microphthalmia, micro-
cornea, and nystagmus, along with characteristic facial
features of a long narrow face, prominent nose, and
large anteverted pinnae, dental anomalies of
screwdriver-shaped incisors, and an intellectual delay
consistent with NHS.

Discussion

In this study, we used target NGS to identify genetic var-
iants in 39 Chinese probands with inherited pediatric
cataract. Twenty-three cases were found to harbor puta-
tive pathogenic variants in 15 cataract-associated genes,
including missense mutations, nonsense mutations,
frameshift deletions/insertions, in-frame deletions, and
splicing mutations. All missense mutations identified in
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this study were located at very important protein do-
mains, and the frameshift deletions/insertions and
nonsense mutations found resulted in premature termin-
ation codons or triggered a nonsense-mediated mRNA
decay. The splicing mutation FYCOI ¢.3587 +1G>T
changed the acceptor site of intron 12, which would
generally cause exon skipping. Further functional studies
are warranted to determine the physiological implica-
tions of each new mutation. The majority of these muta-
tions appear to be autosomal dominant (15/23), with
autosomal recessive (5/23) and X-linked changes (3/23)
also detected. The most commonly mutated genes were
those coding for crystalline, accounting for 39.13% of
cases. MIP was mutated in three cases, representing the
second most commonly mutated gene in our cohort.
Interestingly, no gap junction protein-encoding genes

were identified in our cohort, although they are fre-
quently reported in non-syndromic pediatric cataract
[25, 26].

The large number of genes known to cause pediatric
cataract and the limited genotype-phenotype correla-
tions complicate clinical testing using traditional sequen-
cing technologies. These difficulties are especially
evident in sporadic pediatric cataract cases, which make
up the majority of pediatric cataract cases, and present
diagnostic challenges when attempting to identify a gen-
etic etiology [7]. Our study demonstrates that half of the
mutations identified in sporadic pediatric cataract cases
were due to likely de novo heterozygous mutations in
autosomal-dominant genes (5/11), one-fourth were
compound heterozygous mutations in autosomal reces-
sive genes (3/11), and one-fourth were X-linked variants
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(3/11), two of which were likely de novo mutations.
Similar difficulties exist in familial cases, as pedigree in-
formation alone may not accurately describe the inher-
itance risk. Family #12 was assumed to have a recessive
form of pediatric cataract on the basis of family history,
however, genetic testing revealed the presence of a
PAX6 missense mutation in both affected brothers.
Since all previously reported mutations in PAX6 have
been dominant [27-29], this finding suggested that
their asymptomatic mother was mosaic for the dis-
order. Moreover, parental mosaicism for mutated PAX6
in affected siblings has been reported recently [30].
Therefore, the NGS testing results dramatically altered
the counseling of both the parents and the patients
themselves. Thus, it is useful for parents of affected
children, as well as the affected individuals themselves,
to use a targeted NGS panel to provide accurate recur-
rence and transmission risk counseling.

Some syndromal pediatric cataracts may be subtle,
with associated systemic features presenting or becom-
ing apparent only in later childhood [8]. The sporadic
case #9 carried a novel BCOR mutation associated with
OFCD syndrome, but she presented with only subtle
clinical features, yet her cardiac status should be moni-
tored for signs of disease progression. Mutations in
IARS2 are also commonly associated with syndromal
pediatric cataract. While compound heterozygous mu-
tations in JARS2 were identified in the patients of fam-
ily #10 and sporadic case #6, these patients did not
present with additional anomalies besides the cataract.
Thus, growth hormone levels, neurotrophic keratitis,
orbital myopathy, and skeletal dysplasia should be
monitored through later follow-ups. Other genes, such
as AGK and LONPI, are known to be mutated in syn-
dromic forms of cataract and have also been reported
to cause apparently non-syndromic cataract [12, 31].
IARS2 might be the third example of such genes that
can be mutated in both syndromic and non-syndromic
forms of pediatric cataract. Future cataract patients
with different mutations in JARS2 will help clarify the
phenotypic spectrum.

In recent vyears, multiple cataract-targeted gene
panels have been developed with detection rates of 26—
75% [8, 12, 25, 26, 32-34]. We investigated 16 familial
and 23 sporadic cases with pediatric cataract in the
Chinese population and achieved an overall mutation
detection rate of 58.97%, which is almost identical to
those reported in similar studies of patients from South
Eastern Australia (62%) [25], China (62.96%) [32], and
Saudi Arabia(58%) [12], including zero, 7.4 and 23% of
sporadic cases, respectively. The mutation detection
rate of the familial cases in our study was 75%, compar-
able to that published recently in familial patients from
the UK (75%) [26] and another Australian cohort (73%)
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[8]. The mutation detection rate for familial cases in
our cohort was much higher than that published re-
cently in two studies in Chinese familial patients, with
mutation pick-up rates of 50 and 64% [32, 33]. The mu-
tation detection rate for sporadic cases in our study
was 47.8%, lower than reported in sporadic patients
from Australia (68%) and Saudi Arabia (62.5%) [8, 12].
If the new candidate genes are included, the mutation
detection rate in the sporadic patients from Saudi
Arabia increases to 75% [12]. A recently published art-
icle reported gene mutations screening in sporadic
pediatric cataract in a Han Chinese population using
target NGS, and identified pathogenic variants in 26%
of cases [34], much lower than ours. The relatively low
mutation detection rate in Chinese sporadic patients
might be due to the number of target genes being dif-
ferent between different panels or different frequencies
of mutations occurring different groups. Also, further
clinical exome sequencing panels or whole exome se-
quencing were not performed for patients negative for
mutations from the target NGS in our patients or an-
other Chinese cohort.

One advantage in our study is that we obtained DNA
samples from the parents of each proband (except spor-
adic patient #2; the DNA of his father was unavailable)
regardless of family history. We also obtained DNA
samples from at least two patients in familial cases and
performed segregation analysis to confirm the
disease-causing variations. Our study also has several
limitations. Nearly all patients underwent cataract
surgery prior to enrolment in this study, so phenotypic
information was determined by reviewing medical re-
cords or recalled by the participants or their guardians.
Medical records were not available for 11 probands, so
the lens phenotype could not be ascertained in detail.
The multi-gene panel was designed in October 2015, so
cataract genes published after that date were not in-
cluded. Four variants predicted to have uncertain sig-
nificance under ACMG guideline were identified in two
familial and two sporadic cases, additional studies will
be needed to confirm their pathogenicity. In future ef-
forts, clinical exome sequencing panels targeting all
OMIM-identified disease genes, or whole exome se-
quencing analysis might be necessary for mutation
negative cases regardless of family history.

Conclusion

In conclusion, we examined the clinical manifestations
and molecular genetic characteristics of 39 Chinese pa-
tients with pediatric cataract. Twenty-three putative
pathogenic variants were identified, with 12 novel and
11 recurrent. This has led to more accurate genetic diag-
noses and recurrence risk counseling, impacting man-
agement for each family.
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