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Abstract

Background: Composite endpoints are recommended in rare diseases to increase power and/or to sufficiently
capture complexity. Often, they are in the form of responder indices which contain a mixture of continuous and
binary components. Analyses of these outcomes typically treat them as binary, thus only using the dichotomisations
of continuous components. The augmented binary method offers a more efficient alternative and is therefore
especially useful for rare diseases. Previous work has indicated the method may have poorer statistical properties
when the sample size is small. Here we investigate small sample properties and implement small sample corrections.

Methods: We re-sample from a previous trial with sample sizes varying from 30 to 80. We apply the standard binary
and augmented binary methods and determine the power, type I error rate, coverage and average confidence
interval width for each of the estimators. We implement Firth’s adjustment for the binary component models and a
small sample variance correction for the generalized estimating equations, applying the small sample adjusted
methods to each sub-sample as before for comparison.

Results: For the log-odds treatment effect the power of the augmented binary method is 20-55% compared to
12-20% for the standard binary method. Both methods have approximately nominal type I error rates. The difference
in response probabilities exhibit similar power but both unadjusted methods demonstrate type I error rates of 6–8%.
The small sample corrected methods have approximately nominal type I error rates. On both scales, the reduction in
average confidence interval width when using the adjusted augmented binary method is 17–18%. This is equivalent
to requiring a 32% smaller sample size to achieve the same statistical power.

Conclusions: The augmented binary method with small sample corrections provides a substantial improvement for
rare disease trials using composite endpoints. We recommend the use of the method for the primary analysis in
relevant rare disease trials. We emphasise that the method should be used alongside other efforts in improving the
quality of evidence generated from rare disease trials rather than replace them.
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Background
For stakeholders in rare disease communities, it is imper-
ative to keep in mind that rare diseases are far from
‘rare’ for those whose lives they consume. The last few
decades have seen a societal shift which recognises this
and has resulted in a much greater focus on rare disease
research. This is characterised by a surge in patient advo-
cacy groups, a shift in regulation and incentives, increased
government funding of rare disease research and advances
in technologies to improve international communication
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between rare disease experts and patients [1]. Despite
this, for most rare diseases if treatment options even exist
many of them have been approved with very limited evi-
dence. Novel statistical design and analysis methods are
needed to make the best use of information provided by
studies in rare diseases [2, 3].
One way to maximise information from rare disease

trials is to use composite endpoints [4]. These are end-
points which combine a number of individual outcomes in
order to assess the effectiveness or efficacy of a treatment.
They are typically used in situations where it is difficult
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to identify a single relevant endpoint to sufficiently cap-
ture the change in disease status incited by the treatment.
Furthermore, if the components are appropriately chosen,
composite endpoints that require an event in only one of
the components (a or b or c etc.) may have the ability to
improve the power to show a given treatment effect due
to the increased number of events [5–7]. These charac-
teristics appeal to rare diseases where many realisations
of the diseases are highly variable and availability of the
population may be a binding constraint.
Many composite endpoints take the form of respon-

der indices where a binary indicator is formed based on
whether the patient has experienced a predefined change
in each of the components or not. In particular, in many
disease areas the composite is a mixture of continuous and
binary components. These endpoints frequently feature
in rare autoimmune diseases and rare cancers. Exam-
ples of these are presented in Table 1, one of which
is the chronic inflammatory disorder Behçet disease. A
review of the research performed in this area concludes
that evidence continues to be generated from anecdotal
case reports rather than randomised trials [8]. As well as
those shown in Table 1, any rare cancers using RECIST

Table 1 Examples of rare diseases which could make use of the
augmented binary method

Disease Example responder endpoint

Primary biliary cholongitis (PBC) • ALP< 1.67×ULN

• Total bilirubin < ULN

• ALP decrease ≥ 15%

Behçets disease • Length of principal intestinal

ulcer compared to size at baseline (%)

• No new lesions

Lupus Nephritis • eGFR no more than 10% below

preflare value or normal

• Proteinuria UPC ratio < 0.5

• Urine sediment: Inactive

• No rescue therapy

Neuroblastoma • < 10mm residual soft tissue at

primary site

• Complete resolution of MIBG of

FDG-PET uptake (for MIBG non avid

tumours) at primary site

Advanced hepatocellular carcinoma• < 20% increase in the sum of the

longest diameters of target lesions

• No new lesions

ALP alkaline phosphatase, ULN upper limits of normal, eGdFR estimated glomerular
filtration rate, UPC urinary protein to creatinine,MIBGmetaiodobenzylguanidine,
FDG-PET 18-fluorodeoxyglucose positron emission tomography

criteria (Response Evaluation Criteria In Solid Tumors)
to define responders and non-responders use endpoints
which assume this structure [9].
Analyses of these outcomes typically treat them as

binary, thus only using the dichotomisations of continu-
ous components. An alternative in these circumstances is
the augmented binary method [10]. This involves jointly
modelling the continuous component with the binary
component in order to improve the efficiency of esti-
mates by making use of how close patients were to being
responders in the continuous component. For a fixed
sample size, the method was shown to provide a sub-
stantial increase in the power over the standard binary
method currently in use, whilst still making inference on
the outcome of interest to clinicians. This was illustrated
in both solid tumour cancer and rheumatoid arthritis
data [10, 11].
Although the method provides substantially more

power it also uses more parameters. Some evidence has
suggested that it may not be suitable for trials with small
samples, perhaps due to issues with asymptotics [10].
We will explore the properties of the augmented binary
method in small samples and introduce and implement
two small sample corrections from the literature to deter-
mine whether we can improve the performance.
If the gains provided by the augmented binary method

in common diseases can be realised in smaller samples,
this may allow us to gain information from randomised
trials that would otherwise not have been possible.
This could greatly improve outcomes for many rare
disease patients. Further small sample applications of
the method include earlier phase 2 trials, or when
more doses are of interest but the number of patients
are limited.

Methods
Data
In order to investigate the properties of the methods
in small samples, we will use data from the OSKIRA-1
trial [12]. The trial was a phase III, multicentre, ran-
domised, double-blind, placebo-controlled, parallel-group
study investigating the use of fostamatinib in patients with
active rheumatoid arthritis. For the purpose of investi-
gating the small sample properties of the methods, we
will only make use of two of the three arms in the trial,
namely the fostamatinib 100 mg bid for 52 wks arm and
the placebo arm.
A common responder endpoint used in rheumatoid

arthritis is the ACR20, in which patients demonstrate clin-
ical response if they achieve a 20% improvement from
baseline, as measured by a continuous ACR-N (American
College of Rheumatology) score. It is worth noting that the
ACR-N score is a percentage change from baseline which
is itself a composite combining 7 components but in what
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follows we will treat this as a single measure, as is the
case in practice. The structure of the endpoint is shown
in Fig. 1.
A benefit of responder analyses is that we can easily

incorporate additional information in the response defi-
nition. In the case of rheumatoid arthritis it is common
to assign patients to being non-responders in the ACR20
endpoint if they require medications restricted by the pro-
tocol or withdraw from the study. Therefore, in order
to be a responder to treatment a patient needs to tol-
erate treatment, must not receive restricted medications
and they must demonstrate clinical response. This allows
discontinuations of treatment for lack of efficacy or for
adverse events to provide meaningful information on the
drug effect and translates to estimating the effect of a
combination of continuous and binary components.
Other endpoints of interest in rheumatoid arthritis are

the ACR50 and ACR70 which dichotomise the ACR-N
score at 50% and 70% respectively. We will discuss the
findings and conclusions for the ACR20 endpoint in what
follows, as this was the primary endpoint in the trial and

Fig. 1 Structure of the responder endpoint in rheumatoid arthritis.
For the ACR20 endpoint, the continuous ACR-N score is dichotomised
at 20% and combined with the rescue medication indicator to form a
binary responder index. X1...X8 denotes the disease activity measures
which are combined to form the continuous ACR-N score

is the endpoint that is generally used to formally evalu-
ate benefit in the regulatory setting. Results for both the
ACR50 and ACR70 endpoints are detailed in the supple-
mentary material (see Additional file 1). These endpoints
further characterise the benefit of a treatment by con-
sidering different levels of improvement from baseline.
Furthermore, they will demonstrate how the methods
perform with different response rates.

Standard binary method
The method currently employed to analyse these end-
points in trials is a logistic regression on the binary
indicator for response. We refer to this as the standard
binary method.
The odds ratio and confidence interval are obtained

directly. We can also obtain predicted probabilities
for each patient as if they were treated p̃i1 and not
treated p̃i0. This allows us to construct both the dif-
ference in response probabilities and the risk ratio.
Their corresponding confidence intervals are obtained
through the delta method, details of which are pro-
vided in the supplementary material (see Additional
file 2).

Augmented binary method
The augmented binary method models the joint distribu-
tion of the continuous and binary components at multi-
ple time points by employing factorisation techniques to
model each of the components separately. We can then
combine these to obtain predicted probabilities for each
patient as if they were treated p̃i1 and untreated p̃i0 [10]. It
follows that we can obtain the difference in response prob-
abilities, the odds ratio and the risk ratio, as well as their
confidence intervals as before (see Additional file 2).
Figure 2 shows a schematic for both the standard binary

and augmented binary methods. From this it is clear that
the augmented binary method models the components
of the composite endpoint directly whereas the standard
binary method throws away information before the analy-
sis stage.
Note that we fit the repeated measures models for the

continuous component in the augmented binary method
using both generalised least squares (GLS) and gener-
alised estimating equations (GEE).

Binary component adjustment
Albert and Anderson show that when fitting a logistic
regression model to small samples, that although the like-
lihood converges, at least one parameter estimate may be
theoretically infinite [13]. This phenomenon is commonly
termed ‘perfect separation’ and occurs if the model can
perfectly predict the response or if there are more param-
eters in the model than can be estimated because the data
are sparse [14]. Firth provides an alternative to maximum
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Fig. 2 Schematic comparing the stages involved in employing the standard binary and augmented binary methods (*small sample adjustments
implemented)

likelihood estimation (MLE) in these circumstances
[15]. This involves using penalised maximum likelihood
(PML) to correct the mechanism producing the esti-
mate, namely the score equation, rather than the estimate
itself.
As maximum likelihood estimates are always biased

away from zero in this setting, bias correction there-
fore involves some degree of shrinkage of the estimate
towards this point. This results in the method also reduc-
ing the variance, so that bias reduction does not neces-
sarily lead to a substantial loss in power. We will make
these adjustments to both the standard binary method
and the logit models in the augmented binary method.
This can be easily implemented in R using the brglm
package [16].

Continuous component adjustment
It is recognised that when using these methods when the
number of clusters, in our case patients, is small that the
robust standard error estimates are subject to downward
bias, leading to inflated type I errors. We will implement
a correction by Morel, Bokossa and Neerchal to inflate
the variance estimate when modelling the continuous
component using GEE methods [17]. We implement this
in R using a modification of the code provided in the
geesmv package [18].
The technical details for themodels and adjustments are

available in the supplementary material (see Additional
file 2). The code to implement these in R is also available
(see Additional file 3).

Assessing small sample properties
In order to determine the performance of the unadjusted
and adjusted methods, we re-sample from the OSKIRA-
1 trial. Employing re-sampling techniques allows us to
investigate the properties of the methods under a realistic
data structure.
To determine the power we re-sample 5000 replicates

for each total sample size between 30 and 80 in incre-
ments of 10, which gives a Monte Carlo standard error of
0.3%. To ensure balance we randomly sample half of the
total sample size we are interested in from the placebo
arm and the other half from the 100 mg arm of the trial.
We apply all methods to each sub-sample and record the
treatment effect and 95% confidence interval. We do this
for both the difference in response probabilities and log-
odds estimates of the treatment effect. An estimate of the
power is then the proportion of confidence intervals that
do not contain zero. By re-sampling, rather than simulat-
ing from a known distribution, thinking of this quantity as
power implicitly assumes the treatment effect in the trial
to be the true treatment effect in the population. To ensure
these results agree with the conventional power results,
we present the power from a simulated example in the
supplementary material (see Additional file 4).
To determine the type I error rate, we permute the treat-

ment labels in the sub-samples in order to remove the
association between treatment and outcome. An estimate
of the type I error rate is then the proportion of confi-
dence intervals that do not contain zero. The coverage
is estimated as the complement of this. Again, to ensure
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these results agree with whenwe have simulated under the
null, we present an additional simulated example in the
supplementary material. The median width of the confi-
dence intervals and the average treatment effect for both
methods are also presented in the supplementary material
(see Additional file 5).
The unadjusted methods to be applied are the standard

binary method, the augmented binary method with GLS
and the augmented binary method with GEE. The adjust-
ments refer to the standard binary method fitted with
PML, the augmented binary method with GLS and PML
and the augmented binary method with the GEE variance
correction and PML.

Results
Log-odds scale
The power and type I error rates for the unadjusted
and adjusted methods are shown in Fig. 3. The unad-
justed augmented binary method provides higher power
than the standard binary method for all sample sizes.
The type I error rate of both methods is approximately
5%. Implementing the firth adjustment in the augmented
binary method with GLS makes negligible difference to
the power or type I error rate. In the adjusted augmented
binary method with GEE, the type I error rate drops to
3–4%. Differences between the GLS and GEE estimators
diminish with increasing sample size. The standard binary

method experiences a substantial drop in type I error rate
when the Firth correction is implemented.

Probability scale
Figure 4 shows the power and type I error rates for the
difference in response probabilities. The power is sim-
ilar to the log-odds case however both methods expe-
rience an inflation in type I error rate. Implementing
the correction in the GLS augmented binary method
results in a small improvement in the type I error rate
with no power lost. GEE adjustments result in an aver-
age reduction in type I error of approximately 2.5% but
the power drops to below that of the adjusted GLS.
Again, differences in GLS and GEE diminish as the sam-
ple size increases. The adjustment for the standard binary
reduces the type I error rate from 7% to approximately
5% however the power is below 20% for all sample sizes
investigated.
Table 2 shows the average reduction in confidence

interval width for the adjusted methods on both scales.
We compare the standard binary with both implementa-
tions of the augmented binary method. We see from this
that the augmented binary method with GLS offers the
most precision. This translates to the adjusted augmented
binary method requiring a 32% smaller sample size than
what would be required for the adjusted standard binary
method.
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Fig. 3 Operating characteristics of the unadjusted (left) and adjusted (right) standard binary and augmented binary methods on the log-odds scale
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Fig. 4Operating characteristics of the unadjusted (left) and adjusted (right) standard binary and augmented binary methods on the probability scale

To better understand the benefit of the small sam-
ple corrections it is useful to interpret the proportion of
cases experiencing perfect separation alongside the aver-
age width of the confidence intervals. Table 3 shows the
percentage of the 5000 sub-samples with confidence inter-
vals for the difference in response probabilities larger

Table 2 Comparison in average confidence interval width for
the small sample adjusted methods on the log-odds and
probability scales

Comparison Average reduction
in C.I. width (%)

Reduction
in required
sample size (%)

Log-odds

Standard binary vs

Augmented binary (GLS) 17.4 31.8

Standard binary vs

Augmented binary (GEE) 11.2 21.1

Difference in response probabilities

Standard binary vs

Augmented binary (GLS) 17.6 32.1

Standard binary vs

Augmented binary (GEE) 12.3 23.1

C.I. confidence interval

than 1. This is shown for each method at each sample
size. This would suggest that the corrections are most
beneficial when N<60.

Simulated example
Although re-sampling is beneficial as it details perfor-
mance information under realistic data structures, the
findings may be enriched by considering an example from
a known distribution. We firstly set the probability of
response equal to 0.470 in the treatment arm and 0.336
in the placebo arm, similar to the OSKIRA-1 study. Sec-
ondly, we simulate under the null where the probability
of response equals 0.336 in both arms. We investigate
power, type I error rate, average treatment effect estimates
and average confidence interval width for the small sam-
ple adjusted binary and augmented binary methods. The
results are presented in the supplementary material (see
Additional file 4).
In summary, our comparative findings from the re-

sampling are supported, in that the augmented binary
method offers higher power and precision with a reduc-
tion in required sample size of approximately 38%. The
augmented binary method has nominal type I error rate,
which is consistent with the re-sampling results. However,
the type I error for the adjusted standard binary method is
6.8–8.1%, which is higher than the type I error rates found
from re-sampling. The absolute power estimates for both
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Table 3 Percentage of cases experiencing extremely large variance due to perfect separation on probability scale (confidence interval
for difference > 1)

Standard binary Augmented binary (GLS) Augmented binary (GEE)

N Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

30 0.00 0.00 10.9 0.00 10.6 0.24

40 0.00 0.00 3.71 0.00 3.81 0.02

50 0.00 0.00 1.11 0.00 1.20 0.00

60 0.00 0.00 0.24 0.00 0.30 0.00

70 0.00 0.00 0.04 0.00 0.08 0.00

80 0.00 0.00 0.00 0.00 0.00 0.00

methods also differ from those in the re-sampling results,
however the comparative conclusions are the same. The
methods provide approximately equal treatment effect
estimates. A simulated example dataset is included should
readers wish to fit the models (see Additional file 6).

Discussion
In this paper we have explored the small sample proper-
ties of the standard binary and augmented binarymethods
and proposed adjustments to improve them. It would
appear that the increased efficiency of the augmented
binarymethod does indeed translate to a small sample set-
ting. The method performs better on the log-odds scale,
where normality assumptions made when employing the
delta method are best satisfied. These assumptions are
more questionable when working with samples of this size
on the probability scale, which is partly reflected in the
differences in inflation present.
As rare disease trials are restricted in their capacity

to detect treatment effects both because of small studies
and few studies running in any given disease, it follows
that maximising power within a single study is perhaps
even more crucial than in more common diseases. Conse-
quently, we recommend the use of the augmented binary
method as the primary analysis method in trials of rare
diseases using these endpoints.
When implementing the augmented binary method in

rare disease trials, we recommend the use of the Firth
adjustment for the logit models as it reduces the bias and
variance of the estimates. This is especially valuable in this
setting due to the restrictive nature of sample size. For the
continuous component, we recommend the GLS estima-
tor. As well as offering the largest power and precision,
GLS methods make more realistic assumptions about the
mechanism for missing responses, namely that they are
missing at random rather than missing completely at ran-
dom. Moreover they experience fewer convergence issues
in very small samples.
We have previously acknowledged the potential util-

ity of composite endpoints in rare diseases, however
guidance must be followed in order to ensure valid

and meaningful implementation in clinical trials [5].
Composite endpoints should be coherent, in that the
components are measuring the same underlying patho-
physiologic process. However, the components should not
be so closely related that the patient is likely to experi-
ence all of them, hence making the combined endpoint
redundant [19]. The magnitude of the gains from adopt-
ing a composite endpoint depends on the correlation
between components, the direction of treatment effect in
each component and hence the patient responder rates.
It is therefore crucial for interpretation that effects are
reported on individual components as secondary results.
Binary components of the composite can be analysed
with standard binary methods. Dichotomised continuous
components of the composite may be analysed with stan-
dard binary methods, a continuous test or by testing the
dichotomised component whilst making use of the contin-
uous information, a technique similar to the augmented
binary approach and originally proposed by Suissa [20].
This may be preferable to maintain the clinical definition
of the component whilst improving the power.
It is useful to consider further the role of response rate

in the composite endpoint on the operating characteristics
of interest. The ACR50 and ACR70 results presented in
the supplementary material indicate that power and type
I error are highly dependant on responder rates and treat-
ment effect scales (see Additional file 1). For the standard
binary method, the results show deflations in the type
I error rate on the log-odds scale and inflations on the
probability scale, with type I error rates ranging from 0 to
10%. This is likely to be due to logistic regression meth-
ods having poorly estimated standard errors when there
are few events per parameter, as is the case for the ACR50
and ACR70 endpoints [21]. Overall, the augmented binary
method shows fewer deviations from nominal type I error
rates whilst exhibiting increased power over the standard
binary method in every scenario investigated.
The findings from the simulated example in the sup-

plementary material further reiterate these problems with
type I error rate control in the standard binary method.
As the type I error rate is more stable for the augmented
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binary method both in the re-sampling and the simu-
lated example, we would suggest that it is perhaps more
robust in the rare disease setting than logistic regression
methods.
Although it is recognised that novel methods developed

for use in rare diseases may be of more immediate utility
than in common diseases, some resistance to implement-
ing the augmented binary method in real rare disease
trials may be experienced due to its increased complexity.
To assist with this we supply full R code for all unadjusted
and adjusted versions of the method. It is of paramount
importance that the efficiency gains provided by this
method are not used as a substitute for other important
efforts and considerations undertaken when running rare
disease trials. That is, the method should be used to com-
plement efforts in establishing international, multi-centre
trials with maximum feasible enrolment periods, along-
side other achievable strategies to increase sample size;
not to replace them.
There are some limitations in what we have presented.

We have only investigated the performance of the method
in small samples in relation to the rheumatoid arthri-
tis endpoint. Similar procedures may be carried out in
other data sets and the methods applied directly to rare
disease data, to ensure these gains are always experi-
enced across a range of responder indices and response
rates. Moreover, due to the increased number of param-
eters, the augmented binary method starts to experience
some problems when we reduce the total sample size to
n=20. This is unlikely to be a problem in practice, as
a randomised trial as small as that would be unusual.
If required, it may be possible to make further assump-
tions in order to reduce the number of parameters to be
estimated.
Our future work aims to improve the uptake of the aug-

mented binary method in rare disease trials by developing
methods for performing power calculations. This would
overcome using the approximation that, for fixed power,
the average gains equate to reducing the required sample
size by at least 32%. A further extension on which we are
currently working is developing joint modelling methods
for the instance when the composite is amore complicated
combination of outcomes, namely multiple continuous,
ordinal and binary components.We expect thesemethods
to exhibit even larger efficiency gains due to using infor-
mation in multiple continuous and ordinal components.
This will provide the potential to improve even further the
frequency and quality of evidence generated in many rare
disease areas.

Conclusion
In rare diseases where there are few or no available treat-
ments and limited opportunity to test emerging new treat-
ments, the power to detect an effective treatment is of

critical importance. The augmented binary method with
small sample adjustments offers a substantial improve-
ment for trials in these populations over methods cur-
rently being used, which throw away valuable information.
We recommend the use of the augmented binary method
in relevant rare disease trials using composite endpoints
and supply R code to assist with the implementation.
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