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Abstract

Background: Niemann-Pick disease Type C1 (NPCT1) is a rare progressive neurodegenerative disorder caused by
mutations in the NPCT gene. The pathological mechanisms, underlying NPC1 are not yet completely understood.
Especially the contribution of glial cells and gliosis to the progression of NPC1, are controversially discussed. As an
analysis of affected cells is unfeasible in NPC1-patients, we recently developed an in vitro model system, based on
cells derived from NPC1-patient specific iPSCs. Here, we asked if this model system recapitulates gliosis, observed in
non-human model systems and NPC1 patient post mortem biopsies. We determined the amount of reactive
astrocytes and the regulation of the intermediate filaments GFAP and vimentin, all indicating gliosis. Furthermore, we
were interested in the assembly and phosphorylation of these intermediate filaments and finally the impact of the
activation of protein kinase C (PKC), which is described to ameliorate the pathogenic phenotype of NPC1-deficient
fibroblasts, including hypo-phosphorylation of vimentin and cholesterol accumulation.

Methods: We analysed glial cells derived from NPC1 patient specific induced pluripotent stem cells, carrying different
NPC1 mutations. The amount of reactive astrocytes was determined by means of immuncytochemical stainings and
FACS-analysis. Semi-quantitative western blot was used to determine the amount of phosphorylated GFAP
and vimentin. Cholesterol accumulation was analysed by Filipin staining and quantified by Amplex Red Assay.
U18666A was used to induce NPC1 phenotype in unaffected cells of the control cell line. Phorbol 12-myristate 13-acetate
(PMA) was used to activate PKC.

Results: Immunocytochemical detection of GFAP, vimentin and Ki67 revealed that NPCT mutant glial cells undergo
gliosis. We found hypo-phosphorylation of the intermediate filaments GFAP and vimentin and alterations in the assembly
of these intermediate filaments in NPCT mutant cells. The application of U18666A induced not only NPC1 phenotypical
accumulation of cholesterol, but characteristics of gliosis in glial cells derived from unaffected control cells.
The application of phorbol 12-myristate 13-acetate, an activator of protein kinase C resulted in a significantly
reduced number of reactive astrocytes and further characteristics of gliosis in NPC1-deficient cells. Furthermore, it
triggered a restoration of cholesterol amounts to level of control cells.
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Conclusion: Our data demonstrate that glial cells derived from NPC1-patient specific iPSCs undergo gliosis. The
application of U18666A induced comparable characteristics in un-affected control cells, suggesting that gliosis is
triggered by hampered function of NPC1 protein. The activation of protein kinase C induced an amelioration of
gliosis, as well as a reduction of cholesterol amount. These results provide further support for the line of evidence
that gliosis might not be only a secondary reaction to the loss of neurons, but might be a direct consequence of
a reduced PKC activity due to the phenotypical cholesterol accumulation observed in NPC1. In addition, our
data support the involvement of PKCs in NPC1 disease pathogenesis and suggest that PKCs may be targeted
in future efforts to develop therapeutics for NPC1 disease.
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Background

Niemann-Pick type C1 is a rare lysosomal storage disorder
with an incidence of 1.12:100.000 live births [1]. The
phenotype of this lipidosis exhibit various symptoms ran-
ging from hepatosplenomegaly, motor dysfunctions, cere-
bellar ataxia and seizures to dementia, whereby the age of
onset varies from early infantile to adult onset forms. The
phenotype is based on mutations in either NPC1 (90%) or
NPC2 (10%) gene [2]. Due to the defect of the cholesterol
transporting NPC1 or NPC2 proteins, located in the lyso-
somal membrane and lumen, respectively, cholesterol and
other lipids like sphingolipids GM2 and GM3 gangliosides
accumulate [3]. Recent studies support an interaction of
NPC1 and NPC2 mediating the cholesterol efflux from
lysosomes, but the exact mechanism is still unexplained
[4]. Diagnosis can be performed by biochemical tests like
Filipin staining of patient fibroblasts and cholesterol ester-
ification tests, as well as the detection of highly disease
specific biomarker, but for final validation a genetic
testing is essential [5, 6]. Currently, there is only one,
by the European Medicines Agency (EMA) approved,
therapy for NPC1 disease, using Miglustat, a reversible
inhibitor of glucosylceramide synthase. Miglustat was
approved to treat Gaucher disease Type 1, but also im-
proves neurological symptoms in NPC1-patients, whereby
the hypothesized mode of action is substrate reduction
effect [7, 8]. Further potential therapy approaches are dis-
cussed containing the use of cyclodextrins, histone deace-
tylase inhibitors and chaperons [9, 10]. In regards of the
neurological symptoms, like cerebellar ataxia, based on a
progressive loss of cerebellar Purkinje cells, the patho-
logical mechanism is not yet understood. Alike, the contri-
bution of gliosis, described in NPC1 patients and different
animal models is controversially discussed [11]. Gliosis is
not only a ubiquitous event in the central nervous system
after any kind of tissue damage [12], but is discussed to be
an integral player in neurodegenerative diseases like
Alzheimer disease [13], wherein reactive astrocytes can be
beneficial as well detrimental for neuroprotection and tis-
sue regeneration [14]. Interestingly, Alzheimer disease and
NPC1 share some common features including abnormal

cholesterol metabolism, and involvement of amyloid-f and
tau pathology [15]. However, gliosis can be elucidated by
an increased number of GFAP positive reactive astrocytes
[16, 17]. Besides GFAP, an upregulation of other inter-
mediate filaments (IFs) like vimentin and nestin can be
observed, as well as an increased number of proliferative
cells, demonstrated by Ki67 expression or BrDU incoo-
peration experiments [18, 19]. In regards of NPC1 an
increased number of reactive astrocytes and abnormal
morphological changes are described in a commonly used
NPC1 mouse model [20-22]. NPC1 deficient mice re-
vealed an upregulation of glia cells after 4 weeks of age
and astrocytes showed an atypical morphology by less
elaborated processes and swollen cell bodies [23].
Gliosis was also shown in human post mortem brain
biopsy [24-26]. Although, gliosis is a certainly proved
pathological feature of NPC1 the role of glial cells in the
progression of the disease is controversially discussed.

Recently we developed a human cell model system,
based on induced pluripotent stem cells [27, 28], which
was used in this study to elucidate if iPSC derived glial
cells resemble gliosis, as a pathogenic hallmark of NPC1.
This NPC1 cell model displays typical NPC1 hallmarks,
like cholesterol and GM2 accumulations [27, 28], which
is in accordance to other studies using comparable
approaches [29-31]. However, a description of gliosis in
such an in vitro model system is still missing.

Here we investigated gliosis and phosphorylation status
of the intermediate filaments GFAP and vimentin in NPC1
patient-specific iPSC-derived glial cells. Intermediate fila-
ments are a non-enzymatic, rod-shaped cytoskeleton com-
ponent with a length of 8 to 15 nm diameter [32]. [Fs are
divided into 6 classes whereby class III contains structural
proteins like nestin, vimentin and glial fibrillary acidic pro-
tein (GFAP). Functions of intermediate filaments are also
very variable like cytoarchitecture, cell mobility, mechan-
ical support but also vesicular trafficking and signal modu-
lation [33]. The assembly of intermediate filaments is
based on association of monomers whereby this is an
assembly cycle consisting of polymerization via dephos-
phorylation of soluble monomers and depolimerization by
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phosphorylation of filaments. IFs are phosphorylated by
many different kinases like protein kinase C (PKC) or pro-
tein kinase A [34-36]. In NPC1 fibroblasts a disturbed
vimentin assembly cycle with altered vimentin phosphoryl-
ation status and aggregation of vimentin was described
[37]. Furthermore, they proved that sphingosine accumula-
tion inhibits protein kinase C, subsequently vimentin was
not phosphorylated, the pool of soluble vimentin was de-
creased and vesicular trafficking was blocked. An increased
cholesterol storage in the endosomal/lysosomal system was
hypothesized. Consequently activation of PKC, especially
PKCe, could increase soluble vimentin and rescued choles-
terol esterification effect in NPC1 fibroblasts [37, 38]. Here
we demonstrated that NPC1 patient specific iPSC derived
glial cells undergo spontaneously gliosis, reflecting a patho-
logical characteristic of NPC1. In addition, we found a dis-
turbed assembly cycle of GFAP and vimentin. Moreover,
we were able to rescue the IF phenotype via the activation
of PKC by phorbol 12-myristate 13-acetate, also leading to
a decreased amount of reactive glial cells, an increased
fraction of phosphorylated GFAP and vimentin, and
decreased cholesterol accumulation in NPC1 mutant cells.

Methods

Cell culture

Human dermal fibroblast cell lines were obtained from
Coriell Institute for Medical Research, Camden, USA
(NPC1 compound heterozygous mutated: c.1836 A > C
[p.E612D], 1628 delC [p.P543Rfs*20]; GM18436 and
NPC1 homozygous mutated: ¢.3882 T > C [p.I1061T];
GM18453) and Centogene AG, Rostock, Germany (control
and NPC1 homozygous mutated: ¢.1180 T > C [p.Y395H]),
respectively. Cells were cultivated in fibroblast medium
containing DMEM high glucose, 10% FBS and 1% penicil-
lin/streptomycin. All cells were cultivated at 37 °C in a
saturated humidity atmosphere containing 5% CO,.

Differentiation of progenitor cells

The generated neural progenitor cells, differentiated from
patient-specific iPS cells [27], were used for 20 passages
and seeded at an expansion density of 100,000 cells/cm>
on poly-L-ornithine-coated (15 pg/ml; Sigma, Germany)/
laminin (10 pg/ml; Trevigen, USA) dishes in proliferation
medium containing DMEM, 30% DMEM/F-12, 1X B27,
0.5% penicillin/streptomycin, 20 ng/ml FGF2 (Amsbio,
United Kingdom), 20 ng/ml EGF (Peprotech, Germany).
For terminal differentiation cells were plated with a dens-
ity of 45,000 cells/ cm? in differentiation medium (DMEM,
30% DMEM/F-12, 1X B27, 0.5% penicillin/streptomycin),
which was changed every 4 days over a period of 40 days.
For experiments comprising an application of PMA or
U18666A, cells were differentiated for 40 days and PMA
(10 nM, Cayman Chemicals, USA) or U18666A (1 pg/ml
Sigma, Germany) were applied for 24 h or 48 h.

Page 3 of 14

Immunocytochemistry

Cells were fixed at room temperature for 15 min in 4%
paraformaldehyde (PFA), washed with PBS and stored in
0.02% NaNj; at 4 °C. Immunocytochemistry was per-
formed for GFAP (1:500, rabbit IgG, Dako, Germany),
Vimentin (1:100, mouse IgG, V9, Invitrogen, Germany),
Blocking and permeabilization was carried out using
0.3% Triton X-100 and 5% normal goat serum (Dako,
Germany) in PBS for 30 min at room temperature. Cells
were incubated with primary antibodies for 1 h at room
temperature in 1% normal goat serum, followed by three
washing steps with PBS. Alexa Fluor 568 (1:500, goat
anti-mouse IgG or goat anti-rabbit IgG, Invitrogen,
Germany), Alexa Fluor 488 (1:500, goat anti-mouse IgG
or goat anti-rabbit IgG, Invitrogen, Germany) were used as
secondary antibodies, incubated 1 h at room temperature
with 1% normal goat serum in PBS. After washing with
PBS cells were stained with DAPI (5 min, 250 ng/ml),
washed three times and mounted with Mowiol-DABCO
mounting medium. Pictures were taken with a Bio-
zero8000 microscope system (Keyence, Germany) and
LSM780 laser scanning microscope (Zeiss, Germany).

Colocalization image analysis

Colocalization analysis was performed in three inde-
pendent experiments with digital images taken of ran-
domly chosen fields (N = 3, n = 12). Mander’s coefficient
[39] was used to determine colocalization of GFAP and
Vimentin, and of GFAP and Nestin. Mander’s coefficient
represents the proportion of overlapping pixels in two
channels and it ranges from 0 for no colocalization to 1
for absolute colocalization. The Mander’s coefficient is
not dependent on signal intensities of both channels so
it can be used even if the intensities differ [39]. Costes
automatic threshold quantifies amount of colocalization
automatically based on spatial statistics. Therefore, cor-
relation in different regions of the two-dimensional
histogram of a two-color image is used to automatically
estimate the threshold by identifying the pixel values
with a positive Pearson’s correlation coefficient [40].
NIH Image ] software [41] plugin JaCoP [42] was used
for analysis and determination of colocalization.

Filipin staining

For Filipin staining cells were fixed at room temperature
for 15 min in 4% PFA, washed with PBS, and stored in
0.02% NaNj at 4 °C. Fixated cells were incubated with
0.1 mg/ml Filipin for 45 min. After three washing steps
with PBS cells were mounted with Mowiol-DABCO
mounting medium. Filipin fluorescence intensities were
quantitative determined by taking 10 random pictures of
three replicates using a Keyence Biozero 8000 microscope
(Keyence, Germany). Analysis of the fluorescence inten-
sities was performed using Image] [41] by automatic
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determination of the threshold and subsequent measure-
ment of the intensities taking area above threshold into
account for normalization. Finally, results were normal-
ized to wildtype intensities [43, 44].

Western blot

Whole cell lysates were obtained by incubation in RIPA-
buffer for 15 min on ice. After centrifugation for 20 min
at 15,000 xg at 4 °C supernatant was transferred.

Protein concentrations in samples were measured using
the bicinchoninic acid assay (Pierce BCA Protein Assay
Kit, Thermo Scientific, USA). Samples were boiled for
15 min at 95 °C in 5x Laemmli buffer and separated by
SDS-PAGE with precast gels (4—15%, Bio-Rad Labora-
tories GmbH, Germany). Proteins were transferred to
nitrocellulose membrane with a semi-dry blotting sys-
tem Tans-Blot Turbo (Bio-Rad Laboratories GmbH,
Germany). After blotting, membrane was washed with
TBS and blocked with TBST, containing 0.1% Tween-
20 and 5% milk powder (pH 7.6) or 5% BSA (Roth,
Germany), for 1 h at room temperature. Followed by
incubation with primary antibodies, Vimentin (1:10,000,
rabbit IgG, GeneTex, USA), pSer38-Vimentin (1:1000,
GeneTex, USA), GFAP (1:1000, mouse IgG, Cell Signalling
Technology, USA) and pSer38-GFAP (1:1000, rabbit IgG,
GeneTex, USA) at 4 °C over night and GAPDH (1:10,000,
mouse IgG, Abcam, United Kingdom) and p-Actin
(1:10,000, mouse IgG, Sigma, Germany) 1 h at room
temperature. Western blots were rinsed 3 times with
TBST between the usages of several antibodies and incu-
bated with fluorescent dye labelled secondary antibodies,
IRDye 680 LT (1:20,000, goat anti-rabbit IgG), IRDye 800
(1:10,000, goat anti-mouse IgG, all LI-COR, Germany),
AlexaFluor 680 (1:10,000, goat anti-rat IgG), Invitrogen,
Germany). Precision Plus Protein Dual Xtra Standards
(Bio-Rad Laboratories GmbH, Germany) was used as a
molecular weight marker. Visualization and quantifi-
cation was performed with Odyssey Infrared Imaging
System (LI-COR, Germany). Expression of glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) was used
for normalization.

FACS

Cells were harvested by using Accutase (Stemcell Tech-
nologies, Germany) for 5 min. Reaction was stopped
using differentiation media. After centrifugation for
5 min at 3000 xg cells were fixed in 1% PFA in PBS for
15 min. Fixed cells were stored in FACS washing buffer
at 4 °C. For analysis cells were incubated with primary
antibodies, GFAP (1:500, rabbit IgG, DAKO, Germany
or 1:100, Rat IgG, Thermo Scientific, USA), Vimentin
(1:100, mouse IgG, Invitrogen, Germany), Ki67 (1:100,
rabbit IgG, Santa Cruz Biotechnology, Germany) in
Saponin buffer (0.5% Saponin, 0,5% BSA, 0.02% NaN3)
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for 2 h gently shaking. After washing cells were incubated
with secondary antibodies, Alexa Fluor 488 (1:1000, goat
anti-rabbit IgG), Alexa Flour 647 (1:1000, goat anti-mouse
IgG) or Alexa Fluor 568 (1:1000, goat anti-rat IgG; all
Molecular Probes, Germany) for 1 h gently shaking.
FACSCalibur and CellQuest Pro (BD, Germany) were
used for cell analysis.

Amplex red assay

Amplex Red cholesterol assay (Molecular Probes,
Germany) was used to quantify the amount of choles-
terol as described recently [44—46]. Therefore, differenti-
ated cells were washed with HBSS and harvested with
Accutase (Stemcell Technologies, Germany). Enzymatic
reaction was stopped with medium and cells were
centrifuged at 3000 xg for 5 min. Cell pellets were resus-
pended in 0.1% SDS solution (in PBS) and lysis of the
cells was performed by 5 freeze and thaw cycles using
liquid nitrogen and tap water. Protein concentrations in
lysates were measured using the bicinchoninic acid assay
(Thermo Scientific, USA).

Statistical analysis

Analysis of the data was carried out with GraphPad
Prism 6 (GraphPad Software Inc., USA). Data are given
as mean + SEM. Unless otherwise stated, unpaired t-test
was used to test for significance, with * = p < 0.05,
* = p < 001, *** = p < 0.001.

Results

Gliosis is accompanied by the emergence of reactive
astrocytes and can be determined not only by an increased
number of GFAP positive (GFAP™) cells but also by the
upregulation of other IFs like vimentin and nestin, as well
as a rise of proliferating Ki67 positive cells. Here, we used
these criteria to approve gliosis in iPSC derived glial cells.
Differentiation of the progenitor cells resulted in a mixed
population of glia cells and of neurons, wherein the cul-
tures contained around 35% neurons (data not shown), in-
dependent of the genotype of the cells, but an increased
glial population in the mutated cell lines. Experiments
were performed with cells differentiated for 6 weeks as we
found other hallmarks of NPC1 like accumulation of chol-
esterol or GM2 after this time of differentiation [27, 28].

Analysis of gliosis in NPC1 patient specific iPSC derived
glial cells

At first we were interested in the amount of glia cells in
the here used human patient-specific iPSC derived cell
model. Therefore, glial fibrillary acidic protein (GFAP)
and vimentin were stained (Fig. la-d), revealing an in-
creased amount of GFAP positive cells (GFAP™), as well as
vimentin positive (vimentin®) cells, in cell lines bearing a
NPCI mutation. Higher coefficients of colocalization
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cells in all NPCT mutant cell lines. f FACS analysis of GFAP"/vimentin™ cells confirmed an increased amount of glia cells in NPCT mutant
cell lines (N = 5-7, n = 14-23). g In addition, semi-quantitative protein measurement by western blot demonstrated a higher amount of
GFAP (N = 7-11, n = 26-43) and h an increased amount of vimentin in NPC1 mutant cells (N = 5-7, n = 14-23). i FACS analysis of cells
positive for GFAP and Ki67, elucidated an increased amount of double positive cells indicating gliosis NPCT mutant cell lines (g; N = 3-4, n = 7-9)

g 60
w *kk
2 =
o
*kk
+E 40
5
£ r
>
+; 20 -
s
O]
0 T T
control  ¢.1836A>C; ¢.1180T>C ¢.3182T>C
c.1628delC
10
*
% 8 *kk
o
Z T
O 6 *kk
£
c
>
2
0 T T
control  ¢.1836A>C; ¢.1180T>C ¢.3182T>C
c.1628delC
vimentin “— - 'i ‘ 57 kDa
GAPDH ~ “— — — — 3T kDa

analysis confirmed this observation in NPCI mutant
cells (Fig. 1e). In addition, flow cytometry analyses were
done to quantify the proportion of GFAP*/vimentin®
cells (Fig. 1f), revealing a significantly increased amount of
glial cells in all NPC1 mutant cell lines in comparison to
the control cell line after 6 weeks of differentiation. No
differences between the amount of GFAP" control cells

after 2 and 6 weeks of differentiation were found (data not
shown), as well as no differences were found between con-
trol cells and mutated cells after 2 weeks of differentiation
(data not shown), indicating an onset of gliosis in the
mutated cells later than 2 weeks of differentiation.
However, to further affirm gliosis we determined the
protein level of GFAP (Fig. 1g) and vimentin (Fig. 1h)
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by semi-quantitative western blot analyses, demonstrat-
ing significantly increased amounts of GFAP and
vimentin. As further criteria of gliosis we proved the
appearance of proliferative cells by means of a parallel
staining of GFAP and Ki67 and determined the number
of double positive cells by FACS analysis. This experi-
ment revealed a significantly increased number of
GFAP*/Ki67" cells in all NPCI mutant cell lines in
comparison to control cell line (Fig. 1i).

Taken together, these results demonstrate gliosis in
NPCI1 patient specific iPSC derived glial cells, proved
by an increased number of proliferative glial cells and
an increased number of GFAP" and vimentin® cells.
As we have demonstrated an upregulation of vimentin
in our cell model system, we speculated about an
altered assembly of vimentin, as well as of GFAP, both be-
longing to the class of intermediate filaments type III, in
the iPSC derived glial cells used here. Therefore, we ana-
lysed the assembly of GFAP and vimentin, as well as the
phosphorylation status of these filaments.
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Assembly and phosphorylation of IFs in iPSC derived
glial cells

Recently, it was demonstrated that the assembly of
vimentin is altered on fibroblasts of NPC1 patients
[37], wherein the NPCI mutant fibroblasts showed a
disturbed arrangement of vimentin. The here used
iPSC derived glial cells demonstrated comparable pat-
tern of IF structure. Figure 2 represents immunocyto-
chemical stainings of vimentin in control and NPC1
mutant cell lines (Fig. 2a-d). In comparison to the
control cells (Fig. 2a), the NPC1 mutant cell lines
revealed longer and thicker criss-crossed bundles of
vimentin (Fig. 2b-d). We observed comparable changes
for GFAP (Fig. 2e-h). The altered appearance is in
accordance to observations in fibroblasts of NPC1
patients and indicates an altered assembly of these
IFs. Next, we were interested in the phosphorylation
of vimentin and GFAP as the assembly/disassembly of
these IFs is regulated by phosphorylation of the IF
MONOmers.
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We used antibodies detecting the phosphorylation side
serin 38 and determined the amount of phosphorylated
vimentin and GFAP (p-vimentin, p-GFAP) by western
blot (Fig. 2i, j). Control cells displayed the highest
amount of p-vimentin and all mutant cell lines had a
significantly decreased pool of p-vimentin (Fig. 2i). Com-
parable results were obtained for the amount of p-GFAP
showing a significantly decreased amount of p-GFAP.

Induction of gliosis by U18666A

U18666A is a widely used blocker of intracellular choles-
terol transport, used to study the effect of induced chol-
esterol accumulations on cellular homeostasis [47].
Here, we used U18666A to induce cholesterol accumula-
tions in cells of the control cell line, as we asked if this
will induce gliosis. We applied U18666A (1 pg/ml) for
24 h to control cells which were differentiated for 6 weeks
and analysed the above described parameters indicating
gliosis. First, the application of U18666A induced clearly
cholesterol accumulations, shown by Filipin staining
(Fig. 3b), in contrast to untreated control cells (Fig. 3a).
The determination of relative fluorescence units (Fig. 3c), as
well as the quantification of cholesterol by the Amplex Red
assay (Fig. 3d), demonstrated an increased amount of chol-
esterol in the U18666A treated cells. Moreover, we found a
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significantly increased amount of GFAP'/vimentin® cells
(Fig. 3e) and GFAP'/Ki67" cells (Fig. 3f), demonstrating an
U18666A dependent induction of reactive astrocytes. Ac-
cordingly to the observed hypo-phosphorylation in NPC1
deficient cells, we observed a significantly reduced amount
of p-vimentin (Fig. 3g) and GFAP (Fig. 3 h) in U18666A
treated cells. These results demonstrate that U1866A
induces gliosis in control cells and suggests, that the
accumulation of cholesterol reflects the trigger. If the
accumulation of cholesterol directly induces gliosis or
if gliosis is induced by the hypo-phosphorylation of
intermediate filaments stays elusive.

Rescue from gliosis and NPC1 phenotypical cholesterol
accumulation

As we have demonstrated an altered assembly of GFAP
and vimentin, as well as an altered amount of p-GFAP
and p-vimentin in cells carrying a NPC1 mutation and
in unaffected control cells treated with Ul18666A, we
asked next if the activation of PKC leads to a rescue of
the observed gliosis as well as of the NPC1 phenotypical
accumulation of cholesterol. Therefore, we treated the
cells with phorbol 12-myristate 13-acetate. PMA is an
activator of the protein kinase C which phosphorylates
GFAP and vimentin and increases the amount of the
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analysis of GFAP*/vimentin® cells and f GFAP*/Ki67" cells revealed an increased amount of reactive astrocytes (N = 4, n = 7-12). g Treatment with
U18666A resulted in a reduced amount of p-vimentin and (h) p-GFAP (N =4, n = 8-12)
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soluble monomers. We treated the cells with 10 nM PMA
for 48 h and measured the amount of GFAP"/vimentin®
cells and the amount of GFAP*/Ki67" cells by flow cytom-
etry (Fig. 4). The treatment of NPC1 mutant cell lines re-
sulted in a significantly reduced number of GFAP
“/vimentin® cells (Fig. 4a), as well as a significantly re-
duced amount of GFAP*/Ki67" cells (Fig. 4b), indicating a
rescue of the glial cells from gliosis. To evidence the influ-
ence of PMA on the assembly cycle of intermediate
filaments and the distribution of the soluble fraction, we
used western blot to determine the fraction of p-vimentin
(Fig. 5a) and p-GFAP (Fig. 5b). Comparable to the effect
of PMA on the amount of GFAP*, vimentin® and Ki67"
cells, the quantity of p-vimentin and p-GFAP increased
after PMA treatment in all NPCI mutant cell lines, dem-
onstrating a rescue of the disturbed intermediate filament
assembly cycle.

Finally, we asked if the activation of PKC and the subse-
quently restoration of p-vimentin and p-GFAP had an
impact on the NPC1 phenotypical cholesterol accumula-
tion, which we described recently for these NPCI mutant
cell lines [27, 28]. The effect of PMA on the cholesterol
accumulation was assessed by Filipin staining, the quanti-
tation of the staining by fluorescence intensities, and the
total cholesterol amount by using the Amplex Red assay.
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We observed the typical accumulation of cholesterol in
the NPC1 mutant cell lines in Filipin stainings in compari-
son to the control (Fig. 6a-d). Treatment of the cells with
PMA (Fig. 6e-h) resulted in a decrease of the Filipin stain-
ing, at least in the cells carrying the mutations ¢.1180 T > C
and ¢.3182 T > C, indicating less accumulation of choles-
terol. This was confirmed by the analysis of the Filipin
fluorescence signal (Fig. 6i), as well as by the Amplex Red
assay (Fig. 6j). All NPC1 mutant cell lines displayed a sig-
nificantly reduced amount of cholesterol. Moreover, these
amounts were not distinguishable from the cholesterol
amount of the control cell line. Taken together, the activa-
tion of PKC by PMA triggered a rescue of iPSC derived
glial cells from gliosis, induced an increase of phosphory-
lated IFs and attenuated the NPC1 phenotypical accumu-
lation of cholesterol.

Discussion

Analysis of gliosis in NPC1 patient specific iPSC derived
glial cells

Gliosis, the emergence of reactive astrocytes and micro-
glia, is a universal event in the central nervous system
after any kind of tissue damage and displays a physio-
logical, normally, neuroprotective, reaction. But, in case
of long lasting, chronical activation, glial cells starts to
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release mediators of cytotoxicity leading to a higher vul-
nerability of surrounding neurons or neuronal death
[48]. Consequently, it stands to reason that dysregulation
of normal astrocyte function contributes to the progres-
sion neurological disorders.

However, a major hallmark of gliosis is an increased
amount of glia cells, especially reactive astrocytes, which
upregulate GFAP and vimentin and re-express nestin [49].
Consequently, gliosis can be elucidated by an increased
number of GFAP positive cells [16] and an upregulation of
the IFs vimentin and nestin, as well as an increased num-
ber of proliferative cells, demonstrated by Ki67 expression
or BrDU incooperation. In regards of NPC1, gliosis, as
well as marker for neuroinflammation, were shown in
human post mortem brain biopsy material in several
regions of the brain and in murine models of NPC1
[24-26]. An increased number of reactive astrocytes
and abnormal morphological changes are described in the
broadly used BALB/c_Nctr-Npc1m1N/-] NPC1-deficient
mouse strain [20, 21, 50]. NPC1-deficient mice revealed
an upregulation of glia cells after 4 weeks of age and

astrocytes showed an atypical morphology by less elab-
orated processes and swollen cell bodies [23]. In ac-
cordance to findings in murine models, we observed
higher amounts of GFAP*/vimentin® cells, as well as an
increased protein amount of both IFs in our human
disease model system. Cells double positive for GFAP
and Ki67" reflect proliferative reactive astrocytes in
NPC1 mutational cell lines, displaying a further charac-
teristic of gliosis. Thus, we conclude that glial cells de-
rived from NPC1 patient-specific iPS cells undergo
gliosis, representing a further hallmark observed during
the progression of NPC1l. We emphasize that gliosis
was not induced, but displays an intrinsic feature of
NPCI1 deficient cells of this model system. Until now,
studies analyzing gliosis in human in vitro cell model
systems are missing and to our knowledge this is the
first study demonstrating gliosis in a human iPSC based
cell model.

Beyond the question if iPSC derived glial cells
undergo gliosis, we were interested in the assembly of
the GFAP and vimentin as it was recently described



Peter et al. Orphanet Journal of Rare Diseases (2017) 12:145

Page 10 of 14

control

)

¢.1836A>C;
¢.1628delC

°
oo/
©
(o
=
=
=]

10.nM PMA

c.1180T>C d . c3ser>C

lines indicate significances between treated and untreated cells

. *k o
I 151 xRk P
35
s —_
E 1.04
o
el
(5]
N
©
£
2 051

untreated PMA untreated PMA untreated PMA untreated PMA

control ¢.1836A>C; ¢.1180T>C ¢.3182T>C
c.1628delC
l 301 ok
*kk
* k% T *

£ . *
% o 1
o
o 20
€ T
°
2
173
<
o 104
=
o
o
=5

untreated PMA untreated PMA untreated PMA untreated PMA

control ¢.1836A>C; c.1180T>C c.3182T>C
c.1628delC

Fig. 6 Effect of PMA on cholesterol amounts. a-h Filipin staining (blue) was used to assess cholesterol content and demonstrated typical accumulations in
all NPCT mutant cell lines. Cholesterol accumulations were ameliorated after the treatment with PMA, resulting in a Filipin staining pattern comparable to
the control cells. Scale 100 um (i). Accordingly the analysis of the fluorescence intensities revealed a decreased amount of cholesterol (N = 4, n = 40-50).
j Similar results are shown for the quantification of the cholesterol amount using the Amplex red assay. The amount decreased significantly to
the cholesterol amount of control cells (N = 4-5, n = 6-18). Asterisks above bars indicate significance to untreated control and asterisks above

that NPCl-patient derived fibroblasts display hypo-
phosphorylation of vimentin [37]. While vimentin is down-
regulated during brain development it is upregulated in
astrocytes undergoing gliosis [16]. Nevertheless, vimentin
is discussed to be also upregulated as a damage-response
mechanism in neurons in neurodegenerative disease like
Huntington or Alzheimer disease, whereby vimentin is in-
volved in neurite extension and synaptic recovery [51].
This aspect merits further studies of the function of

vimentin in neurodegenerative diseases, to elucidate the
contribution of IFs to the progression or attenuation of
disease emergence.

Assembly and phosphorylation of IFs in iPSC derived glial
cells

In regards of the assembly of the IFs GFAP and vimentin,
we observed changes in the appearance in NPC1 mutant
cell lines. In immunocytochemical stainings GFAP and
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vimentin appeared in more densely packed aggregates, or-
ganized in a criss-cross manner within the cytosol. This
appearance is in accordance with stainings of vimentin in
fibroblasts of NPC1 patients [37] and indicates a disturbed
assembly/disassembly cycle for vimentin and GFAP. Con-
sistently, we found significantly decreased amounts of the
phosphorylated, soluble, forms of GFAP and vimentin in
NPC1 mutant cell lines, in accordance to studies per-
formed with fibroblasts of NPC1 patients [37, 38]. These
studies demonstrated not only a disturbance of vimentin
assembly, but vimentin was found to interact with Rab9,
during lipid movement from late endosomes, and Rab7a,
involved in vesicular membrane trafficking [52]. This
interaction is altered in NPC1 disease due to lipid and
cholesterol accumulation in late endosomes resulting in
an inhibition of PKC, hypo-phosphorylation of vimentin
and endosomal dysfunction. Hypo-phosphorylation of
vimentin leads to aggregation and enclosure of Rab9, fi-
nally resulting in transport deficiencies and blocked lipid
egress [37, 38]. Most recently, vimentin aggregates were
shown to inhibit trafficking of mitochondria in giant
axonal neuropathy [53] strengthening the hypothesis that
reduced phosphorylation of intermediate filaments leads
to a trafficking defect in neurodegenerative disease. These
alterations in IF type III are assumed to inhibit lysosomal
exocytosis [37, 38] which is a known mechanism for
NPC1 mutational cells to release stored cholesterol. For
instance, cholesterol lysosomal exocytosis could be en-
hanced by HPB-cyclodextrin [54] and &-tocopherol [55].
A possible mode of action of these substances could be
the induction of a calcium-influx which in turn activates
PKC, subsequently leading to a phosphorylation of IFs,
initiating the lysosomal exocytosis leading to a depletion
of cholesterol in NPC1 mutant cells.

Rescue from gliosis and NPC1 phenotypical cholesterol
accumulation

As an inhibition of PKC, by lysosomal lipid accumulation,
was demonstrated in fibroblasts of NPC1 patients [37, 38]
and PKC activation restores subcellular cholesterol trans-
port in NPCl-deficient fibroblasts [38], we asked if an
activation of PKC ameliorates the features of gliosis, hypo-
phosphorylation of IFs, and finally the accumulation of
cholesterol observed in iPSC derived glial cells. Thus, we
treated the cell cultures with the PKC activator PMA and
determined marker for gliosis, amount of phosphorylated
IFs, and cholesterol. In regards of gliosis, PMA treated cell
cultures demonstrated a reduced number of GFAP
"/vimentin® cells, as well as reduced number of GFAP
*/Ki67" cells, revealing an amelioration of gliosis.

In accordance to the study of Walter and coworker
[37], the treatment with PMA increased the phosphory-
lated amount of vimentin. In addition to this study, we
analysed glial cells and consequently GFAP and vimentin
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and found a similar impact of PMA on GFAP. This was
to be expected as GFAP and vimentin belong both to
the family of intermediate filaments type III. The cas-
cade leading to a reduced amount of phosphorylated
GFAP stays elusive, but we speculate that the suggested
interrelationship of PKC activation, vimentin and Rab9
[37] can be adapted to GFAP. Following this model, the
lysosomal accumulation of cholesterol would be the
starting point of this vicious circle.

In support of this hypothesis we used Ul8666A to
induce an accumulation of cholesterol in control cells.
The treatment with U18666A resulted in an accumulation
of cholesterol as expected, but moreover we observed glio-
sis in the control cells, demonstrated by a significantly in-
creased number of GFAP"/vimentin® cells, accompanied
by a reduced amount of phosphorylated GFAP and vimen-
tin. Recent studies described U1866A induced cholesterol
accumulations in rat astrocytes influencing the metabolic
pathway of these cells [56, 57], but effects in regards of
gliosis were not topic of these studies.

Moreover, we observed a strong impact of the PMA
treatment on the cholesterol amount in NPC1 mutant
cells. As a hallmark of NPC1, the here used NPC1 mu-
tant cell lines [27, 28], as well as other iPSC derived
NPC1 neuronal cells [29-31] showed significant choles-
terol accumulations. PMA induced a reduction of chol-
esterol accumulations, demonstrated by Filipin stainings
and by Amplex Red Assay, where latter one elucidated a
normalization of the cholesterol amount, comparable to
the cholesterol amount of control cells. In accordance to
our results, a redistribution of cholesterol upon the acti-
vation of PKC was recently demonstrated in NPCI-
deficnet fibroblasts [38].

Bringing together our results and the results obtained
from NPC1-deficient fibroblasts [37, 38], we conclude that
the accumulation of cholesterol initiates a perturbation of
PKC signaling, leading to altered assembly of IFs. We
speculate, that this cascade contributes to the initiation of
gliosis, observed in NPC1 mutant cell lines as well as in
U18666A treated control cells. Consequently, gliosis ap-
pears to be primary effect of the cholesterol accumulation
within glial cells and not a secondary effect mediated by
the loss of neurons in NPC1. Actually, the contribution of
gliosis to the progression and/or phenotypical occurrence
of NPC1 is controversially discussed. One certain feature
of NPC1 is an activation of astrocytes, observed both in
mouse models and NPC1 patients [58]. But, the contribu-
tion of astrocytes to the neurodegenerative processes is
controversially discussed. Knock-down experiments of
NPClI, restricted to astrocytes or neurons in the CNS of
mice hint at astrogliosis as a secondary process with a low
impact on the disease progression [59-62]. On the other
hand, severe symptoms of murine NPCl-models were
significantly ameliorated upon the astrocyte-specific
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knock-in of NPCI [63, 64]. Still, an almost complete
recovery was only achieved by double knock-in of NPCI
into astrocytes and neurons [65], indicating a cooperative
mechanism underlying the recovery. If an impaired signal-
ing in astrocytes, based on a corrupted PKC signaling and
thus corrupted PKC dependent processes, ends up in a
deleterious vicious circle leading to cell loss is speculative
and stays enigmatic, but merits further studies regarding
the contribution of glial cells and gliosis to the pathogenic
mechanism underlying NPC1, wherein patient specific
iPSC models provide promising tools in regards of disease
modelling.

Conclusion

Here we demonstrated gliosis in a cell model system
based on NPC1 patient specific iPS cells. We found that
gliosis is an intrinsic feature of this model system,
reflecting one of the pathological distinguishing marks
of NPC1. For sure, this feature provides the opportunity
to study the impact of gliosis as well as the interplay
between glial cells and neurons on the pathogenic mech-
anisms of NPC1 in a human model system. Besides the
applicability of these model system in disease modelling
of NPC1, we described the alterations of intermediate
filaments in regards of structural features and regulation
by PKC. More importantly, we confirmed an impact of
PKC signaling on the pathogenesis of NPC1, presenting
the possibility to develop new intervention strategies to
ameliorate the progression of NPC1.
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