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Abstract

Background: Ataxia-telangiectasia (A-T) is a devastating human autosomal recessive disorder that causes progressive
cerebellar ataxia, immunodeficiency, premature aging, chromosomal instability and increased cancer risk. Affected
patients show growth failure, poor weight gain, low body mass index (BMI), myopenia and increased fatigue
during adolescence.
The prevalence of alterations in body composition, muscle strength and hormonal status has not been well described
in classical A-T patients. Additionally, no current guidelines are available for the assessment and management of these
changes.

Methods: We analyzed body composition, manual muscle strength and hormonal status in 25 A-T patients and 26
age-matched, healthy controls. Bioelectrical impedance analysis (BIA) was performed to evaluate the body composition,
fat-free mass (FFM), body cell mass (BCM), extracellular matrix (ECM), phase angle (PhA), fat mass (FM) and ECM to BCM
ratio. Manual muscle strength was measured using a hydraulic hand dynamometer.

Results: The BMI, FFM and PhA were significantly lower in A-T patients than in controls (BMI 16.56 ± 3.52 kg/m2 vs.
19.86 ± 3.54 kg/m2; Z-Score: -1.24 ± 1.29 vs. 0.05 ± 0.92, p <0.001; FFM 25.4 ± 10.03 kg vs. 41.77 ± 18.25 kg, p < 0.001; PhA:
4.6 ± 0.58° vs. 6.15 ± 0.88°, p < 0.001). Manual muscle strength was significantly impaired in A-T patients compared with
controls (10.65 ± 10.97 kg vs. 26.8 ± 30.39 kg, p< 0.0001). In addition, cortisol and dehydroepiandrosterone sulfate (DHEAS)
levels were significantly lower in A-T patients than in controls.

Conclusion: Altered body composition, characterized by depleted BMI, PhA and BCM; by the need to sit in a wheelchair;
by altered hormone levels; and by poor muscle strength, is a major factor underlying disease progression and increased
fatigue in A-T patients.

Trial registration: ClinicalTrials.gov NCT02345200
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Background
Ataxia telangiectasia (A-T) is an autosomal recessive
genomic instability syndrome characterized by cerebellar
ataxia, immunodeficiency and cancer predisposition [1–3].
Additional clinical features of A-T include oculocutaneous
telangiectasias, frequent bronchopulmonary infections,
growth retardation, fatigue in adolescence and premature
aging [4–7]. As in other immunodeficiency and genomic
instability syndromes, a high percentage of A-T patients

suffer from dystrophy, stunting and poor weight gain
[8–11]; however, the pathophysiology underlying A-T-
mediated alterations in physical development is complex.
Potential causes of failure to thrive include low growth
hormone levels, hypogonadism, upper and lower respira-
tory system infections, catabolic bone metabolism and
progressive neurodegeneration, such as dysphagia and
aspiration [9, 12, 13]. Growth failure, muscle wasting and
weight loss have been well described in numerous chronic
diseases such as congenital heart failure, chronic kidney
disease, chronic liver disease and cystic fibrosis [14, 15].
Poor growth is a common feature of A-T and may be
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associated with a general decline in overall health, poor
caloric intake and endocrine abnormalities [8, 10, 13].
According to several studies, cachexia and impaired
growth directly correlate with increased morbidity and
mortality [9, 16–18]. Although they are common clinical
problems in A-T patients, cachexia and myopenia have
rarely been investigated.
We recently showed that the levels of circulating

insulin-like growth factor-1 (IGF-1) and its main binding
protein, IGF-binding protein 3 (IGF-BP3), are low in the
majority of A-T patients [8, 9]. In addition to regulating
somatic growth and metabolism, the growth hormone
(GH)/IGF-1 axis has been implicated in regulating brain
growth. Indeed, a recent study demonstrated that neuro-
logical progression was accompanied by GH/IGF-1 axis
deficiency, markedly reduced body weight, high ataxia
scores and advanced age [11]. Moreover, as A-T patients
age, they often develop a catabolic condition that is asso-
ciated with impaired glucose metabolism [3, 19]. It is
tempting to speculate that decreased levels of growth
hormones stemming from major endocrine dysregula-
tion are responsible for frailty, disability, and mortality
in A-T patients. However, considerable clinical variation
exists among patients with A-T. The clinical phenotype
of A-T is aligned with the presence of some degree of
residual ATM kinase activity [20–22]; however, in our
current cohort of classical A-T patients, no residual
kinase activity was detected, as recently described [8].
The findings described above motivated us to conduct

a detailed clinical investigation of body composition,
manual muscle strength and hormonal status in 25 A-T
patients and a group of healthy controls.

Methods
Between May 2013 and April 2014, we enrolled 26 patients
with A-T and 26 gender- and age-matched healthy controls
for evaluation in our cross-sectional interventional study,
which included one study visit. The A-T patients were
clinically diagnosed according to recent World Health
Organization (WHO) recommendations [23]. One A-T
patient was excluded from all analysis due to lymphoma.
Body composition and muscle strength were evaluated.

Hormonal status was analyzed in serum samples
collected from healthy subjects ≥12 years of age and
from the A-T patients.

Eligibility
Written consent from patients or caregivers was required
for each subject. The study was conducted following the
ethical principles of the Declaration of Helsinki, regulatory
requirements and the code of Good Clinical Practice. The
study was approved by the responsible ethics committees
(application number 37/13) in Frankfurt and registered at
clinicaltrials.gov NCT02345200.

Comorbidities that influence body composition, such
as malignoma and dialysis-dependent renal failure, were
defined as exclusion criteria. Healthy controls were
recruited by public posting. The subjects were matched
for sex and age. Controls with any type of chronic
disease were rejected. Subjects with body composition
alterations out of the normal range (i.e., overweight,
obesity or cachexia) were not included. Due to ethical
concerns, we were not allowed to collect blood from
healthy controls less than 12 years of age.

Growth analysis and neurological examination
Weight and height were recorded, and body mass index
(BMI) was calculated. Z-Scores were determined using
http://aga.adipositas-gesellschaft.de/mybmi4kids/index.php.
The age percentile was defined according to Cole´s least
median of squares (LMS) values. Then we performed a de-
tailed clinical neurological examination with quantification
of the individual progress of ataxia by the ataxia score as
recently described [11].

Bioelectrical impedance analysis (BIA)
Bioelectrical impedance analysis (BIA) was performed
using Data Input’s Nutriguard-M multi-frequency Bioelec-
trical Impedance Analyzer and BIANOSTIC-AT® double-
size electrodes (Data Input, Pöcking, Germany) according
to the manufacturer’s instructions. The current was set to
50 kHz. The subjects were required to be sober and were
asked to micturate prior to measurement.
To ensure the even distribution of body water, each

subject had to lie on the examination couch for 15 min.
BIA calculates body compartments based on the differ-
ing conductivities of tissues with distinct biological fea-
tures; the measure is proportionate to the cellular water
and electrolyte contents. Impedance was measured on
the dominant side from the wrist to the ipsilateral ankle
using four electrodes.
The analysis was conducted using Nutri Plus software

(Data Input, Pöcking, Germany). We determined the
following variables: the phase angle (PhA), fat-free mass
(FFM), fat mass (FM), body cell mass (BCM), extracellu-
lar matrix (ECM), and ECM/BCM ratio. Additionally,
the percentage of BCM in FFM was analyzed but only
for adults.
FFM is defined as the body weight minus FM; BCM

and ECM together compose the FFM. BCM mainly
comprises visceral proteins and intracellular water [24],
whereas ECM includes bone mass and extracellular
water. Software was used to calculate the ECM/BCM
ratio for individuals over 15 years of age.

Analysis of manual muscle strength
Manual muscle strength was assessed using a hy-
draulic hand dynamometer from BASELINE® Evaluation
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Instruments (Fabrication Enterprises, Inc., Elmsford, NY,
USA), following the manufacturer’s guidelines. Hand
position was stabilized in the A-T patients, as needed.
Each subject was then asked to press the handle with
maximum power before a rest period of 30 s. Each meas-
urement was conducted in triplicate. After every measure-
ment, the position of the indicator needle on the meter
was read and then reset to zero. The mean of these three
measurements was calculated.

Hormonal status
As some hormone levels fluctuate in a circadian rhythm,
blood was collected at eight in the morning. The subjects
were always sober during blood collection.
A chemiluminescence immunoassay (IMMULITE 1000

Immunoassay System, Siemens, Bad Nauheim, Germany)
was used to measure serum cortisol, dehydroepiandroster-
one sulfate (DHEAS), GH, IGF-1, IGF-BP-3, thyroid-
stimulating hormone (TSH) and vitamin D levels.

Statistical analysis
GraphPad Prism 5.01 (GraphPad Software, Inc.) and
Microsoft Excel were used for the statistical analysis.
BMI, height, weight and manual muscle strength are
presented as arithmetic means with standard deviations
(SDs). For comparisons between the two study groups,
Student’s paired t-test was applied. Correlations were an-
alyzed by Spearman’s or Pearson’s correlation coefficient.
P-values ≤ 0.05 were considered significant.
BMI was defined as the primary variable. The secondary

variables included body compartment structures based on
BIA detection, manual muscle strength and hormonal
status.

Results
Table 1 shows the characteristics of the evaluated patients.
We compared 25 A-T patients and 26 gender- and age-
matched healthy controls. A total of 13 female and 13
male subjects were included in the control group and 13
females and 12 males in the patient group. Of the 25
included patients, 11 (44 %) had BMIs below the 3rd

percentile. Two of the 25 patients (8 %) had gastrostomy
tubes; both suffered from swallowing problems and had
BMIs below the 3rd percentile. The mean age in the A-T
group was 13.04 ± 6.79 years; the mean age in the healthy
control group was 14.96 ± 6.45 years. Height, weight and
BMI were significantly lower in the A-T patients than in
the healthy controls (Table 1).
Table 2 shows clinical and neurological characteristics

of the A-T cohort. Patients were grouped in patients
whose gait is still preserved and wheelchair-bound
patients. Wheelchair-bound patients were older and
neurologically more affected than mobile patients. In
addition, they had higher alpha-fetoprotein (AFP) - values.

Whereas PhA and BMI Z-Scores seem to be affected in
independently from mobility, the occurrence of dysphagia,
neuropathy and higher ataxia scores go along with loss of
gait. In sum, the neurological impairment was increased
in this group.

BIA
The BIA measurements revealed significantly lower PhA
values in the A-T patients than in the controls (Fig. 1; A-T
4.6 ± 0.58°, controls 6.15 ± 0.88°; p < 0.001). Interestingly,
six of the 18 A-T patients (33.3 %) who were between two
and 18 years of age had pathologically low PhA values that
fell below the 3rd percentile. This difference was even
more pronounced in the group comprising patients over
12 years of age, in which five of the eight (62.5 %) patients
had PhA values below the 3rd percentile.
FFM was significantly lower in the A-T patients than

in the controls (Fig. 2; A-T 25.4 ± 10.03 kg, controls

Table 1 Patient characteristics

Parameters A-T (n = 25) Controls (n = 26) p-value

Age [years] 13.04 ± 6.79 14.96 ± 6.45

Male 12 13

Female 13 13

Pre-Pubertal 11 (44 %) 6 (23 %)

Adults 7 (28 %) 11 (42.3 %)

Height [m] 1.38 ± 0.23 1.59 ± 0.27 <0.01

Z-Score -1.51 ± 1,53 0.35 ± 1.01 <0.01

Weight [kg] 33.38 ± 16.8 53.75 ± 23.39 <0.01

Z-Score -1.93 ± 1.89 0.25 ± 1 <0.01

BMI [kg/m2] 16.56 ± 3.52 19.86 ± 3.54 <0.001

Z-Score -1.24 ± 1.29 0.05 ± 0.92 <0.001

AFP [ng/ml] 411.8 ± 305.3

CRP [mg/l] 5.9 ± 1.33a

The data are shown as the means ± SD
anormal CRP levels <5 mg/l

Table 2 Clinical Characteristics of mobile and wheelchair-bound
patients

Parameters Gait preserved
(n = 10)

Wheelchair-bound
(n = 15)

p-value

Age [years] 6.2 ± 2.78 17.6 ± 4.27 <0.0001

Time in wheelchair [years] 6.75 ± 3.47

Z-Score BMI -0.96 ± 0.89 -1.43 ± 1.55 n.s.

PhA [°] 4.8 ± 0.53 4.51 ± 0.59 n.s.

A-T-Score 12.5 ± 6.89 23.5 ± 2.58 <0.01

Dysphagia 0 10

Neuropathya 0 8

AFP [ng/ml] 237.5 ± 154.6 436.4 ± 253.1 <0.05

The data are shown as the means ± SD
aOnly 18 of 25 patients were investigated for peripheral neuropathy
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41.77 ± 18.25 kg; p < 0.001). Four of the 18 (22.2 %)
patients who were between two and 18 years of age and
four of the eight (50 %) patients who were between 12
and 18 years of age had FFM values below the 3rd

percentile. BCM, ECM and the ECM/BCM ratio were mea-
sured for all subjects over 15 years of age (12 A-T patients,
14 healthy controls).
BCM was significantly lower in the A-T patients

than in the controls (A-T 14.71 ± 3.71 kg, controls
29.96 ± 8.3 kg; p < 0.001); the A-T patients also had
significantly lower ECM levels (A-T 18.69 ± 4.38 kg,
controls 24 ± 5.78 kg; p < 0.05). ECM was within the
normal range in 11 of the 12 patients; the remaining
patient had low ECM.
The ECM/BCM ratio was significantly higher in the

A-T patients than in the controls (Fig. 3; A-T 1.29 ±
0.19, controls 0.82 ± 0.09; p < 0.001). All 12 patients
(100 %) had high ECM/BCM values.
The percentage of BCM in FFM was analyzed in only

the adult subjects. Again, significantly lower levels were

found in the A-T patients than in the controls (A-T
44.1 ± 4.17 %, controls 55.25 ± 2.39 %; p < 0.001).

Manual muscle strength
Manual muscle strength was significantly decreased in the
A-T cohort compared with the controls (A-T 10.65 ±
7.33 kg, controls 26.8 ± 19.35 kg; p < 0.001).

Hormonal status
The hormone level measurements are shown in Table 3.
Significantly lower cortisol, DHEAS and IGF-1 levels
were found in the A-T patients compared with the
controls. Unfortunately, we did not have matched
controls for the younger patients. Therefore, we carefully
matched the older A-T patients with controls. Significance
could be confirmed for only cortisol and DHEAS levels, as
shown in Figs. 4 and 5.
Interestingly, vitamin D levels were significantly lower

in the group of A-T patients who were over 12 years of
age compared with the controls (A-T (n = 14) 12.64 ±
6.66 ng/ml, controls (n = 17) 24 ± 9.54 ng/ml; p < 0.001).
Of the 24 A-T patients, 11 (45.8 %) had vitamin D levels
<20 ng/ml, and five had levels <10 ng/ml. All five
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Fig. 1 Phase angle α values in A-T patients (n= 25) and healthy controls
(n= 26). The A-T patients showed significantly lower α-values than did
the healthy controls; p < 0.001
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Fig. 2 Fat free mass in A-T patients (n = 25) and healthy controls
(n = 26). The A-T patients showed significantly lower FFM compared
to the healthy controls; p < 0.001
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Fig. 3 The ECM/BCM ratios of A-T patients (n= 12) and healthy controls
(n = 14). The normal ECM/BCM ratio is below 0.8 for males and
below 0.9 for females. The ECM/BCM ratios were significantly elevated
in all patients; p < 0.001

Table 3 Hormonal status

Parameters A-T (n = 25) Controls (n = 17) A-T ≥12 years (n = 15)

GH 1.33 ± 1.87 2.45 ± 4.71 1.04 ± 1.98

IGF-1 198.1 ± 142.1** 327.9 ± 149.3 254.4 ± 138.4

IGF-BP3 4.51 ± 1.35 5.46 ± 1.51 4.94 ± 1.38

Cortisol 13.79 ± 5.17*** 21.07 ± 5.05 15.29 ± 5.66*

DHEAS 141.3 ± 127.7*** 266.8 ± 87.94 195.5 ± 131.5*

TSH 2.7 ± 1.2 2.51 ± 1.14 2.53 ± 1.22

Vitamin D 18.08 ± 10.09 24 ± 9.55 12.64 ± 6.66**

The data are shown as the means ± SD
Significant differences: *p < 0.05; **p < 0.01; ***p < 0.001
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patients with absolute vitamin D deficiency were over
12 years of age and were wheelchair-bound.
We correlated age, BMI, PhA and muscle strength to

patient hormone levels (Table 4). Significant correlations
could be established for cortisol, DHEAS and IGF-1.

Discussion
Poor weight gain, small stature, progressive dystrophy
and altered muscle mass are unique features of chromo-
somal instability syndromes, such as A-T, Fanconi
anemia, Nijmegen breakage syndrome, and Werner syn-
drome. Over time, fatigue and cachexia lead to reduced
lung ventilation, decreased quality of life and shortened
life expectancy [25]. Because the prevalence of alter-
ations in body composition, muscle strength and hormo-
nal status has not been well described for chromosomal
instability syndromes, we performed a detailed investiga-
tion of these characteristics in patients with A-T.

The prevalence of cachexia and muscle wasting has
been underestimated in relation to aging, chronic disease
and cancer, although these conditions lead to high disabil-
ity and mortality rates [26]. The current study demon-
strates that structural differences in body constitution
beyond short stature, low weight and reduced BMI exist
in A-T patients. The reduced FFM in these patients is
indicated by their low PhA, BCM and ECM values. Low
PhA values reflect diminished numbers of metabolically
active cells with lipid bilayer membranes. PhA provides a
rough estimate of the FFM quality and quantity and
influences BCM and ECM levels [24]. As expected, low
PhA values were correlated with BCM, suggesting
declined muscle mass. In contrast to their reduced BCM
values, A-T patients did not have altered fat tissue or FM.
The PhA value is a particularly relevant indicator of

nutritional status [27]. Low PhA values have been associ-
ated with poor survival in patients with human immuno-
deficiency virus infection, chronic renal failure and
hepatocellular carcinoma (HCC) [28–30]. In addition to
PhA, the ECM/BCM ratio is an established and sensitive
index of malnutrition [31]. Interestingly, 100 % of the
adolescent A-T patients in the current study showed
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Fig. 4 Cortisol levels in patients with A-T (n= 15) and healthy controls
(n= 17). Hormone levels were measured in the ≥12 years of age group.
The A-T patients showed significantly lower cortisol levels than did the
healthy controls; p< 0.05
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Fig. 5 DHEAS levels in patients with A-T (n = 15) and healthy subjects
(n = 17). Hormone levels were measured in the ≥12 years of age group.
DHEAS levels were significantly lower in the A-T patients than in the
healthy controls; p < 0.05

Table 4 Correlations among A-T patients and controls (n = 41)

Variable Mediator r p-value

PhA Age -0.1903 n.s.

DHEAS 0.4566 <0.01

Cortisol 0.4314 <0.01

IGF-1 0.2918 n.s.

IGF-BP3 0.1649 n.s.

Vit. D 0.2430 n.s.

FFM Age 0.8723 <0.0001

DHEAS 0.7269 <0.0001

Cortisol 0.6247 <0.0001

IGF-1 0.4492 <0.01

IGF-BP3 0.2564 n.s.

Vit. D 0.06553 n.s.

BMI Age 0.6597 <0.001

DHEAS 0.6557 <0.0001

Cortisol 0.4622 <0.01

IGF-1 0.4689 <0.01

IGF-BP3 0.2275 n.s.

Vit. D 0.01586 n.s

Manual muscle strength Age 0.6510 0.001

DHEAS 0.6264 <0.0001

Cortisol 0.5515 <0.001

IGF-1 0.4118 <0.01

IGF-BP3 0.3241 <0.05

Vit. D 0.2725 n.s.
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increased ECM/BCM values, highlighting their severe
malnutrition. Our study confirmed recent reports of
profound malnourishment in Brazilian [32] and Australian
A-T patients, as significant malnutrition was detected in
nine of 13 evaluated patients (69 %), including one
severely malnourished adult [10].
In analyzing the impact of behavioral, dietary and

physical features on body composition in A-T patients,
Ross et al. indicated that a high percentage of their
patients consumed too little energy, although the results
from the appetite questionnaire that was used in their
study were classified as normal in most cases [10]. In a
study of Brazilian children with A-T, poor nutritional
status was observed, and the children affected by A-T
had a lower caloric intake than did those in the healthy
control group [32]. Interestingly, malondialdehyde,
retinol, zinc and beta-carotene levels were normal in
these A-T patients [32], most likely because the patients
were young children.
The current study is the first to show that decreases in

BCM and FFM accompany the impaired manual muscle
strength that is characteristic of A-T. Here, compro-
mised manual muscle strength was demonstrated using
a hydraulic hand dynamometer. Two probable causes for
the observed myopenia include inactivity and the need
to sit in a wheelchair from adolescence onward. Our
data suggest that the FFM progressively decreases with age
(Table 4, p < 0.0001, r = 0.7920); however, the pathophysi-
ology underlying this progression is complex. Myopenia
can result from immobility, disease, aging and/or poor
nutritional status [33]. The four most common reasons for
reduced muscle mass are anorexia, dehydration, cachexia
and sarcopenia [34]. All of these factors may play a role in
muscle wasting in A-T. Declines in corporal resources
corresponding to cachexia are in concordance with our
results and have been previously described by several
authors [8–11, 32].
When considering A-T as a model of premature aging,

another possible explanation could be sarcopenia. Sarco-
penia is defined as muscle cell involution in response to
aging [35] and is correlated with exhaustion, frailty and
diminished strength [35]. One potential mechanism for
muscle wasting in the elderly is motor unit loss due to
the denervation of aging muscle [34]. This process may
be translated into cerebellar neurodegeneration and
neuromuscular apraxia in A-T, ultimately resulting in
the under- or mis-stimulation of muscles and consequent
muscle involution [12, 36, 37]. In addition, alterations in
central motor conduction have been reported in older
children with A-T [38]. In the current study we could also
show the increased neurological impairment in older and
wheelchair-bound A-T patients who tend to suffer more
from dysphagia, immobility and neuropathy. The neuro-
logical dysfunction was emphasized by significantly higher

ataxia scores compared to specimen whose gait is still pre-
served. Interestingly, in an autopsy from 1964, Dunn et al.
described that “the skeletal muscle exhibited […] mild
atrophy of the fibres” [39].
Alternatively, ATM may play a critical role in muscle

energy supply and regeneration. In 2011, Consentio
et al. demonstrated that ATM promotes glucose-6-
phosphate-dehydrogenase expression and thus regulates
the pentose phosphate pathway [40]. In ATM -/- cells,
this pathway is dysfunctional such that an inadequate
amount of the antioxidant nicotinamide adenine dinucleo-
tide phosphate (NADPH) is produced. Two potential
causes of muscle wasting can be inferred from this finding:
1.) the vulnerability of all cells, including muscle cells, to
oxidative stress; and 2.) the dysregulation of additional sig-
naling pathways, resulting in reductions in muscle mass.
Elevated reactive oxygen species (ROS) levels and

upregulated cytokine production may further decrease
muscular strength and increase fatigue in A-T patients
[9, 41]. In these patients, multiple genes encoding
inflammatory proteins, especially the gene encoding
Interleukin-8 (IL-8), are significantly upregulated [42]. In
support of this idea, our data indicate that C-reactive
protein (CRP) expression is strongly correlated with age.
Fatigue and cachexia often occur together and are more
pronounced in older A-T patients who are wheelchair-
bound. As a result, these patients may be at greater risk for
vitamin D deficiency due to inactivity, low sunlight expos-
ure and/or low oral vitamin D intake. Interestingly, osteo-
porosis has already been described in Atm -/- knockout
mice [43].
In the present study, we confirmed that the majority of

our A-T patient cohort exhibited altered IGF-1 levels. This
finding is not entirely novel; it has recently been described
by both our group and others [8, 9, 11, 44–46]. Although
IGF-1 levels are reduced in A-T patients, the temporal
and/or causal relationship between low IGF-1 levels and
muscle wasting and fatigue is unclear. A-T patients
present with an imbalance between catabolic and anabolic
steroid metabolism, which appears to be related to the loss
of muscle strength and the development of cachexia.
A novel association between muscle strength and the

adrenal steroids cortisol and DHEAS (both released
from the adrenal cortex) was revealed in this study. On
the one hand, low DHEAS and cortisol concentrations
might result from decreased adrenal steroidogenesis in
the zona reticularis [47]. On the other hand, our findings
are concordant with a Canadian autopsy report in which
atrophic lightweight adrenals were found in a 17-year-
old Caucasian female with A-T [39]. Therefore, our data
suggest that early adrenal involution/depletion leads to
low DHEAS and cortisol levels in A-T patients.
The existence of a connection between cachexia and

hormonal dysfunction has been established by many
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authors in studies of various diseases. Wasting affects
the hormonal balance of the adrenocortical system [48].
DHEAS is a central hormone for entry into puberty and
physical development. Reduced DHEAS levels may
partly explain the delayed pubertal development, poor
weight gain and lack of growth spurt in adolescence ob-
served in A-T patients. Furthermore, decreased DHEAS
plasma levels have been reported as an adverse prognos-
tic marker in chronic heart failure [49].
In 2012, Menotta et al. reported that dexamethasone

induced a truncated ATM protein variant which partly re-
places the missing effects of ATM kinase activity in Atm -/-
cells [50]. In addition, a proof of concept study confirmed a
positive effect of dexamethasone treatment in A-T patients.
Monthly infusions of autologous erythrocytes-delivered
dexamethasone led to significant improvement of neuro-
logical symptoms [51]. The underlying mechanism of the
dexamethasone treatment may be difficult to explain. In
part it may be related to restored kinase activity. Alterna-
tively, cortisol shortage indicating an early involution of the
adrenal glands may be overcome by dexamethasone re-
placement. Probably, a phase 3 trial will elucidate the posi-
tive effects of erythrocytes-delivered dexamethasone in a
larger group of A-T patients in the near future [52].

Conclusion
In conclusion, there is an urgent need for improved and
earlier assessments of nutritional problems in A-T patients.
BIA is an inexpensive and relatively easily applied tool for
the analysis of body composition, as it detects early indica-
tors of qualitative malnutrition. Although single body com-
partments tend to be under- or overestimated using this
method, BIA can still provide an approximate assessment
of nutritional status. In the future, poor nutritional status,
muscle wasting and fatigue in A-T patients must be treated
more aggressively.
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