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Large exonic deletions in POLRB gene
cause POLR3-related leukodystrophy
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Abstract

POLR3-related (or 4H) leukodystrophy is an autosomal recessive disorder caused by mutations in POLR3A or POLR3B
and is characterized by neurological and non-neurological features. In a small proportion of patients, no mutation
in either gene or only one mutation is found. Analysis of the POLR3B cDNA revealed a large deletion of exons 21–22 in
one case and of exons 26–27 in another case. These are the first reports of long deletions causing POLR3-related
leukodystrophy, suggesting that deletions and duplications in POLR3A or POLR3B should be investigated in patients with a
compatible phenotype, especially if one pathogenic variant has been identified.
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Findings
POLR3-related leukodystrophy or 4H (Hypomyelination,
Hypodontia, Hypogonadotropic Hypogonadism) leukodys-
trophy (MIM#607694) is a hypomyelinating leukodystrophy
with typical onset in early childhood [1–3]. Neurological
features include motor delay or regression, cerebellar and
pyramidal features, and, later in the course of the disease,
cognitive regression. Non-neurological features include a
variety of dental and hormonal abnormalities, and myopia
[1, 3]. Brain MRI shows hypomyelination, i.e. variable
(hypo-, hyper- or iso- intense) signal on T1-weighted
images and hyperintense signal of the white matter on
T2-weighted images compared to grey matter structures
[4], with relative preservation of myelination (i.e. T2-
hypointensity), of specific structures, with or without cere-
bellar atrophy and thinning of the corpus callosum [3, 5, 6].
4H is caused by recessive mutations in POLR3A
(MIM#614258) [7–10] or POLR3B (MIM#614366), encod-
ing respectively the largest and second largest subunits of
the DNA-directed RNA polymerase III (POLR3). POLR3 is
responsible for the transcription of transfer RNAs and
other small RNAs essential for cellular processes [11].
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Amino acid changes in the protein domains of POLR3A or
POLR3B suggest a direct interference with DNA binding, a
modification of the catalytic cleft structure, or a change in
protein interactions of POLR3 subunits [9, 10]. Current
knowledge suggests that mutations are uncovered in the
vast majority of 4H cases. A small percentage of cases re-
main negative or have only one mutation after sequencing
analysis [3, 8]. To date, no large deletion or duplication has
been reported in 4H cases [3, 9].
We here report the first large exonic deletions in pa-

tients with clinical and radiological diagnosis of 4H. The
first index patient is a 15-year-old girl, first evaluated by
a child neurologist at the age of 19 months for unstable
stance and delayed walking. She was born from healthy
non-consanguineous parents after a normal pregnancy
and delivery. At initial evaluation, the patient had nor-
mal height, weight and head circumference. Neurological
examination was significant for mild hypotonia as well
as truncal ataxia. Patient evolution and annual examina-
tions revealed delayed decidual teeth eruption, slowly
progressive gait ataxia and halted pubertal development
at Tanner Stage IV with primary amenorrhea. At the
time, LHRH stimulation showed lack of LH/FSH pulsati-
lity. The second patient, a boy, was born at term by
elective caesarean section after a pregnancy sustained by
progesterone in the context of having had three prior mis-
carriages of unknown cause. Congenital hip dislocation
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was first treated conservatively, and then corrected surgi-
cally. In the second year of life, delay of gross and fine
motor skills became obvious. He developed frank ataxia
and a mild pyramidal syndrome. Eruption of upper medial
incisors was delayed. He developed myopia and short stat-
ure. Neurological deterioration led to death at age 8 years.
MRI of both patients were compatible with 4H
leukodystrophy.
Both patients underwent sequencing of all exons and

intron-exon boundaries of POLR3A and POLR3B.
Patient 1 was heterozygous for a maternally-inherited
variant, c.1568 T > A (p.Val523Glu), located in exon 15
of POLR3B (Figs. 1a and 2c). The Val523Glu have been
reported several times in the literature as pathogenic [1].
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Patient 2 was apparently homozygous for a missense
variant, c.3008A > G (p.Tyr1003Cys), located in exon 26
of POLR3B (Figs. 1b and 2c). Parental testing failed to
uncover the Tyr1003Cys in the mother suggesting the
presence of a large deletion on the other allele or unipa-
rental isodisomy. No mutation in POLR3A was uncov-
ered in either patient.
Further studies were conducted in order to uncover

exonic deletion in our index patients. In patient 1,
RNA analysis revealed the presence of a heterozygous
deletion encompassing exons 21 and 22 (Fig. 2a and c).
Subsequently, long-range genomic PCR using exon-
specific primers for exons 20 and 23, confirmed a ~6Kb
paternally-inherited deletion in patient 1 (Figs. 2c and 3a).
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Fig. 2 cDNA amplification and sequencing of fragments encompassing the putative POLR3B exonic deletions. a Patient 1: RNA isolation was
performed using standard method and followed by reverse transcription-polymerase chain reaction (RT-PCR). Amplification of the fragment of
complement DNA (cDNA) encompassing exons 20 to 23 revealed the presence of a putative deletion. The sequence in the overlapping reading
frame were showing a normal cDNA PCR product of 630 bp, covering exons 20 to 23. The second sequence of a reduced product of 353 bp was
encompassing exons 20 to 23, suggesting the complete or partial deletion of exons 21 and 22. b Patient 2: RNA isolation was performed using
standard method and followed by reverse transcription-polymerase chain reaction (RT-PCR). Amplification of the fragment of complement DNA
(cDNA) encompassing the exon 25 to 28 revealed the presence of a putative deletion. The sequence in the overlapping reading frame were showing a
normal cDNA PCR product of 634 bp, covering exons 25 to 28. The second sequence of a reduced product of 346 bp was encompassing exons 25 and
28, suggesting the complete or partial deletion of exons 26 and 27. c Scheme depicts the large deletions in POLR3B gene characterized in our
index patients with classical clinical and radiological findings of 4H
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In patient 2, RNA analysis revealed the presence of a
heterozygous deletion encompassing exons 26 and 27
(Fig. 2b and c). Subsequently, long-range genomic PCR
using exon-specific primers for exons 25 and 27 re-
spectively, confirmed a ~4Kb maternally-inherited dele-
tion. Since no homology was found at the deletion
breakpoints, the POLR3B exonic deletions appear to
have arisen by the simple rejoining of non-homologous
DNA ends during double stranded break repair.
The clinical picture in these patients is typical of 4H.

The presence of a deletion together with a missense muta-
tion reiterates the idea that complete loss of POLR3B is le-
thal [1]. Patients with compound heterozygous mutations
have shown no significant differences in the clinical course
of deterioration as compared to homozygous affected pa-
tients, except for the patients homozygous for the com-
mon POLR3B mutation (c.1568 T >A, p.Val523Glu),
whose clinical symptoms are significantly milder [3, 10].
This could be, at least partly, attributed to the debili-
tating effect of the missense mutation on the formation
of multiplex complexes [9]. In summary, our findings
highlight that multi-modal approaches in mutation
screening of POLR3A and POLR3B genes may be re-
quired for clinically suspected 4H cases when Sanger
sequencing of coding elements is negative or reveals
only one mutation.
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Fig. 3 Long-Range PCR of the putative POLR3B exonic deletions and sequencing of the breakpoints. a. Patient 1: Long-Range (LR- PCR) was performed on
genomic DNA using exon-specific forward and reverse primers for exons 20 and 23 respectively. The expected fragment size of this region was estimated
at 10 kb (Control DNA; Lane 2 and U51.2; Lane 5), however the proband LR-PCR amplification generated a smaller DNA fragment with average
product length of approximately 3 kb, as indicated by the arrow (U51.0; Lane 3). This 3 kb DNA fragment was also seen in the LR-PCR amplification of
paternal DNA (U51.1; Lane 4), but not of maternal DNA (U51.2; Lane 5). Lane 1 is the molecular size marker. Sanger sequencing of the
abnormal fragment identified in both the proband and the unaffected father allowed mapping of the breakpoint on the 5’ at position 106,
751, 658 on chromosome 12, and the breakpoint at the 3’ was at position 106, 857, 267 (data not shown). No homology was found at either of the
deletion breakpoints. Tandem Repeats finder, QuadParser and Repeat Masker databases were used for sequence motif analysis. These tools failed to
identify motif, suggesting that homologous recombination events were unlikely. The exonic deletions of POLR3B appear to have arisen by the simple
rejoining of non-homologous DNA ends during double stranded break repair. b. Patient 2: Long-Range (LR- PCR) was performed on genomic DNA
using intron-specific forward and reverse primers for introns 25 and 27 respectively. The expected fragment size of this region was estimated at 13 kb
(Control DNA; Lane 3), however the proband LR-PCR amplification generated a smaller DNA fragment with average product length of approximately
9 kb, as indicated by the arrow (08D1250; Lane 2). Lane 1 and 4 is the molecular size marker
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