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Abstract

Background: Dense red blood cells (DRBCs) are associated with chronic clinical manifestations of sickle-cell–disease
(SCD). Hydroxyurea (HU) decreases the percent (%) DRBCs, thereby improving its therapeutic benefits, especially the
prevention of SCD clinical complications, but parameters influencing %DRBCs remain unknown. The purpose of this
study was to determine predictive biological parameters of %DRBC decline under HU.

Methods: Factors affecting the %DRBC decrease in SCD patients HU-treated for ≥6 months were analyzed. Biological
parameters and the %DRBCs were determined before starting HU and after ≥6 months of HU intake. Bivariate analyses
evaluated the impact of each biological parameter variation on %DRBC changes under treatment. Multivariate analyses
assessed the correlations between the decreased %DRBCs and biological parameters.

Results: The %DRBCs declined by 40.95% after ≥6 months on HU. That decrease was associated with less hemolysis,
however in several analyses on this group of patients we did not find a statistically significant correlation
between decrease in %DRBCs and increase in HbF. Initial %DRBC values were the most relevant parameter to
predict %DRBC decline.

Conclusion: Our results strengthen the known HU efficacy in SCD management statistically independently of
the classical HbF biological response. Decreasing %DRBCs is essential to limiting chronic SCD symptoms related
to DRBCs and predictive factors might help prevent those manifestations. The results of this study provide new
perspectives on indication for HU use, i.e., to prevent SCD-induced organ damage.
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Background
Dense red blood cells (DRBCs) are a subpopulation of
RBCs intricately involved in SCD clinical manifestations
and are defined as having a density >1.11 mg/mL [1,2].
They are characterized by a higher mean corpuscular
hemoglobin concentration (MCHC) [3-7], because of
dehydration caused by K+ loss. Dehydration also pro-
motes hemoglobin S (HbS) polymerization, depending
on the 20th–40th power of the HbS concentration [8].
The percent DRBCs remains stable (no differences for
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26 patients with 3.2 ± 1.8 years of follow-up, p = 0.79)
[9], and is a biological characteristic of homozygous
SCD patients at steady state not taking hydroxyurea
(HU). DRBCs play an important role in SCD patho-
physiology because of their hemorheological properties
and their hemolytic propensity. The %DRBCs is strongly
associated with chronic vasculopathy manifestations,
e.g., renal dysfunction, leg ulcers, or priapism [9].
HU effectively limits SCD vaso-occlusive crisis, acute

chest-syndrome frequencies and mortality. The classical
biological parameter of the response to HU is increased
fetal hemoglobin (HbF), a potent anti-HbS–polymerization
factor. However, the results of some studies showed
that HU can obtain biological benefit independently of
increasing HbF, by inhibiting a membrane protein
responsible for cell adhesion [2,10].
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Accumulating evidence strengthens the HU indication
for chronic vasculopathy, which is associated with the
%DRBCs. We previously showed that HU lowers the
%DRBCs after 6 months, but information is lacking on the
biological determinants of a good response, in terms of
fewer %DRBCs, that could support treatment onset for a
not yet common indication. Herein, we demonstrate
that the strongest predictive factor of HU efficacy is the
baseline %DRBCs itself, underpinning its expected good
efficacy in patients at high risk of chronic vasculopathy.

Methods
Patient characteristics and study design
This prospective, longitudinal, monocenter study in-
cluded 56 SCD patients taking HU regularly and
followed in our Adult Sickle-Cell–Disease Referral
Center. Patients >18 years old with SS SCD proven by Hb
electrophoresis were eligible for inclusion. Non-inclusion
criteria were pregnancy, blood transfusion during the pre-
vious 3 months and refused consent. Patients taking HU
were monitored for 6–12 months (≥M6). The local Insti-
tutional Review Board (CPP–Île-de-France IV Saint-Louis
Hospital) approved this study. In accordance with the
Declaration of Helsinki, all patients gave their signed
informed consent; all data were rendered anonymous to
protect patients’ privacy and confidentiality.

Biological parameter measurements
Blood was drawn at steady state during outpatient visits.
We collected biological parameter values before treat-
ment (day 0, D0) and after ≥M6 on HU. MCHC (g/dL),
mean corpuscular Hb content (MCH; pg), Hb (g/dL),
mean corpuscular cell volume (MCV; fl), white blood-
cell (WBC; G/L), reticulocyte (G/L) and platelet counts
(G/L) were determined with a Coulter LH 750 counter
(Beckman Coulter, Villepinte, France).
RBC-density curves were obtained with the phthalate

density-distribution technique [11]. Serum levels of total
bilirubin (μmol/L), lactate dehydrogenase (LDH; IU/L),
alanine aminotransferase (ALT; IU/L) and aspartate ami-
notransferase (AST; IU/L) were assessed with a chemical
analyzer (Advia 1650; Siemens Medical Solutions
Diagnostics, Holliston, MA, USA).
The %HbF was determined by high-pressure liquid chro-

matography of Hb using the Variant II Hemoglobin Testing
System (Bio-Rad Laboratories, Marnes-la-Coquette, France).

Statistical analyses
Descriptive results are expressed as means ± standard
deviation (SD) or percentages. Bivariate analyses used the
paired t-test or Wilcoxon signed-rank test for comparisons
of continuous biological parameters between D0 and ≥
M6, as appropriate. Pearson correlation coefficients were
computed to assess the relationship between %DRBC
decline and collected biological parameters, considering
first their D0 to M6 variation and then %DRBC decline
compared to the pretreatment values. Baseline parameters
associated with %DRBC change achieving p < 0.2 in un-
adjusted bivariate analyses were entered into multivariate
linear-regression models to identify independent predic-
tors of %DRBC decrease under HU. The coefficient of
determination (r2) was used to estimate the percent vari-
ability explained by the model. A two-tailed p < 0.05
defined significance. All statistical analyses were computed
with Stata software v12.1 (StataCorp LP, College Station,
TX, USA).

Results
Patients
Fifty-six SS patients (24 men and 32 women; mean age
33.7 ± 9.5 years) were included in this study. HU was pre-
scribed for the following indications: acute chest syndrome
(31), repeated vaso-occlusive crises (21), severe anemia (2),
overt stroke (1) or pulmonary hypertension (1). The mean
HU dose was 15 mg/kg/day taken in a single oral dose.
A larger %DRBC decrease over the ≥6 months was

correlated with aging (r = −0.332; p = 0.013). No signifi-
cant relationship was found between sex and the
%DRBC change. The %DRBCs had decreased signifi-
cantly from 10.5 ± 8.7% to 6.2 ± 4.5% (p = 0.0003). All
biological parameter values varied between D0 and
after ≥M6 on HU (Table 1).

%DRBC decrease was associated with reduced hemolysis
markers but not HbF variation
Modifications of monitored biological parameters and
%DRBC change during therapy were analyzed. Bivariate
analyses (Table 1) showed that the %DRBC diminution
was positively and significantly correlated with reductions
of total bilirubin, AST and LDH (p = 0.012, 0.020 and
0.006, respectively). Expressing unadjusted linear-
regression results as β-coefficients, declines of one total
bilirubin, AST or LDH unit were correlated, respectively,
with 0.118, 0.113 or 0.019 %DRBC diminutions. Pertin-
ently, in this group of patients we did not find a statisti-
cally significant correlation between decrease in % DRBCs
and increase in HbF (r = −0.080; p = 0.556) (figure 1) or
MCV variation (r = −0.059; p = 0.665) throughout HU
treatment. To reinforce our analysis of HbF variation
according to the %DRBC decrease, %DRBC change was
tested in each %HbF-change quartile that comprised 14
patients. Again, no between-group differences were ob-
served according to the %DRBC decline (p = 0.32).

Baseline parameters predictive of %DRBC diminution
under HU
Correlations between D0 biological parameters and
%DRBC decline were also evaluated (Table 2). Multivariate



Table 1 Before and after ≥M6 HU and bivariate analyses of biological parameter variations and %DRBC change

Parameter Biological parameter values (mean ± SD) Bivariate analysis

Before After ≥M6 p value r p value

%DRBCs 10.48 ± 8.75 6.18 ± 4.49 0.0003

%HbF 7.17 ± 4.13 17.45 ± 8.14 <0.0001 −0.080 0.556

Hb (g/dL) 9.04 ± 1.28 9.91 ± 1.67 <0.0001 −0.071 0.602

WBCs (G/L) 10.09 ± 2.54 7.10 ± 2.03 <0.0001 0.200 0.140

MCV (fl) 89.16 ± 8.04 108.69 ± 12.74 <0.0001 −0.059 0.665

MCHC (g/dL) 33.44 ± 1.23 33.48 ± 0.84 0.796 −0.022 0.874

MCH (pg) 29.84 ± 3.23 36.43 ± 4.64 <0.0001 −0.069 0.615

Reticulocytes (G/L) 244.92 ± 80.84 146.48 ± 64.99 <0.0001 0.238 0.077

Platelets (G/L) 396.41 ± 149.51 325.49 ± 106.09 0.0002 −0.069 0.614

Total bilirubin (μmol/L) 45.96 ± 26.76 35.64 ± 20.48 <0.0001 0.335 0.012

ALT (IU/L) 29.81 ± 16.22 26.89 ± 12.14 0.212 0.068 0.620

AST (IU/L) 44.04 ± 17.13 39.67 ± 16.26 0.149 0.311 0.020

LDH (IU/L) 433.02 ± 180.19 368.98 ± 139.66 0.0004 0.363 0.006

Numerical data in bold indicate significant correlation with %DRBC decrease.
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analyses retained the D0 %DRBCs as the only significant
predictor of %DRBC decline at ≥6 months (p < 0.0001).
Patients with high D0 %DRBCs had the largest %DRBC
decreases (Figure 2). This statistical model explained
76.8% of the %DRBC diminution. No correlation was
found between %DRBC reduction and D0 Hb, HbF or
MCV (p = 0.501, 0.484 and 0.902, respectively). Further-
more, HbF variation under HU was not statistically corre-
lated with D0 HbF (p = 0.847).
Table 2 Bivariate and multivariate analyses of D0
biological parameters associated with %DRBC change
under HU

Bivariate analysis Multivariate analysis*

Parameter r p value β-coefficient p value
Discussion
This study was undertaken to identify predictors of %DRBC
decrease in a cohort of 56 SS SCD patients taking HU. The
%DRBCs dropped by 40.95% after ≥6 months on HU. We
previously reported a 34% %DRBC decrease [9]. HU
diminished SCD patients’ DRBC levels, thereby leading
Figure 1 Correlations between change in %HbF and change in
%DRBCs (r = −0.080; p = 0.556).
to fewer organ complications and, thus, clinical
improvement [2,5,12,13].
Our results demonstrated that the parameter best pre-

dicting the %DRBC diminution was the D0 %DRBCs itself,
with a negative correlation: the higher the D0 %DRBCs,
the greater the %DRBC decline. This marked %DRBC
decrease further supports HU efficacy on biological and
clinical SCD features.
Analyzing the possible relationship between %DRBC

diminution and the evolution of each biological parameter,
results showed strong associations between %DRBC
%DRBCs −0.863 <0.0001 −0.885 <0.0001

WBCs (G/L) −0.257 0.068 – –

MCV (fl) −0.018 0.902 – –

MCHC (g/dL) −0.485 0.0004 0.668 0.404

MCH (pg) −0.140 0.332 – –

Hb (g/dL) 0.097 0.501 – –

%HbF 0.099 0.484 – –

Reticulocytes (G/L) −0.437 0.002 −0.004 0.703

Platelets (G/L) 0.200 0.159 – –

Total bilirubin (μmol/L) −0.426 0.002 0.034 0.285

ALT (IU/L) −0.144 0.310 – –

AST (IU/L) −0.419 0.002 −0.023 0.285

LDH (IU/L) −0.324 0.020 −0.001 0.801

*Model also adjusted for age and WBC count: r2 = 0.768.
Numerical data in bold indicate significant correlation with %DRBC decrease.



Figure 2 Correlations between %DRBC variation and D0 %DRBCs
(r = −0.885, p < 0.0001).
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decline and hemolysis parameters. Total bilirubin, AST
and LDH decreased with %DRBC, in agreement with
previously reported observations that HU lowers the
levels of hemolysis markers [12,14].
While our previous results showed a correlation

between %DRBC and HbF values in a cohort study on
untreated patients [9], in several analyses on this group
of patients we did not find a statistically significant
correlation between decrease in % DRBCs and increase
in HbF in terms of therapeutic effects. The lack of
correlation between %DRBC decrease and HbF increase
was confirmed by determining %DRBC change accord-
ing to HbF-variation quartiles. Charache et al. studied
32 HU-treated patients [13] and did not find a correl-
ation between HbF increase and %DRBC decrease or
hemolysis parameters. These striking observations
clearly indicate that HbF is one of the mechanisms but
may not be the main pathway through which HU
reduces the %DRBCs during the course of treatment.
Moreover, Goldberg et al. showed that the HbF plateau
was reached after 6 months whereas DRBCs were
rapidly removed from the circulation according to a
biphasic erythrocyte-survival curve [12]. That observation
supports the findings that some biological effects of HU
on RBC adhesion [10], ionic transport or MCV [12,15] are
faster than HbF evolution, or could be totally independent,
as for endothelial cells [16]. The process underlying the
elimination or decrease in %DRBCs under HU has not yet
been completely elucidated. KCl cotransport, Na+ pumps
and Ca2+-dependent K+-efflux (Gardos) channels are in-
volved in RBC dehydration and, thus, in DRBC formation
[17]. HU has been shown to increase RBC [2,12,18] and
endothelial cell K+ contents [16], in part by reducing the
KCl-cotransport rate, thereby facilitating RBC hydration.
According to those observations, HU presumably acts,
but not exclusively, by raising HbF; however, HU might
also modify RBC-hydration properties involved in SCD
pathophysiology.
Notably, we did not find any correlation between the
D0 HbF level and its increase, in accordance with a pre-
vious study [19].
Because DRBCs and hemolysis are clearly associated

with some chronic organ dysfunction that markedly
contributes to SCD morbidity and mortality [9,20], pre-
scribing HU early could be an option to prevent those
events in patients with very high %DRBCs, which is one
of the best markers of chronic organ involvements.
Indeed, authors of recent studies argued for a preventive
role of HU in the appearance of organ damage [21,22].

Conclusion
Our findings confirmed HU efficacy at decreasing the
%DRBCs, which was associated with less hemolysis,
and that D0 %DRBC values were the most relevant
parameter predictive of SCD progression. These obser-
vations strongly support that, even in the absence of a
HbF response, HU could obtain clinical improvement.
The %DRBC decrease, a simple and reproducible bio-

logical marker of hemolysis and chronic vasculopathy,
could serve as a target for treatment management and
clinical SCD trials.
The HU mechanism of action on %DRBC decline re-

mains unclear, since it has only rarely been studied [9,18].
To fully understand this unclear point, longitudinal and
kinetic analyses of the %DRBC decrease throughout HU
therapy would be required to complete our results and
further investigations are also needed to explain the role
of HU in RBC-rehydration pathways.
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