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Abstract

Background: Juvenile pulmonary alveolar proteinosis (PAP) due to CSF2RA mutations is a rare disorder with only a
few cases described worldwide.

Methods: We identified nine children with severe diffuse interstitial lung disease due to CSF2RA mutations. Clinical
course, diagnostic findings and treatment were evaluated and correlated to the genotype. Functional impairment
of the intracellular JAK/pStat5 signaling pathway was assessed using flow-cytometry of peripheral mononuclear cells
(PBMC) and granulocytes.

Results: We identified six individuals with homozygous missense/nonsense/frameshift mutations and three
individuals homozygous for a deletion of the complete CSF2RA gene locus. Overall, four novel mutations (c.1125 +
1G > A, duplication exon 8, deletion exons 2–13, Xp22.3/Yp11.3) were found. Reduced STAT5 phosphorylation in PBMC
and granulocytes was seen in all cases examined (n = 6). Pulmonary symptoms varied from respiratory distress to
clinically silent. Early disease onset was associated with a more severe clinical phenotype (p = 0.0092). No association
was seen between severity of phenotype at presentation and future clinical course or extent of genetic damage. The
clinical course was favorable in all subjects undergoing whole lung lavage (WLL) treatment.

Conclusions: Our cohort broadens the spectrum of knowledge about the clinical variability and genotype-phenotype
correlations of juvenile PAP, and illustrates the favorable outcome of WLL treatment in severely affected patients.
Background
Among the interstitial lung diseases [1], pulmonary alveolar
proteinosis (PAP) represents a group of disorders defined
by extensive alveolar deposition of lipoproteinaceous mater-
ial [2]. Several causes of PAP have been identified [3-5]. In
late adolescence and adulthood, the vast majority of cases
are caused by autoantibodies directed against granulocyte-
macrophage colony-stimulating factor (GM-CSF). Second-
ary PAP develops due to impaired macrophage function
from hematologic malignancies, toxic dust inhalations, and
immunosuppression. In contrast, most pediatric cases of
histologically diagnosed PAP can be attributed to defects in
a variety of genes involved in surfactant metabolism. Muta-
tions in the genes for surfactant protein-B (SFTPB),
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surfactant protein-C (SFTPC), member A3 of the ATP-
binding cassette family of transporters (ABCA3) [6], and
sometimes thyroid transcription factor 1 (NKX2-1) [7] lead
to PAP in combination with abnormalities in the pulmon-
ary interstitial tissue [8]. Mutations in the genes encoding
the GM-CSF receptor (CSF2RA and CSF2RB), in contrast,
cause pure PAP without involvement of the interstitial
space. In recent years, two cases due to CSF2RB mutations
[4,9] and 13 cases caused by CSF2RA gene defects have
been published, including one case series [10] and single
case reports [11-16]. The protein encoded by the CSF2RA
gene is the alpha subunit of the heterodimeric receptor for
colony stimulating factor 2, a member of the cytokine fam-
ily of receptors that controls production, differentiation,
and function of granulocytes and macrophages [17]. The
CSF2RA gene is located in the pseudoautosomal region
(PAR) of the X and Y-chromosomes.
Information on the chronic lung disease which develops

in consequence of CSF2RA mutations is important for the
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management and prognosis of affected patients, but unfor-
tunately rather scarce. In this study, we characterize the
range of pulmonary phenotypes in 9 children with CSF2RA
mutations identified and followed at our department or
within the Kids Lung Register database [18]. This report in-
cludes four novel, previously unpublished mutations, and,
in connection with a review of all published cases, high-
lights the importance of the intracellular C-terminal do-
main of CSF2RA for protein function.
Methods
Participants
The Kids Lung Register database [18] was screened for
pediatric patients with pulmonary alveolar proteinosis aged
0–18 years (n = 9). All patients had been classified by ex-
perienced clinicians from 6 medical centers in 4 countries.
Inclusion criteria for the study were negative GM-CSF
autoantibody levels, proof of CSF2RA mutation, and exclu-
sion of other inherited surfactant disorders. Upon inclusion
in the Kids Lung Register, available follow-up data on all
patients was prospectively added to the database. In this
study, all follow-up data available until November 1st, 2013
was included. Clinical data referred to in this study always
represents the patient status at admission (prior to treat-
ment, if treatment was necessary). The study was approved
by the institutional review board, the Ethikkommission
der Med. Fakultät der LMU München, Pettenkoferstr.
8, 80336 Munich, Germany (EK 026–06) and all parents
or guardians gave their written informed consent, and the
children gave assent.
Clinical review
Medical records were reviewed including chest radio-
graphs, high-resolution computed tomography (HRCT) of
the chest, and routine blood chemistry and hematologic
tests. Some participants underwent pulmonary function
testing, bronchoscopy with bronchoalveolar lavage (BAL),
and consecutive examination of BAL fluid cell cytology as
reported [11] or surgical biopsy as part of their clinical
care. When obtained, lung biopsies were processed and
evaluated using standard methods. The patients repeat-
edly underwent complete examinations as part of their
follow-up visits. The clinical phenotype was categorized
into four groups according to the patients’ worst res-
piratory status and physical development outcome as fol-
lowing: asymptomatic, mild (e.g. intermittently oxygen-
dependent and/or symptomatic on exertion), moderate
(constantly oxygen-dependent and/or symptomatic at
rest, failure to thrive), severe (symptomatic at rest and
need for endotracheal intubation and ventilation during
the clinical course and/or respiratory distress syndrome,
failure to thrive).
Genetic analysis
Sequence analysis of the CSF2RA gene was performed
in all participants and their parents as described previ-
ously [13]. Similarly, disorders of surfactant production
involving mutations of SFTPB, SFTPC, or ABCA3 were
excluded [19].

GM-CSF-induced STAT5 phosphorylation in peripheral
blood monocytes and granulocytes
GM-CSF-stimulated phosphorylation of STAT5 in periph-
eral blood monocytes (PBMC) and granulocytes was eval-
uated in six patients according to a modified protocol by
Suzuki et al. [11]. Heparinized blood was processed within
24 hours. Mononuclear cells and granulocytes were iso-
lated using a Ficoll-Paque plus gradient (GE Healthcare,
Uppsala, Sweden) and Leucosep tubes (Greiner Bio One,
Solingen, Germany). Cell suspensions were incubated with
or without GM-CSF (Leukine, Berlex, Bayer Healthcare,
Seattle, WA; 100 ng/ml, 15 minutes, 37°C). Expression of
phosphorylated STAT5 (pSTAT5) was measured by flow
cytometry (BD FACSCanto). In a subset of cases, cell
lysates were also evaluated by Western blotting using anti-
STAT5 (Santa Cruz Biotechnology; Santa Cruz, CA), anti-
phospho-STAT5 (Cell Signaling), or anti-beta actin (Santa
Cruz) as primary antibodies.

Serum levels of GM-CSF and GM-CSF autoantibodies
Serum GM-CSF levels were measured in all patients by
ELISA as reported [20], using commercial ELISA kits (R
and D Systems), and GM-CSF autoantibody levels were
determined as described [21].

Whole lung lavage
When clinically indicated or as part of their therapeutic
regimen, patients underwent whole lung lavage (WLL)
therapy using an internally standardized operation pro-
cedure which has been described previously [13].

Statistics
Numeric data were evaluated for normal distribution
and variance using the Shapiro-Wilk and Levene’s test,
and are presented as the mean +/− SE (parametric data)
or median and minimum-maximum range (nonparamet-
ric data). Statistical comparisons were made with MS
Excel 2011 and GraphPad Prism (La Jolla, CA) software,
using Student’s t-test, one-way analysis of variance,
Spearman’s rank correlation, point biserial correlation or
Fisher’s exact test as appropriate. p values less than 0.05
were considered to indicate statistical significance.

Results
Participants
We identified nine patients with clinical features of
pulmonary alveolar proteinosis and CSF2RA mutations



Table 1 Demographics and clinical profile of all published
cases with CSF2RA mutations

Current cohort
(n = 9)

Literature
(n = 11)
[10-12,14,16]

Total
(n = 20)

Family history

Sex (female) 7 (78%) 10 (91%) 17 (85%)

Term born 8 (89%) 9 (81%) 17 (85%)

Consanguinity 8 (89%) ≥ 3 (27%) ≥ 11 (55%)

ILD in family 1 (11%) n.a. ≥ 1 (5%)

Symptoms at
presentation

Dyspnea 7 (78%) 7 (63%) 14 (70%)

Tachypnea 3 (33%) n.a. ≥ 3 (15%)

Hypoxaemia 5 (56%) 6 (55%) 11 (55%)

Global respiratory failure 3 (33%) 4 (36%) 7 (35%)

Endotracheal intubation
and ventilation

3 (33%) n.a. ≥ 3 (15%)

Cough 5 (56%) n.a. ≥ 5 (26%)

Fever 1 (11%) n.a. ≥ 1 (5%)

Severe pulmonary
infections prior to PAP

6 (66%) ≥ 3 (27%) ≥ 9 (45%)

Mycoplasma pneumoniae 2 (22%) n.a. ≥ 2 (10%)

Influenza 1 (11%) 0 (0%) 1 (5%)

RSV 0 (0%) 1 (9%) 1 (5%)

Clinical follow-up

Age at symptom onset, yr 3.5 (0.2-19) 4 (1.5-9) 4 (0.2-19)

Age at PAP diagnosis, yr 5.3 (2.3-19) 6 (2.5-11) 5.9 (2.3-19)

Diagnostic latency, yr 0.1 (0–5.8) 2 (1–2.5) 1 (0–5.8)

Time of follow-up, yr 2.5 (0.3-12.5) 1.7 (0.9-3) 2.5 (0–12.5)

Outcome

Alive 9 (100%) ≥ 9 (82%) 18 (90%)

Best respiratory status:
asymptomatic

7 (78%) 3 (27%) 10 (50%)

Last respiratory status:
asymptomatic

3 (33%) 3 (27%) 6 (30%)

Disease progression:
improving

7 (78%) ≥ 3 (27%) ≥ 10 (50%)

Comorbidities

Failure to thrive 7 (78%) 4 (36%) 11 (55%)

PEG placement 2 (22%) n.a. ≥ 2 (10%)

Clubbing 6 (66%) n.a. ≥ 6 (30%)

Hepatomegaly 1 (11%) n.a. ≥ 1 (5%)

Pectus excavatum 2 (22%) n.a. ≥ 2 (10%)

WLL therapy

WLL therapy 7 (78%) ≥ 7 (64%) ≥ 14 (70%)

Total number of WLL 19.3 (3–56) n.a. n.a.

Number of WLL per yr of
follow-up

1.1 (0.7-6.8) n.a. n.a.
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(Table 1). Eight patients were Caucasians and one (patient
E) was Asian. Countries of origin included Belgium (n = 1),
Germany with Turkish descent (n = 3), Turkey (n = 2), Iran
(n = 2), and Spain with Moroccan descent (n = 1). Most
parents were first-degree cousins (n =8, 89%) except for
one family (patient G) (Figure 1). Patients C and D were
sisters. The individual clinical details and disease courses
are described in the supplementary material section
(Additional file 1: Table S1).

Diagnostics
Lung biopsies were performed in seven patients (78%) to
histologically confirm the diagnosis of PAP. In these pa-
tients, microscopic appearance showed a typical predom-
inance of focal alveolar proteinosis with PAS-positive,
granular material in the alveoli, enlarged foamy alveolar
macrophages, and well-preserved alveolar walls as previ-
ously described (Additional file 2: Figure S3) [11].
Bronchoscopy was performed in every patient either as

a diagnostic procedure or as part of WLL treatment. If
broncho-alveolar lavage fluid (BALF) was obtained and
analyzed (n = 7), milky appearance and PAS-positive
stain were the common features. BALF samples of four
patients were analyzed for cell differentiation, two of
which showed a reduced number of macrophages in the
alveolar BAL (H, I).
CT chest scans were performed in 7 cases, demon-

strating a crazy paving pattern typically seen in alveolar
proteinosis in all patients (Additional file 2: Figure S3).
In subjects old enough for pulmonary function testing

(n = 4, patients A, F, G, H), a marked reduction of FVC
was observed (FVC 16.7-67.8% predicted), and restrictive
impairment was suspected.

Genetic analysis
CSF2RA gene analysis was performed in all patients, re-
vealing either missense, nonsense, point or frameshift mu-
tations, exon duplication or extended deletions of the
gene locus (Figure 2). These defects led to different ex-
tents in protein damage. In the majority of cases, there
was either a whole gene deletion (n =3; patients E, F, and
G) or the information of at least the C-terminal intracellu-
lar domain was lost (n =4; patients A, B, C/D, and H). In
patients A and H, the transmembrane domain and parts
of the extracellular domain including 4–11 disulfide bonds
were also affected. Patient I, in contrast, carried a point
mutation in the region of an extracellular disulfide bond.

Clinical review
The median age at symptom onset was 3.5 (0.2 - 19) years,
and the median age of diagnosis was 5.3 (2.3 to 19) years.
Median time of follow-up was 2.5 (0.3-12.5) years (Table 1).
There was a significant female predominance (n = 7; 78%)
in this cohort. Almost all patients were term-born infants



Figure 1 Family pedigrees and corresponding mutations of all patients of the novel cohort. Panels A. through I. correspond to patients A.
through I. as referred to in Figure 2 and Table 2. Pedigrees of novel PAP cases. Pedigrees of all novel PAP cases are given. Consanguinity could
be determined in all but one case. Of note, an uncharacterized ILD was described in a cousin of patient F. Furthermore, a homozygous but
asymptomatic mutation carrier could be identified in the family of patient I.
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(n = 8; 89%) with no remarkable postnatal history. Con-
cerning family history, it has to be mentioned that patient F
had a cousin with an interstitial lung disease (ILD) of yet
unknown cause. In all other cases, ILD could not be identi-
fied in 2nd or 3rd degree relatives (Figure 1).
Lung disease was characterized by pulmonary symptoms

including chronic (tachy-)dyspnea (n = 7; 78%), hypoxemia
(n = 5; 56%), and cough (n = 5; 56%) (Table 1). Global re-
spiratory failure and need for endotracheal intubation and
ventilation was present in three cases (33%). Fever and re-
spiratory infections were not a common complication dur-
ing follow-up, but six cases (67%) had severe pulmonary
infections prior to diagnosis, two of which were related to
Mycoplasma pneumoniae (Additional file 1: Table S1).
There were no relevant comorbidities.
One prominent feature was failure to thrive in seven

patients (78%). In two cases (22%), transient percutan-
eous endoscopic gastrostomy (PEG) tube feeding had to
be applied. Median weight-for-age and length-for-age
both averaged at the lower bottom of CDC growth
charts [22] (Additional file 3: Figures S1 and Additional
file 4: Figure S2).
All patients in this population were alive at the end of
the study, with six patients showing improvement in pul-
monary function. Three cases were last noted to be
asymptomatic (Additional file 1: Table S1). Whole lung
lavage (WLL) treatment was used in the majority of cases
(n = 7; 78%). In two patients (patients H, I), periodical
WLL treatment every 4–8 weeks was applied over several
years to maintain a stable clinical course. The number of
WLL ranged from 3–56 (median 19.3) in total or 0.7-6.8
treatments per year of follow-up.
Given the wide variety of disease severity and age at

symptom onset, we investigated whether a correlation
between the presenting phenotype and the age of onset
was present. For this evaluation, disease severity was
ranked from asymptomatic to severely affected based
on physical development and worst respiratory status
(also see Methods section). Of note, the severity of
symptoms was inversely correlated with disease onset
as reflected by the time of diagnosis (Spearman’s rank:
p =0.0092).
Furthermore we investigated whether a correlation be-

tween the extent of the genetic damage and the clinical
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phenotype could be determined (Table 2). All patients of
the current cohort as well as previously published cases
were graded to one of four categories ranging from
asymptomatic to severely affected as stated above. Subse-
quently, Fisher’s exact test was performed to determine
whether the loss of the intracellular domain (exon 11) was
correlated to a more severe phenotype. However, no cor-
relation between the severity of the phenotype and the ex-
tent of genetic damage was found (p =0.18). Although in
patients with exon 11 deletions a tendency towards earlier
disease onset was noted (time of diagnosis: 4.9 ± 3.0 (exon
11 absent) vs. 8.1 ± 4.7 (exon 11 present) years), this obser-
vation also failed to reach statistical significance (point bi-
serial correlation: p =0.091).

GM-CSF receptor function analysis
All patients included in this study had negative GM-CSF
autoantibody levels as measured by ELISA (data not
shown). All of them also had elevated GM-CSF levels in
both serum (n = 3) and, when obtained, in bronchoalve-
olar lavage fluid (n = 4) as compared to 1) controls, 2)
adult PAP related to GM-CSF auto-antibodies, and 3) ju-
venile secondary PAP (data not shown).
Qualitative and quantitative analysis of the GM-CSF

receptor function was performed in all but three patients
(E, C, D), where no material was available. Flow cytome-
try of peripheral blood cells was used to investigate the
signal transduction following activation of the GM-CSF
receptor. Phosphorylation of STAT5 (pSTAT5) was ei-
ther markedly reduced or abolished in all 6 subjects in-
vestigated (Figure 3).
Discussion
Genotype-phenotype relationships in our cohort and in
view of published cases
In the population of PAP patients described here, we ob-
served a wide variability regarding the clinical phenotypes



Table 2 Therapy, severity of clinical phenotype and course of the disease in different CSF2RA mutations

CSF2RA mutation

Subject Allele 1 Allele 2 Symptom onset WLL Course

A p.Arg199X p.Arg199X severe yes improving

B G > A Ex12/Int12 border G > A Ex12/Int12 border moderate yes improving

C dupl.Ex8 dupl.Ex8 moderate yes improving

D dupl.Ex8 dupl.Ex8 asymptomatic no asymptomatic

E ΔEx2-13 ΔEx2-13 moderate yes improving

F ΔEx2-13 ΔEx2-13 asymptomatic no asymptomatic

G Xp22.3 Yp11.3 severe yes improving

H p.Ser25X p.Ser25X severe yes improving

I p.Gly196Arg p.Gly196Arg severe yes improving

J p.Gly196Arg p.Gly196Arg mild no improving

K p.Gly196Arg p.Gly196Arg moderate yes stable

L 920dupGC 920dupGC severe yes improving

M p.Arg217X p.Arg217X asymptomatic no asymptomatic

N p.Arg217X p.Arg217X severe yes n.a.

O p.Arg217X p.Arg217X moderate yes n.a.

P ΔEx7 ΔEx7-8 severe yes improving

Q XpΔ0.41 XpΔ1.6, Xq severe yes death

R p.Gly174Arg p.Gly174Arg severe yes n.a.

S p.Gly174Arg p.Gly174Arg mild n.a. n.a.

T Xp22.33p22.2 ΔCSF2RA n.a. n.a. n.a.
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and disease courses. This was true in both our population
and the cases published to date.
For example, we identified two patients (A, H) with

stop codon mutations which resulted in the loss of more
than 50 percent of the GM-CSF receptor alpha protein
(Figure 2). Both patients showed a severe clinical course,
including global respiratory failure with a need for endo-
tracheal intubation and ventilation and failure to thrive
with a need for percutaneous endoscopic gastrostomy
(PEG) placement, and displayed clinical signs of chronic
lung disease. Furthermore, two boys (patients E, G) with
whole gene deletions both developed dyspnea, cough,
chronic tachypnea, crepitation, failure to thrive and, in
one case, respiratory failure (E). However, it has to be
noted that exon 11 loss is not necessarily always associ-
ated with a severe clinical phenotype. One female pa-
tient (F) with a homozygous deletion of CSF2RA exons
2–13 never displayed any symptoms of chronic lung dis-
ease. She has only mild obstructive lung disease accord-
ing to her lung function tests.
Conversely, a severe clinical phenotype with failure to

thrive and need for oxygen supplementation was observed
in three patients with point mutations or small deletions
in the extracellular domain (patients I, P, R). Of note, point
mutations p.Gly196Arg and p.Gly174Arg were both ob-
served in more than one case (p.Gly196Arg: patients I, J,
K, p.Gly174Arg: patients R, S), and resulted in a variable
phenotype, ranging from mild symptoms to severe
phenotypes.
Interestingly, divergent clinical courses were also ob-

served in siblings or non-related individuals with identical
CSF2RA mutations resulting in partial or complete gene
deletion (patients C/D, E/F). This phenomenon has been
described before [10,14], and it implies that the phenotype
is not solely determined by the CSF2RA gene alteration.
In our cohort, the two sisters with exon 8 duplication (C,
D) showed different clinical courses. While the younger
one (C) had moderate pulmonary symptoms such as inter-
mittent dyspnea and cough, and was diagnosed at the age
of 6 years, her sister’s (D) genetic diagnosis was made by
chance during the diagnostic evaluation of the family.
Years later, at the age of 19 years, she developed mild
chronic cough which needed no invasive treatment so far.
In summary, no correlation between the severity of the

initial phenotype and the extent of genetic damage could
be identified. However, patients with extensive gene de-
letions including the intracellular domain (exon 11)
showed a tendency towards earlier disease onset. It was
suggested that penetrance may be important in familial
PAP [11]. Other factors contributing to symptom sever-
ity have not yet been identified, though respiratory tract
infections may play a role in disease onset (Table 1) [14].



Figure 3 STAT5 phosphorylation is diminished in all examined cases. STAT5 phosphorylation was determined by FACS analysis in
monocytes (n = 6) and granulocytes (n = 5) after stimulation with GM-CSF. One of the patients’ parents was used as a control in each experiment.
A. In monocytes, almost no MFI increase is visible in PAP patients as compared to controls. The right panels demonstrate an exemplary MFI shift
in a control, whereas the patient’s signal remains unchanged after stimulation. B. A similar pattern is seen in granulocytes.
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GM-CSFR functional analysis is sensitive for mutation
carriers
In the current study, all symptomatic and non-symptomatic
patients with CSF2RA mutations that could be investigated
(n = 6) showed a severe impairment of GM-CSF-induced
phosphorylation of STAT5 in peripheral monocytes and
granulocytes. Of note, no correlation between STAT5 phos-
phorylation impairment and the size of the gene deletions
was detected. Together with findings of an impaired STAT5
signaling pathway in previously published cases [10], our
data implicate that STAT5 functional analysis may be used
as a sensitive tool to identify GM-CSF receptor α chain mu-
tation carriers prior to genetic testing. Given the overall low
prevalence of PAP due to CSF2RA mutations, determin-
ation of GM-CSF-levels as well as testing for GMCSF-
autoantibodies should be conducted prior to STAT5 func-
tional analysis especially in patients with a disease onset in
late childhood or early adulthood. Since investigating
STAT5 phosphorylation in monocytes requires relatively
large blood samples, our data further suggest that granulo-
cytes may serve as an alternative. This could be relevant if
PAP is suspected in young infants.
Course of disease and response to WLL treatment
In the present study, a huge variety of clinical PAP phe-
notypes was observed, ranging from clinically silent to
acute respiratory failure and failure to thrive. Interest-
ingly, the presenting phenotype at the time of diagnosis
was more severe in younger patients. It has to be noted
that no death as a direct consequence of PAP was ob-
served. To date, one case report describes a patient with
a severe initial phenotype who died due to complications
after a bone marrow transplant (patient Q) [10,12]]. In
all other cases, the clinical phenotype was at least stable
during the follow-up. In most cases, patients improved
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over the course of disease, possibly due to individualized
treatment concepts applied to each patient.
In our cohort, treatment varied from regular follow-up

investigations in asymptomatic patients to frequent, period-
ical WLL, which were conducted over several years to ei-
ther maintain a stable clinical course, or to even improve
the clinical outcome. It has been repeatedly shown that
WLL may lead to symptomatic relief [10,13]. For example,
patient H first showed a severe clinical course including re-
spiratory distress. After more than a decade of one- or two-
monthly WLL treatment [13], disease activity slowly waned.
The patient is now without WLL for more than one year
and shows normal clinical and radiological findings (details
see Additional file 1: Table S1).
Several lines of evidence suggest that WLL treatment

may not only provide symptomatic relief, but may act in
favour of a benign clinical disease course. Of note, two
cases of siblings with identical GM-CSF receptor α chain
mutations and proven functional receptor impairment in
flow cytometry investigations have been reported where
only one sibling developed PAP [14]. It was noted that in
the clinically unaffected siblings no severe respiratory in-
fections or any other causes leading to changes in their al-
veolar environment could be identified. It was thus
concluded that certain triggers such as a severe initial pul-
monary infection are required to disturb the alveolar sur-
factant balance and to initiate PAP. Therefore, it could be
argued that repeated WLL helps establishing a novel al-
veolar equilibrium and may thus finally lead to complete
cessation of PAP. This hypothesis is supported by findings
in adult autoimmune PAP patients, where a single WLL
treatment is sufficient for complete and continuous symp-
tom relief in about 50% of the patients in spite of high
auto-antibody levels [21]. In our cohort, patient H, al-
though requiring a prolonged course of treatment, reached
complete symptom relief with normal clinical and radio-
logical findings after initially presenting with a severe
phenotype. Therefore, clinical experience and theoretical
implications strongly favor the repeated application of
WLL therapy especially in severely affected patients.
While such individual concepts currently remain the

treatment of choice, novel developments point towards ad-
vanced therapeutic options such as organotopic transplant-
ation of marcrophage progenitors [23]. Furthermore, recent
studies yielded promising results concerning patient-
specific, bone-marrow derived, genetically corrected mono-
cytes and macrophages, making individualized curative
therapeutic approaches a promising perspective [15].

Conclusions
In summary, the current study extends the clinical body of
knowledge on juvenile PAP. During the prolonged clinical
follow-up, a clear symptomatic benefit of repeated WLL
therapy was seen in severely affected patients. Mild cases
were usually self-limiting over time. While all CSF2RA
mutations led to a severe impairment of the STAT5 signal-
ing pathway, no correlation between the severity of the
clinical phenotype and the extent of genetic damage was
seen. However, we observed a tendency towards earlier
disease onset in patients with loss of the transmem-
branous domain of the GM-CSF receptor α chain. Our ap-
proach to the infant and child with pulmonary alveolar
proteinosis of unclear origin is to locate the defect and ad-
ministrate its most effective treatment as soon as possible.
STAT5 functional analysis in peripheral blood cells and
subsequent genetic testing is the method of choice to clas-
sify the pathogenetic nature of this rare condition. Long-
term, web-based clinical follow-up of patients with
CSF2RA mutation related juvenile alveolar proteinosis in
registers will be a helpful tool to further extend the body
of knowledge on this rare condition, and to create ready-
to-trial populations for emerging therapeutic approaches.

Availability of supporting data
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displayed on CDC growth charts [22]. Mostly, weight-for-age
development fails to reach the 50th percentile. Of note, patient H
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age parameters show a constant development below the 10th percentile,
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