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Abstract

Background: Acute Intermittent Porphyria (AIP) is a rare disease that results from a deficiency of
hydroxymethylbilane synthase, the third enzyme of the heme biosynthetic pathway. AIP carriers are at risk of
presenting acute life-threatening neurovisceral attacks. The disease induces overproduction of heme precursors in
the liver and long-lasting deregulation of metabolic networks. The clinical history of AIP suggests a strong
endocrine influence, being neurovisceral attacks more common in women than in men and very rare before
puberty. To asses the hypothesis that steroidogenesis may be modified in AIP patients with biochemically active
disease, we undertook a comprehensive analysis of the urinary steroid metabolome.

Methods: A case–control study was performed by collecting spot morning urine from 24 AIP patients and 24
healthy controls. Steroids in urine were quantified by liquid chromatography-tandem mass spectrometry. Parent
steroids (17-hydroxyprogesterone; deoxycorticosterone; corticoesterone; 11-dehydrocorticosterone; cortisol and
cortisone) and a large number of metabolites (N = 55) were investigated. Correlations between the different
steroids analyzed and biomarkers of porphyria biochemical status (urinary heme precursors) were also evaluated.
The Mann–Whitney U test and Spearman’s correlation with a two tailed test were used for statistical analyses.

Results: Forty-one steroids were found to be decreased in the urine of AIP patients (P < 0.05), the decrease being
more significant for steroids with a high degree of hydroxylation. Remarkably, 13 cortisol metabolites presented
lower concentrations among AIP patients (P < 0.01) whereas no significant differences were found in the main
metabolites of cortisol precursors. Nine cortisol metabolites showed a significant negative correlation with heme
precursors (p < 0.05). Ratios between the main metabolites of 17-hydroxyprogesterone and cortisol showed
positive correlations with heme-precursors (correlation coefficient > 0.51, P < 0.01).

Conclusions: Comprehensive study of the urinary steroid metabolome showed that AIP patients present an
imbalance in adrenal steroidogenesis, affecting the biosynthesis of cortisol and resulting in decreased out-put
of cortisol and metabolites. This may result from alterations of central origin and/or may originate in specific
decreased enzymatic activity in the adrenal gland. An imbalance in steroidogenesis may be related to the
maintenance of an active disease state among AIP patients.
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Table 1 Description of the case population studied

Gender Age Fertile Heme arginate PBG ALA GFR

F1 F 54 No No 3 1 >60

F2 F 32 Yes No 7 6 >60

F3 F 36 Yes No 10 6 >60

F4 F 37 Yes No 16 10 >60

F5 F 25 Yes No 16 13 >60

F6 F 31 Yes No 17 15 >60

M1 M 52 Yes No 19 9 >60

F7 F 49 Yes No 23 11 >60

F8 F 34 Yes No 26 21 >60

F9 F 35 Yes No 28 12 >60

F10 F 31 Yes No 29 7 >60

F11 F 35 Yes No 30 23 >60

F12 F 34 Yes No 30 12 >60

F13 F 27 Yes No 32 22 >60

F14 F 42 Yes No 32 21 52.84

F15 F 51 No No 34 31 >60

F16 F 22 Yes No 34 15 >60

F17 F 29 Yes No 35 16 >60

F18 F 41 Yes No 37 27 >60

F19 F 31 Yes No 45 20 >60

F20 F 20 Yes No 52 42 >60

M2 M 53 Yes Yes 57 41 > 60

F21 F 31 Yes Yes 63 40 >60

F22 F 41 Yes Yes 64 40 >60

Heme arginate treatment: Normosang®; 3 mg/Kg; every 2–3 weeks; PBG:
porphobilinogen concentrations (nmol/mmol creatinine); ALA: aminolevulinic
acid concentrations nmol/mmol creatinine). GFR: glomerular filtration
rate (mls/min).
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Background
Acute intermittent porphyria (AIP) is a dominant dis-
order that results from a partial deficiency of hydroxy-
methylbilane synthase (HMBS, EC 2.5.1.61) the third
enzyme of the heme biosynthetic pathway [1]. Carriers
of mutations within the HMBS gene are at risk of pre-
senting acute life-threatening neurovisceral attacks [2].
The incidence of new symptomatic cases has been esti-
mated to be 0.13 per million per year in most European
countries [3].
The clinical presentation of AIP includes autonomous,

central, motor and sensory symptoms. The patients may
present abdominal pain, tachycardia, hypertension and
hyponatremia. Neuropathy and muscle weakness can
lead to tetraplegia, with respiratory and bulbar paralysis
[4,5]. Acute attacks are associated with the induction of
5-aminolevulinate synthase (ALAS-1), the first enzyme
of the heme synthesis pathway, resulting in overproduc-
tion of heme precursors, aminolevulinic acid (ALA) and
porphobilinogen (PBG) in the liver [6]. The exportation
of ALA to tissues could be mainly responsible for the
neurovisceral symptoms. However, the pathophysiology
of the disease and the role of partial heme deficiency in
tissues is not completely understood [7]. Acute attacks
may be triggered by menstrual hormonal changes, fas-
ting, stress and some therapeutic drugs. Intravenous
heme administration is a well established highly effective
therapy, albeit with transient effects [2]. Nevertheless, al-
though heme administration may resolve acute crises, in
most patients the urinary levels of PBG and ALA usually
remain elevated for many years [8]. A few AIP patients
develop recurrent acute attacks that may require re-
peated heme infusions or even liver transplantation for
their cure [9].
The clinical history of AIP suggests a strong endocrine

influence over disease expression, being neurovisceral at-
tacks more common in women than in men and very
rare before puberty or after menopause [7]. Moreover, in
some series including few patients, the administration of
gonadotropin releasing hormone analogues has been
shown to reduce recurrent exacerbations associated with
menstruation [10].
AIP patients with biochemically active disease present

hepatic involvement with sustained ALAS-1 induction. In
these patients, with long-lasting oveproduction of heme-
precursors in the liver, we have previously reported low
plasma levels of insulin-growth factor 1 [11] and a de-
crease of 5α-reductase activity in the liver by the calcula-
tion of several urinary steroid metabolic ratios [12].
A pilot study by Larion et al. [13] studied circadian

rhythms in AIP and found a decrease of plasma cortisol in
patients with biochemically active disease. These findings
suggested that in addition to hepatic involvement, AIP
may be associated with hormonal disturbances originating
in the adrenal gland. To test this hypothesis and in order
to assess possible abnormalities in steroidogenesis among
AIP patients, we undertook a comprehensive urinary
target analysis of 70 steroid hormones and metabolites
by state-of-the art liquid chromatography–tandem mass
spectrometry.

Methods
Patients
We studied 24 adult Caucasian Spanish patients with bio-
chemically active AIP (22 women and 2 men, ranging in
age from 22 to 54 years, Table 1). All these patients had
initially presented an acute porphyria attack, had been
diagnosed with AIP and regularly attended thereafter in
the Porphyria Unit of the Hospital Clinic of Barcelona for
clinical follow-up. AIP was assessed by biochemical and
enzymatic analyses according to European Porphyria Ini-
tiative recommendations and external quality assessment
schemes [14]. Genetic analysis of the HMBS synthase gene
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confirmed the AIP in all the cases. Some of the HMBS
mutations found among these Spanish patients have been
previously reported [15].
At the initiation of the study and prior to urine collec-

tion, the patients did not present symptoms of acute
porphyria, but chronic complaints such as altered mood
states, fatigue or pain in the back were frequently re-
ported. Exceptionally, 3 patients who presented frequent
recurrent attacks were on a prophylactic heme-arginate
regime (Normosang®; 3 mg/Kg; every 2–3 weeks). The
urine of these patients was collected before the heme-
arginate infusions. None of the patients included in the
study were treated with luteinizing hormone-releasing
hormone (LHRH) agonists.
Independently of the clinical status, all the patients

presented increased long-term urinary excretion of the
heme precursors PBG and ALA. The concentrations of
the heme precursors in the urine samples used for ste-
roid analysis are shown in Table 1.
None of the patients presented other diseases in ad-

dition to AIP, and all presented normal liver function.
Although in some case-series AIP has been reported to
be associated with chronic renal failure [16] which could
eventually interfere with the objectives of the study, our
series of Spanish AIP patients showed no evidence of an
increased incidence of renal disease. All the cases in-
cluded but one (with a borderline increase of creatinine
concentrations in plasma) presented a normal glome-
rular filtration rate (GFR > 60 mls/min, Table 1) esti-
mated by the MDRD equation [17].
All AIP patients reported following the general dietetic

and life-style recommendations for AIP carriers. Prior to
urine collection all the patients were specifically in-
terviewed and denied self-prescription or casual intake
of porphyrinogenic drugs, synthetic hormones or other
substances that could eventually interfere with steroid
excretion and therefore bias the study results. Prior to
steroid and porphyrin analyses urine integrity and nor-
mal pH values were checked in all the samples.
Twenty-four healthy volunteers (22 women and 2

men; age 25–45 years) were recruited from the labora-
tory staff and included in the study as controls. They all
presented normal renal function and were interviewed
to discard the consumption of substances that could po-
tentially interfere with steroid metabolism.
All patients and controls were informed of the purpose

of the study and written consent was obtained. The
research was conducted in accordance with the Declar-
ation of Helsinki Principles and was approved by the
Hospital Clinic Ethic Committee. Second morning urine
from all patients and controls was obtained between
09.00 h-10.00 h in carefully controlled conditions within
the hospital premises. Aliquots were immediately pro-
tected from light and frozen at -80°C until analyses.
PBG and ALA measurements
PBG and ALA were measured by ion-exchange chromato-
graphy using the ALA/PBG column test (Bio-Rad GmbH,
Munich, Germany). Creatinine and liver enzymes were ana-
lyzed by standard methods using ADVIA 2400 equipment
(Siemens Medical Solutions Diagnostics, Tarrytown, NY,
USA). The concentration of PBG/ALA was normalized to
creatinine (mmol/mol of creatinine).
Urinary steroids
Reference standards for steroid hormones, their metabolites
and internal standards were obtained from Steraloids Inc.
(Newport, USA), Sigma-Aldrich (St Louis, MO, USA),
Merck (Darmstadt, Germany), Toronto Research Chemicals
(Toronto, Canada), and NMI (Pymble, Australia) (for more
information see reference [18]).
In summary, the target metabolomic analysis was

based on the quantitation of urinary concentrations for
70 analytes including 17-hydroxyprogesterone (17OHP),
11-deoxycortisol (S), deoxycorticosterone (DOC), corti-
costerone (B), 11-dehydrocorticosterone (A), cortisol (F),
cortisone (E) and testosterone (T) and a large number of
their metabolites. These hormones represent key steps in
steroidogenesis [19] (Figure 1). The structures of the uri-
nary metabolites analyzed are summarized in Figure 2.
Quantification of urinary steroids
The quantification of urinary steroids was performed by a
previously reported method [18]. Briefly, 0.5 mL of urine
were added with an internal standard (ISTD) mixture,
buffered at pH 7, and enzymatically hydrolysed with
β-glucuronidase (60 minutes at 55°C). After hydrolysis,
2 mL of a saturated NaCl solution and 250 μL of a 25%
(w/v) K2CO3 solution were added, and the mixture was
extracted with 6 mL of ethylacetate. After evaporation of
the organic layer, the extract containing glucuronocon-
jugated plus unconjugated analytes was reconstituted with
150 μL of water:acetonitrile (9:1, v/v). Unconjugated ste-
roids were also determined by applying the same strategy
but omitting the step of enzymatic hydrolysis.
Ten μL of the reconstituted extract were injected into

the liquid chromatography-tandem mass spectrometry
(LC-MS/MS) system consisting in a triple quadrupole
(Xevo) mass spectrometer (Waters Associates, Milford,
MA, USA) coupled to an Acquity UPLC system, (Waters
Associates) for chromatographic separation. The LC sep-
aration was performed using an Acquity BEH C18 column
(100 mm× 2.1 mm i.d., 1.7 μm) (Waters Associates) at a
flow rate of 300 μL min−1. Water and methanol both with
formic acid (0.01% v/v) and ammonium formate (1 mM)
were selected as mobile phase solvents. The detailed gra-
dient and SRM method has been described elsewhere
[18].
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Figure 1 Biosynthesis of steroidal hormones and the enzymes involved.
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Quantification was performed after peak area integra-
tion of the analytes and the ISTD and comparison with
a calibration curve. Results were normalized to crea-
tinine levels (μg/g creatinine).

Statistical analysis
Among the metabolites determined by the study me-
thod, those detected in at least 50% of either the control
or cases samples were included in the data analysis. The
remaining analytes were discarded.
All the analytes were monitored in both unconjugated

and total (conjugated + unconjugated) fractions. The un-
conjugated data was not considered for analysis among
those analytes with a concentration in the unconjugated
fraction representing less than 10% of the total amount,
In cases in which the unconjugated concentration was
greater than 90% of the total, the data obtained in the
analysis of the total fraction was discarded from the
analysis.
Data were analyzed using the SPSS software (v 18.0;

IBM, Armonk, New York, NY, USA). The statistical
analysis was used to reveal the differences between the
two groups; cases and controls. Correlations between
the different compounds analyzed, and the heme pre-
cursors (PBG and ALA) were also evaluated. Since the
low number of data analyzed hampers the assumption
of normality, the statistical analysis was conducted using
non-parametric tests. A Mann–Whitney U test was
used to compare the differences between the two groups
and Spearman’s correlation with a two-tailed test was
used for the evaluation of the correlation among all the
compounds analyzed. Statistical significance was set at
p ≤ 0.05 or p ≤ 0.01.
A graphic representation including all the patients

(Figure 3) was constructed by calculating the percentile of
every sample for each analyte in relation to the combined
population group (cases + controls). A gradual color scale
plot was performed using green for the highest values
(90% percentile or higher), yellow for intermediate values
(50% percentile) and red for the lowest values (10% per-
centile or lower).

Results
Analytes included in the metabolomic study
Forty-eight analytes fulfilled the criteria for acceptance
(see “Statistical analysis” section) and were therefore in-
cluded in the metabolomic analysis. These compounds are
summarized in Figure 2. Most were predominantly ex-
creted (>90%) as conjugated with glucuronide whereas 5
metabolites (6βOH-B, 6βOH-F, 6βOH-E, 20α-DH17OHP
and 20α-DHF) were detected mainly as unconjugated.
Seven compounds (17OHP, F, E, 20βDHF, 20βDHE,
20αDHE and β,α-cortol) were detected (>10%) in both
forms and therefore the concentrations obtained in the
unconjugated and total (unconjugated + conjugated) frac-
tions were considered separately for the evaluation. In



20 -reduction 20 -reduction20 -reduction20 -reduction

HO

O
Y

ZX

H

Parent5 -DH

5 -reduction

20 -reduction

20 -DH

20 -reduction

20 -DH

6 -hydroxylation6 -OH

5 -reduction
+3 -reduction

5 -reduction
+3 -reduction

5 -TH 5 -TH

O

O
Y

ZX

O

HO
Y

ZX

O

HO
Y

ZX

O

O
Y

ZX

H

O

O
Y

ZX

OH

HO

O
Y

ZX

H

HO

HO
Y

ZX

H
HO

HO
Y

ZX

H
HO

HO
Y

ZX

H
HO

HO
Y

ZX

H

17OHP DOC S B A F E
X -H -H -H -OH =O -OH =O
Y -H -OH -OH -OH -OH -OH -OH
Z -OH -H -OH -H -H -OH -OH

Parent 17OHP
u-17OHP DOC S B A F

u-F
E
u-E

6 -hydroxylation n.d. n.d. n.d. u-6 OH-B n.d. u-6 OH-F u-6 OH-E
20 -reduction n.d. n.d. 20 -DHS 20 -DHB 20 -DHA

20 -DHF
u-20 -DHF

20 -DHE
u-20 -DHE

20 -reduction u-20 -
DH17OHP

n.d. n.d. 20 -DHB 20 -DHA u-20 -DHF
20 -DHE
u-20 -DHE

5 -reduction n.d. n.d. n.d. n.d. n.d. 5 -DHF 5 -DHE
5 -reduction + 
3 -reduction

17HP 5 -THDOC 5 -THS 5 -THB 5 -THA 5 -THF 5 -THE

5 -reduction + 
3 -reduction

n.d. 5 -THDOC n.d. 5 -THB 5 -THA 5 -THF 5 -THE

5 -reduction + 
3 -reduction + 
20 -reduction

PT n.d. -deoxy-
cortolone

17-deoxy-
-cortol

17-deoxy-
-cortolone , -cortol -cortolone

5 -reduction + 
3 -reduction + 
20 -reduction

n.d. n.d. n.d. n.d. n.d. , -cortol n.d.

5 -reduction + 
3 -reduction + 
20 -reduction

n.d. n.d. -deoxy-
cortolone

n.d. n.d. , -cortol
u- , -cortol

-cortolone

5 -reduction + 
3 -reduction + 
20 -reduction

n.d. n.d. n.d. n.d. n.d. , -cortol n.d.
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summary, 55 analytes were considered for the metabolo-
mic study of steroid profiling in AIP patients.

Case versus control groups
Case samples had heme precursor concentrations ran-
ging from 3 to 64 nmol/mmol creatinine for PBG and
from 1 to 40 nmol/mmol creatinine for ALA (normal
values for PBG; <0.8; ALA < 5).
The steroid concentrations are summarized in Table 2.

The urinary concentrations of the steroid were within
the normal range in the control samples [18,20-22]. The
concentrations found in the urine from AIP patients
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were generally lower for most of the analytes detected
with significant differences (p < 0.05) in 41 out of the 55
steroids evaluated. Remarkably, differences increased with
the number of hydroxylation processes undergone by the
hormone. Thus, no significant differences (p > 0.05) were
found in several metabolites of 17-hydroxyprogesterone,
deoxycorticosterone and 11-deoxycortisol whereas 12 out
of the 13 analytes related to cortisol (the most hydro-
xylated hormone) showed p values below 0.01 (the only
exception was β, β-cortol with a p = 0.021). Generally, the
p values for the 5β reduced metabolites were higher than
those for their 5α counterparts. Decreased excretion of
5α-steroids compared to their 5β-counterparts has been
previously described [12,23-26].
In order to check the individual status of every patient,

Figure 3 provides a graphic representation of their ste-
roid concentrations compared with the control group.
For improving the clarity of the results, the patients were
ordered by urinary PBG concentrations. In general, pa-
tients with relatively low heme precursor concentrations
had urinary steroid concentrations closer to those of the
control group, mainly showing yellow-orange tonalities in
Figure 3. In contrast, AIP patients with higher concen-
trations of heme precursors had lower concentrations of
steroids, showing predominantly orange-red tonalities in
Figure 3. This decrease was more pronounced for cortisol,
cortisone, corticosterone and 11-dehydrocorticosterone
than for their 11-deoxycortisol, deoxycorticosterone and
17-hydorxyprogesterone precursors.

Correlation of steroids versus heme precursors
Based on the study by Christakoudi et al. in which ster-
oid profiling was used for the study of 21-hydroxylase
deficiency [27], a heat map was constructed showing the
crossed correlations among the 55 urinary steroids, uri-
nary PBG and ALA, found in AIP patients (Figure 4).



Table 2 Results found in control and AIP patients for the hormones and metabolites determined

T + DHEA 17OHP DOC S

Control AIP patients Control AIP patients Control AIP patients Control AIP patients

Parent 7.2 7.0 1.12 0.68 0.82 0.50 0.57 0.51

(5.5-16.4) (5.3-10.3) (1.09-1.69) (0.65-1.16)** (0.65-1.27) (0.41-1.05) (0.45-0.81) (0.38-0.66)

u-Parent n.d. n.d. 0.77 0.58 n.d. n.d. n.d. n.d.

(0.75-1.09) (0.48-0.90)*

20β-red. n.d. n.d. n.d. n.d. n.d. n.d. 1.19 0.61

(1.06-1.49) (0.56-1.0)**

u-20α-red. n.d. n.d. 0.45 0.28 n.d. n.d. n.d. n.d.

(0.39-0.57) (0.20-0.42)**

5β-red. + 3α-red. 2924 1993 200 240 15.1 6.5 41.8 36.3

(2520–3636) (1612–2642)** (178–382) (218–421) (10.8-31.7) (5.8-15.1)* (40.8-71.4) (33.8-50.2)

5α-red. + 3α-red. 3276 1262 n.d. n.d. 2.4 0.1 n.d. n.d.

(2756–3820) (1135–1990)** (2.7-7.6) (0.22-1.27)**

5β-red. + 3α-red. + 20β-red. n.d. n.d. 983 1070 n.d. n.d. 4.9 5.6

(905–1346) (883–1493) (4.7-11.7) (3.9-8.4)

5β-red. + 3α-red. + 20α-red. n.d. n.d. n.d. n.d. n.d. n.d. 8.5 7.7

(7.0-12.5) (6.6-10.5)

B A F E

Control AIP patients Control AIP patients Control AIP patients Control AIP patients

Parent 7.8 3.1 48.5 22.2 119 38.4 227 135

(7.0-14.6) (2.7-6.9)** (43.5-63.3) (19.1-40.1)** (91–153) (32.0-52.6)** (211–290) (110–173)**

u-Parent n.d. n.d. n.d. n.d. 50.7 10.3 106 43

(42.2-86.5) (7.4-13.0)** (99–175) (39–69)**

u-6β-hydroxyl. 3.7 0 n.d. n.d. 291 87 17.2 10.7

(3.1-6.0) (0.2-0.6)** (265–408) (77–122)** (14.3-21.4) (9.1-13.9)**

20β-red. 6.8 3.2 7.7 4.7 103 45 26.1 18.5

(5.2-7.7) (2.5-4.6)** (7.1-9.9) (3.4-6.9)** (88–136) (37–64)** (23.4-31.7) (17.0-25.7)*

u-20β-red. n.d. n.d. n.d. n.d. 62.3 24.3 13.2 7.2

(55.5-99.3) (18.1-33.0)** (10.0-17.9) (6.0-10.4)**

20α-red. 5.4 3.3 17.0 8.8 n.d. n.d. 64.0 39.3

(56.6-78.4) (30.5-53.6)**(5.1-10.3) (2.8-5.8)* (14.5-20.7) (6.7-15.7)**

u-20α-red. n.d. n.d. n.d. n.d. 230 36 38.1 17.8

(198–363) (36–85)** (34.2-52.6) (14.3-27.0)**

5β-red. n.d. n.d. n.d. n.d. 6.9 4.3 9.4 13.0

(5.6-8.1) (3.2-4.9)** (6.3-16.4) (8.2-19.0)

5β-red. + 3α-red. 190 87 29.6 16.9 2009 1115 3665 2876

(172–271) (69–141)** (24.7-40.5) (14.0-31.6)* (1751–2404) (1040–1672)** (3059–4325) (2552–3743)

5α-red. + 3α-red. 308 89 8.1 2.8 967 350 56.6 31.8

(308–470) (89–211)** (7.5-12.2) (2.4-5.0)** (912–1352) (344–884)** (53.6-89.7) (25.9-61.7)*

5β-red. + 3α-red. + 20β-red. 16.2 9.1 61.8 31.6 111 81 476 575

(9.9-25.0) (7.2-20.0) (50.7-91.7) (32.7-94.8) (94–158) (70–115)* (401–597) (512–798)

5α-red. + 3α-red. + 20β-red. n.d. n.d. n.d. n.d. 35.4 14.0 n.d. n.d.

(26.4-41.3) (13.1-26.7)**
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Table 2 Results found in control and AIP patients for the hormones and metabolites determined (Continued)

5β-red. + 3α-red. + 20α-red. n.d. n.d. n.d. n.d. 40.4 16.9 979 967

(29.8-50.9) (14.8-31.8)** (830–1207) (827–1264)

5α-red. + 3α-red. + 20α-red. n.d. n.d. n.d. n.d. 59.8 22.3 n.d. n.d.

(47.3-77.9) (22.0-51.3)**

AIP patients exhibited a significant decrease for all cortisol metabolites whereas concentrations in the normal range were found for most the metabolites from
cortisol precursors. Results are expressed as median (μg/g creatinine) and 95% confidence interval for mean (in brackets) *P < 0.05, **P < 0.01 vs. control,
“u-“ metabolite excreted unconjugated.
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This Figure, depicts the correlations found among all the
analytes detected. Figure 5 provides the correlations
found in AIP patients between heme precursors and the
urinary steroids evaluated in greater detail. The corre-
lation between cortisol and the remaining steroids is also
included in Figure 5 as a model compound for steroid
behaviour.
A positive correlation was found between cortisol

and most of the urinary steroids, with this correlation
being significant for most of the corticosterone, 11-
dehydrocorticosterone, cortisol and cortisone metabolites
evaluated (correlation coefficient between 0.4 and 0.9,
p < 0.05). The expected positive correlation between PBG
and ALA was also observed (correlation coefficient 0.86,
p < 0.001).
Both heme precursors presented a negative correlation

with most of the urinary steroids evaluated. The signifi-
cance of this negative correlation increased with the num-
ber of hydroxylation steps performed in the biosynthesis
Figure 4 Crossed correlation found in AIP patients between the 55 ur
between hormones and their metabolites was obtained. Additionally, nega
and positive correlations between 17-hydroxyprogesterone and heme prec
of the hormone (see Figure 1), reaching a maximum for
cortisol. Thus, 9 out of 14 cortisol metabolites showed a
significant negative correlation with both PBG and ALA
(correlation coefficient between 0.4 and 0.65, p < 0.05).
The lowest correlation between heme precursors and cor-
tisol metabolites was found for 5α-reduced metabolites. In
general, the lowest significance in the correlation was
found for polyreduced metabolites.
A positive significant correlation was observed be-

tween PBG and pregnantriol; i.e. the main metabolite of
17-hydroxyprogesterone (correlation coefficient = 0.482,
p = 0.02). This positive trend was also found for the se-
cond main 17-hydroxyprogesterone metabolite (17HP),
although statistical significance was not achieved (correl-
ation coefficient = 0.334, p = 0.1).
Since an opposite trend was found between the urinary

metabolites of the first product of the metabolic cascade
(17-hydroxyprogesterone) and those of the end product
(cortisol), several ratios were established between 17-
inary steroids, PBG and ALA. The expected positive correlation
tive correlations between cortisol metabolites and heme precursors
ursors were found.
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hydroxyprogesterone and the cortisol metabolites in order
to check the global function of steroidogenesis. Since hep-
atic 5α-reduction is decreased in AIP patients [12,23-26]
and no 5α-metabolites are included in 17-hydroxyproges-
terone, the use of 5α-reduced metabolites was avoided
and only 5β-reduced metabolites were considered for the
formation of ratios. The ratio between the main metabo-
lites of 17-hydroxyprogesterone and cortisol (PT/5β-THF)
showed a positive correlation with both PBG and ALA
(correlation coefficient > 0.51, p < 0.01, see Figure 5b).
Similar results were obtained for the remaining ratios
tested.

Discussion
The results presented in this study can be summarized into
three main findings (i) urinary corticosteroid levels are de-
creased in AIP patients, (ii) cortisol and its metabolites are
more decreased than its precursors in AIP, and (iii) the
urinary concentration of cortisol metabolites is nega-
tively correlated with the urinary concentration of heme
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precursors whereas an opposite trend may be observed for
the main metabolites of 17-hydroxyprogesterone.
The study was performed with spot urine samples

(second void of the morning) from AIP patient collected
between 09.00 h and 10.00 h in a controlled hospital set-
ting and not with at-home collected 24-hour urine. The
possible weaknesses of a study based on spot-urine are
minimized by the analysis of a large number of metabo-
lites of each hormone. Since all cortisol metabolites were
found to have a similar trend to a decrease in AIP pa-
tients (Table 2), our results seem to show a high degree
of consistency, despite the use of spot morning urine.
The quantitation of a large number of hormones and

metabolites also increased the significance of our fin-
dings. The measurement of a single metabolite (or a few
metabolites) for each hormone would make the inter-
pretation uncertain, since variations in urinary concen-
trations may be the consequence of either changes in
the synthesis of a parent compound or changes in its
metabolism (or a combination of both effects). In our
study, every step of steroidogenesis was evaluated by dif-
ferent analytes, thereby increasing the reliability of the
results as in the case of the decrease of cortisol which
was supported by the decrease of 13 urinary species.
The overall decrease of corticosteroid excretion re-

ported here is in agreement with the observations of
Larion et al. [13] who found a decrease of cortisol in
plasma in 3 AIP women with active disease. Moreover,
we found a negative correlation between heme precursor
concentrations in urine and most of the cortisol metabo-
lites. Two tentative explanations can be hypothesized for
our whole set of results: (i) AIP patients may present al-
terations in the hypothalamic pituitary adrenal (HPA)
axis, and (ii) AIP patients may present deficiencies in the
adrenal enzymes involved in the biotransformation of
17-hydroxyprogesterone to cortisol (Figure 1).
Neither of these hypotheses can be ruled out. However,

if a decrease in pituitary-derived ACTH was the cause of
the decrease in cortisol levels, a similar reduction would
be expected for other adrenal corticosteroids. Our results
showed normal values of 17-hydroxyprogesterone and
11-deoxycortisol metabolites suggesting that the adrenal
activity was not reduced as a whole.
Light-sensitive extra-pituitary input from the suprachi-

asmatic nucleus regulated by the hippocampus induces a
burst of cortisol secretion following morning awakening,
the so-called cortisol awakening response (CAR) [28]. A
possible dampening of CAR among AIP patients would
also explain the decrease in cortisol observed in the
morning urine. This effect would be more pronounced
for those metabolites arising from rapid metabolism.
Acquired enzymatic deficiencies affecting the biosynthesis

of cortisol could more likely explain the increased ratio be-
tween 17-hydroxyprogesterone metabolites (arising from
the precursor) and cortisol metabolites (arising from the
final product). This could be a consequence of heme defi-
ciency associated with sustained up-regulation of ALAS-1
which is characteristic of active AIP. Heme deficiency
could, in turn, partially decrease the activity of specific he-
moproteins, notably P450 cytochromes, involved in steroid
biosynthesis in the adrenal gland. Moreover, intracellular
and mitochondrial energy deficiency, cofactor depletion or
even direct ALA toxicity could also contribute to the
changes observed in steroidogenesis.
It is unclear how the hormonal imbalance is associated

with ALAS-1 induction and the sustained overproduc-
tion of heme precursors among AIP patients. It has been
shown that steroids may induce ALAS-1 and porphyrin
accumulation in liver cells [29]. Therefore, changes in
adrenal metabolism could also be interpreted as physio-
logical compensation mechanisms in situations of long-
lasting ALAS-1 induction in the liver.
In conclusion, active AIP is associated with a hormo-

nal imbalance of adrenal steroidogenesis; however, the
effect of this imbalance on disease expression needs to
be further evaluated.
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