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Abstract

Background: Spinal Muscular Atrophy (SMA) is one of the most common inherited causes of infant death and is
caused by the loss of functional survival motor neuron (SMN) protein due to mutations or deletion in the SMNT
gene. One of the treatment strategies for SMA is to induce the expression of the protein from the homologous
SMN2 gene, a rescuing paralog for SMA.

Methods and results: Here we demonstrate the promise of pharmacological modulation of SMN2 gene by BAY
55-9837, an agonist of the vasoactive intestinal peptide receptor 2 (VPAC2), a member of G protein coupled receptor
family. Treatment with BAY 55-9837 lead to induction of SMN protein levels via activation of MAPK14 or p38 pathway

in vitro. Importantly, BAY 55-9837 also ameliorated disease phenotype in severe SMA mouse models.
Conclusion: Our findings suggest the VPAC2 pathway is a potential SMA therapeutic target.
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Background

Spinal muscular atrophy (SMA), is an untreatable re-
cessive neuromuscular disorder; with an incidence of
1:11000, it is a leading genetic cause of pediatric death
[1]. The loss of lower motor neurons from the ventral
horn of spinal cord is the major pathological feature of
the disease and results in generalized weakness, progres-
sive muscle loss and respiratory failure [2]. SMA is
caused by the pathologic reduction in survival of motor
neuron (SMN) protein levels due to deletions and muta-
tions in SMNI gene [3]. Although the complete loss of
SMN protein is embryonically lethal, the presence of the
paralogous SMN2, a result of a recent duplication event,
which produces a limited full length SMN mRNA
(~10%) precludes this outcome in humans [4,5]. Thus all
SMA patients have 2 or more copies of SMNZ2 gene
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which in part compensates for the loss of SMNI gene.
The inverse correlation between the severity of the dis-
ease phenotype and copy number of SMN2, both con-
firms the gene’s disease modifying function and has
made the induction of SMN2 a common SMA thera-
peutic goal. In this regard we have showed the post
transcriptional stabilization of SMN mRNA through ac-
tivation of p38 pathway leads increased SMN levels [6].
We have recently reported that the activation of the p38
pathway through celecoxib upregulates SMN protein
levels and can ameliorate disease phenotype in SMA
mouse model [7]. In this regard, Vasoactive intestinal
peptide receptor 2 (VPAC2), a member of G protein
coupled receptor family when activated has been re-
ported to activate p38 pathway in vivo [8,9].

We thus decided to assess the blood brain barrier (BBB)
penetrant VPAC2 receptor agonist BAY 55-9837 for its
potential SMA therapeutic utility. We show here that BAY
55-9837 conferred an increase in SMN protein levels via
p38 activation in human neuronal cells. Importantly, we
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show that treatment with BAY 55-9837 also increases
brain and spinal cord SMN protein levels as well as im-
proving disease phenotype and survival in a severe SMA
mouse model. Our results provide further evidence that
p38 MAPK pathway activators act as potential therapeutic
compounds for the treatment of SMA and identify the
VPAC pathway as one means of achieving such activation.

Methods

Animals

All protocols were approved by Animal Care and Veter-
inary Services (ACVS) and Ethics board of University of
Ottawa. All experiments were carried out in accord-
ance with the Canadian Institute of Health Research
(CIHR) Guidebook and ACVS legislation. CD-1 mice
were obtained from Charles River Laboratory. The
original breeding pair of heterozygous SMAA7 (mSmn+/-,
hSMN2+/+, hSMINA7+/+; stock# 005025), Taiwanese mice
(Smn1""H4"8 Tg(SMN2)2Hung/J; stock# 005058) and het-
erozygous Smn knock-out mice (Smn*’") on the FVB
background were provided by the Jackson Laboratory.
The animals were maintained in an air-conditioned venti-
lated animal facility. Survival, righting time and weight
were monitored daily as described by Aviva et al [10].

BAY 55-9837 administration

BAY 55-9837 was diluted in PBS/dH,O and adminis-
tered through IP injection using a 30-gauge needle (0.2
mg/kg dose). Control animals received equal volumes of
vehicle alone. SMAA7 and Taiw/Jax SMA mice were ge-
notyped at PO and BAY 55-9837 treatment was started
from P1. Animals were sacrificed within twenty four
hours of the final dose.

Reagents

BAY 55-9837 was purchased from Tocris Bioscience. p38
inhibitor SB239063 was purchased from Sigma. The anti-
bodies used in this study were SMN/Smn (BD Transduction
Laboratories), Actin (Abcam), Tubulin (Abcam), Phospho-
p38 (Cell signalling) and Total p38 (Cell signalling).

Cell culture and drug treatment conditions

Human neuron-committed teratocarcinoma (N'T2), mouse
motor neuron derived (MN-1) cells and SMA type I pa-
tient fibroblasts were maintained in standard conditions
(37°C in a 5% CO, humidified atmosphere) in
Dulbecco’s modified Eagle medium (DMEM) supplemented
with 10% fetal calf serum (FCS), 1% antibiotics (100 units/
ml penicillin-streptomycin) and 2 mM glutamate.

NT2 or MN-1 cells were seeded in 6 well plates (5 x
10°cells/well) and treated 24 h later with BAY 55-9837
(0.25 puM) for 24h. For time course experiment, NT2
cells were seeded in 6 well plates (5 x 10°cells/well) and
treated 24h later with BAY 55-9837 (0.25 uM) for up to
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24h. For p38 inhibitor treatment, NT2 were seeded in 6
well plates (5 x 10°cells/well) and pre-treated with p38
inhibitor SB239063 for 2 h followed by BAY 55-9837
treatment (0.25 uM) for 24 h.

Western blot analysis

Cells were washed 2 times with 1 ml PBS (1X) and lysed
in 150ul RIPA buffer containing 10 mg/ml each of apro-
tinin, PMSF and leupeptin (all from Sigma), 5 mM
B-Glycerolphosphate, 50 mM NaF and 0.2 pM sodium
orthovanadate for 30 min at 4°C, followed by centrifuga-
tion at 13 000 x g for 30 min; supernatants were then
collected and kept frozen at -20°C. Tissue samples were
homogenized in 0.5 ml RIPA (10 mg/ml each of aproti-
nin, PMSF and leupeptin) and then sonicated for 15
seconds. Total protein concentrations were determined
by Bradford protein assay using a Bio-Rad protein assay
kit. For western blot analysis, protein samples were sepa-
rated by 11% SDS-PAGE. Proteins were subsequently
transferred onto nitrocellulose membrane and incubated in
blocking solution (PBS, 5% non-fat milk, 0.2% Tween-20)
for 1 h at room temperature followed by overnight incuba-
tion with primary antibody at 4°C at the dilution prescribed
by the manufacturer. Membranes were washed with PBS-T
(PBS, and 0.2% Tween-20) 3 times followed by incubation
with secondary antibody (anti-mouse or rabbit, Cell sig-
nalling) for 1 h at room temperature. Antibody com-
plexes were visualized by autoradiography using the
ECL Plus and ECL western blotting detection systems
(GE Healthcare). Quantification was performed by scan-
ning the autoradiographs and signal intensities were
determined by densitometric analysis using the Image]J
program.

Primer sequences

For genotyping

Genotyping was performed as previously described by
Aviva et al [10] for SMAA7 mice using the following
primers

mSmn WT Forward: 5'-TCTGTGTTCGTGCGTGGTG
ACTTT-3".

Reverse 1877: 5'-CCCACCACCTAAGAAAGCCTCA
AT-3".

Lac Z Forward: 5'-CCAACTTAATCGCCTTGCAGCA
CA-3".
Reverse: 5'-AAGCGAGTGGCAACATGGAAATCG 3'.

Human SMN2 transgene Forward: 5'-CAAACACCT
GGTATGGTCAGTC-3'.
Reverse: 5'-GCACCACTGCACAACAGCCTG-3'.
Product sizes:
mSMN: 372 bp
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Lac Z: 626 bp

SMN?2 transgene: 250 bp

Genotyping for Taiwanese SMA mice was performed
as previously described by Riessland et al [11] using rec-
ommended primers.

Statistical methods

GraphPad Prism software package was used for the
Kaplan—Meier survival analysis. The log-rank test was
used and survival curves were considered significantly
different at P < 0.05.

Data in figures (histograms, points on graphs) are
mean values with the standard error mean (SEM) shown
as error bars. The Student’s two-tail ¢ test was used to
test for statistical differences between samples and were
considered significantly different at P < 0.05.

Results and discussion

SMA is a frequently severe neurodegenerative disease
which most frequently affects children; many of them do
not survive beyond the first few years of life. Although
there is no effective therapy for SMA, one translational
approach is to induce the paralogous gene SMNZ2. This
results in the production of more SMN protein, which
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can partially compensate for the loss of SMNI gene and
to moderate the disease phenotype.

BAY 55-9837 treatment upregulates SMN protein in vitro
VPAC2 receptor activation has been reported to activate
the p38 kinase pathway [8,9] which, in turn, we have
shown to stabilize SMN transcript and increase SMN pro-
tein level [6]. In order to assess the potential of VPAC-2
receptor activation in the regulation of SMN gene expres-
sion; human NT2, mouse MN-1 cells and SMA I patient
fibroblasts were treated with VPAC2 receptor agonist BAY
55-9837 (25 uM) for 24 h and subsequently harvested for
western blot analysis. SMN protein levels were found to be
increased by ~2 fold in all cell lines upon treatment with
BAY 55-9837 (Figure 1a-f). These results were encouraging
in that the increase in SMN protein levels was observed in
both neuronal cell lines and patient fibroblasts suggesting
that the induction was not specific to a given cell line.

BAY 55-9837 conferred increase in SMN protein levels is
mediated by p38 MAPK activation

The p38 MAPK pathway regulates a number of cellular
process including post-transcriptional stabilization of a
distinct class of mRNAs that contain AU rich elements
(ARE) mapping to their 3" UTRs [12-16]. This class of

*P <0.05; **P < 0.01; ***P <0001, t-test.
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Figure 1 BAY 55-9837 treatment upregulates SMN protein in vitro. NT2, MN-1 and SMA | patient fibroblasts were treated with BAY 55-9837
(0.25 uM) and then harvested at 24 hours for western blot analyses. (a) Representative western blots showing the effect of BAY 55-9837 on SMN
protein in NT2 cells. (b) Densitometric quantification of SMN protein relative to Actin (the ratio at control treatment was set as 1; mean + SEM
(bars) of six independent experiments) are shown for NT2 cells. (c) Representative western blot showing effect of BAY 55-9837 on SMN protein in
MN-1 cells. (d) Densitometric quantification of SMN protein relative to Tubulin (the ratio at control treatment was set as 1; mean + SEM (bars) of
three independent experiments) are shown for MN-1 cells. (e) Representative western blots showing the effect of BAY 55-9837 on SMN protein in
SMA | patient fibroblasts (all lanes were run on the same gel but were non-contiguous). (f) Densitometric quantification of SMN protein relative
to Tubulin (the ratio at control treatment was set as 1; mean + SEM (bars) of five independent experiments) are shown for SMA | patient fibroblasts.
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mRNA includes that encoded by SMN2 [14]; we have
previously reported that p38 MAPK increases SMN pro-
tein expression by virtue of the binding of HUR protein
to SMN2 3'UTR [6]. The VPAC2 receptor agonist Ro
25-1553 has been previously shown to activate the p38
MAPK pathway [9]; we wished to confirm that BAY
55-9837 could elicit the same p38 activation and that
this was underlying the observed SMN protein induc-
tion. NT2 cells were therefore treated with BAY 55-9837
and then harvested; western blot analysis at the indi-
cated time intervals revealed within one hour an in-
crease in the ratio of phosphorylated/ total p38 protein
(up to 24 hrs after BAY 55-9837 treatment) consistent
with p38 activation (Figure 2a-b). p38 MAPK activation
was concurrent with the increase in SMN protein levels
in NT2 cells (Figure 2a & c). To confirm the role of p38
in the observed SMN protein induction, NT2 cells were
pre-treated with the p38 inhibiting agent SB-239063 [17]
for 2 h prior to treatment with BAY 55-9837 for 24 h.
Western blot analysis revealed that p38 inhibition effect-
ively blocked the BAY 55-9837-mediated increase in
SMN protein (Figure 2d & e). These results demonstrate
that activation of p38 pathway presumable through
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binding of VPAC2 receptor agonist to its receptor con-
fers the increase in SMN protein levels observed upon
BAY 55-9837 treatment. This result is consistent with
our previous observation of increased SMN protein
levels conferred by the p38 MAPK activating small com-
pounds anisomycin and celecoxib [6,7].

BAY 55-9837 treatment upregulates SMN protein levels
in vivo
In order confirm that BAY 55-9837-mediated SMN pro-
tein induction extends to the in vivo setting, a dose finding
study was initiated. CD-1 mice were given daily intraperi-
toneal (IP) BAY 55-9837 injections for 5 days 0.02, 0.2 and
2 mg/kg and brain and spinal cord samples then isolated
for western blot analysis. Increased SMN protein levels
were observed both in brain (Additional file 1: Figure Sla
& b) and spinal cord samples (Additional file 1: Figure Slc
& d) following BAY 55-9837 treatment with the greatest
induction (~2 fold), seen at 0.2 mg/kg dose in CD-1 mice.
We next explored the impact of BAY 55-9837-induced
SMN upregulation in a severe mouse model of the dis-
ease (SMAA7 mouse; mSmn-/-;hSMN2+/+, hSMNA7+/+
[18]). SMAA7 mice were given 0.2 mg/kg BAY 55-9837

of p38 MAPK pathway upon BAY 55-9837 treatment in NT2 cells. NT2 cells

for NT2 cells. (c) Densitometric quantification of SMN protein relative to Tu

*P <0.05 *P <001, t-test.
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Figure 2 BAY 55-9837 treatment increases SMN expression via p38 MAPK pathway. (a) Representative western blot showing activation

were treated with BAY 55-9837 at indicated times and then harvested

for western blot analysis. Activation of p38 pathway by BAY 55-9837 leads to an increase in SMN protein. (b) Densitometric quantification of
phospho-p38 relative to total-p38 (the ratio at control treatment was set as 1; mean + SEM (bars) of three independent experiments) are shown

bulin (the ratio at control treatment was set as 1; mean + SEM

(bars) of three independent experiments) are shown for NT2 cells. (d) Representative western blots showing the effect of p38 inhibition on BAY
55-9837-induced increase in SMN protein. p38 inhibitor (SB-239580) blocked the BAY 55-9837-induced increase in SMN protein in NT2 cells. NT2
cells were treated with SB-239580 (p38 In; 3 uM) for 2 h followed by treatment with BAY 55-9837 for 24 h and than harvested for western blot
analysis. (e) Densitometric quantification of SMN protein relative to Tubulin (the ratio at control treatment was set as 1; mean + SEM (bars) of
three independent experiments) are shown for NT2 cells showing the effect of p38 inhibition on BAY 55-9837-induced increase in SMN protein.




Hadwen et al. Orphanet Journal of Rare Diseases 2014, 9:4
http://www.ojrd.com/content/9/1/4

IP injections twice daily from P1 until P6. Mice were eu-
thanized 24 hours after their last treatment and brain,
spinal cord, muscle and heart samples then harvested for
western blot analysis. Mice treated with BAY 55-9837
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demonstrated an approximate doubling in SMN2-derived
full length SMN protein levels in all tissues except brain
where an approximate quadrupling of SMN protein was
observed when compared with vehicle treated animals
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Figure 3 BAY 55-9837 upregulates SMN protein in SMA mouse model. SMAA7 mice were treated daily with saline or BAY 55-9837 (200 ug/kg)
from P1 for 6 days, then sacrificed at P7. Brain, spinal cord skeletal muscle and heart tissues were harvested for western blot analysis. Representative
western blots showing effect of BAY 55-9837 on SMN protein in brain (a), spinal cord (c), muscle (e) and heart (g) samples of SMAA7 mice treated with
Saline (control, lane 1, 2 & 3) or BAY 55-9837 (treatment lane 1, 2 & 3 respectively) (each lane represents individual animal; all lanes were run on the
same gel but were non-contiguous). Densitometric quantification of SMN relative to Actin/Tubulin [mean + SEM (bars)] is shown for brain (b; n=11),
spinal cord (d; n=6), muscle (f; n=11) and heart (h; n=11) samples. *P < 0.05; **P < 0.01; t-test.
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(Figure 3). In keeping with these results, VPAC2 receptors
are expressed in CNS as well as in peripheral tissues
[19-25]. The most modest (although still significant) in-
duction of SMN protein was seen in muscle tissues com-
pared to saline treated SMA mice, a possible result of the
comparatively low amount of p38 transcript in SMA I
muscle compared with normal muscle [26].

BAY 55-9837 treatment improves disease phenotype in
SMA mice model
We next examined the effect of BAY 55-9837 treatment
on SMAA7 mouse disease phenotype. The SMAA7 mice
are significantly underweight and have reduced motor
activity compared to heterozygous and WT littermates.
SMAA7 mice were given twice daily BAY 55-9837 or
vehicle IP injections starting at P1; their weight and
motor function were assessed daily. SMAA7 mice
treated with BAY 55-9837 showed significant improve-
ment in weight gain and motor function (as assessed by
righting time), as compared to vehicle-treated SMAA7
mice (Figure 4a & b).

We also examined the impact of BAY 55-9837 on sur-
vival in two different severe SMA mouse models (SMAA7
[18] and Taiw/Jax-SMA{Cross between Taiwanese mice
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(Smn1""Hume  Tg(SMN2)2Hung/J; stock# 005058) and
heterozygous Smn knock-out mice (Smn*'7) [11]}. Signifi-
cant extension of survival was observed in both mouse
models upon treatment with BAY 55-9837 (median survival
of 195 d for SMAA7 mice from 14d and 12 days from
8d for Taiw/Jax SMA mice) as compared with vehicle-
treated (Figure 4c & d). To account for the treatment
effect variability between various laboratories and mouse
models, the ratio of median survival of treated to non
treated animals was used to assess drug response on sur-
vival. With BAY 55-9837 we have achieved a ratio of 1.39
(19.5d/14d for SMAA7) & 1.5 (12d/8d for Taiw/Jax-SMA)
for the two different models. These numbers compare
favourably with the other small compounds previously
used for SMA treatment such as TSA (1.2; 19d/16d albeit
P5 TSA initiation in SMAA7) [10], SAHA (1.3; 12.9d/9.9d
in Taiw/Jax-SMA) [11], celecoxib (1.38; 18d/13d) [7] and
Prolactin (1.5; 21d/14d) [27].

SMA is primarily considered as a motor neuron dis-
ease and consequently treatment strategies focus on
drugs which can cross the blood brain barrier (BBB) to
target tissues within central nervous system (CNS).
However several recent studies challenge this notion and
suggest that SMN has function above and beyond motor
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Figure 4 BAY 55-9837 ameliorates disease phenotype and increases survival of SMA mouse models. SMAA7 mice were treated daily with
intraperitoneal injections of BAY 55-9837 (200.0 pg/kg) from P1 onward. (a) Weights of SMAA7 mice treated with BAY 55-9837 (black filled square,
n =10) or saline (black filled circle, n =10); weights for heterozygous mice treated with saline (black filled triangle, n =5) are also shown for
comparison [mean + SEM (bars)]. (b) Righting times of SMAA7 mice treated with BAY 55-9837 (black filled square, n=10) or saline (black filled
circle, n =10) [mean + SEM (bars)]. (c) Kaplan-Meier survival curves of SMAA7 mice treated with BAY 55-9837 (black filled square, n = 10; median
survival 19.5 days) or saline (black filled circle, n =17; median survival 14.0 days ). (d) Kaplan-Meier survival curves of Taiwanese-SMA mice treated
with BAY 55-9837 (black filled square, n=5; median survival 12.0 days) or saline (black filled circle, n =10; median survival 8.0 days); *P < 0.05;
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Model for VPAC-2 receptor agonist (BAY 55-9837) action
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Figure 5 Model for VPAC2 receptor agonist (BAY 55-9837) action.
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neurons and reclassify SMA as a multi-system disorder
(including cardiovascular, peripheral necrosis, pancreatic
and liver defects) [28-36]. In this regard the widespread
presence of the VPAC2 receptor augurs well for this
pathway as a therapeutic SMA target [25].

Conclusion

Re-purposing drugs for distinct disease indications is be-
coming a more common practice given the approxi-
mately 7000 orphan genetic disorders that are estimated
to exist. This approach is both cost-effective as well as
shortening the path to treatment for significant (and
currently untreatable) disorders such as SMA. In the
current study, BAY 55-9837 initially developed for the
treatment of diabetes [37,38] has been used as a p38 ac-
tivating compound for the treatment of murine SMA.
Our results demonstrate that VPAC2 receptor agonist
BAY 55-9837 increases SMN protein levels and attenu-
ates disease progression in two distinct severe SMA
mouse models (Figure 5) providing a proof of concept
and support for other VPAC2 agonists/p38 activating
compounds to be tested as effective SMA therapies.
Although the literature on the safety profile of BAY
55-9837 is divided (e.g. 38 and 39), in our experiments
we did not observe any adverse effects. Nevertheless fur-
ther work to obtain comprehensive safety profile for
BAY 55-9837 will be beneficial [39]. This study provides
a good supportive evidence as well as functional insight

how p38 pathway can be targeted for its potential appli-
cation towards development of therapeutics for SMA.

Additional file

Additional file 1: Figure S1. BAY 55-9837 upregulates Smn protein in
wild type mice. 4 weeks old CD-1 wild type mice were treated daily with
BAY 55-9837 (2.0, 20.0, 200.0 pg/kg) for 5 days, then sacrificed. Brain and
spinal cord tissues were harvested for western blot analysis. (a) Represen-
tative western blot showing the effect of BAY 55-9837 on Smn protein in
brain samples of CD-1 mice treated with saline (control, lane-1) or BAY
55-9837 (lane 2, 3 & 4 respectively) (n = 3). (b) Densitometric quantifica-
tion of SMN relative to Tubulin [mean + SEM (bars)] is shown for brain
samples. (c) Representative western blot showing the effect of BAY 55-
9837 on SMN protein in spinal cord samples of CD-1 mice treated with
Saline (control, lane-1) or BAY 55-9837 (lane 2, 3 & 4) (n = 3). (d) Densito-
metric quantification of SMN relative to Tubulin [mean + SEM (bars)] is
shown for spinal cord samples. *P < 0.05, t- test.
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