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A diverse array of genetic factors contribute to
the pathogenesis of Systemic Lupus
Erythematosus
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Abstract

Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease with variable clinical presentation
frequently affecting the skin, joints, haemopoietic system, kidneys, lungs and central nervous system. It can be life
threatening when major organs are involved. The full pathological and genetic mechanisms of this complex disease
are yet to be elucidated; although roles have been described for environmental triggers such as sunlight, drugs and
chemicals, and infectious agents. Cellular processes such as inefficient clearing of apoptotic DNA fragments and
generation of autoantibodies have been implicated in disease progression. A diverse array of disease-associated
genes and microRNA regulatory molecules that are dysregulated through polymorphism and copy number
variation have also been identified; and an effect of ethnicity on susceptibility has been described.
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Introduction
Systemic lupus erythematosus (SLE, “disseminated lupus
erythematosus”, ORPHA536) is a chronic systemic auto-
immune disease with variable clinical presentation. SLE
commonly affects the skin, joints, haemopoietic system,
kidneys, lungs and central nervous system, although all
organs can be implicated and the involvement of major
organs can be life-threatening. The exact pathological
mechanisms of SLE remain elusive, and the aetiology of
SLE is known to be multifactorial, involving multiple
genes, sex hormones, and environmental factors including
sunlight, drugs and infections (especially Epstein-Barr
virus, EBV) [1] (Figure 1). With the appropriate genetic
background, presence of immune triggers, and effective
immune system activation, SLE can manifest - although
disease-specific antibodies may circulate for up to five
years before the first clinical signs of organ involvement
in the disease [2,3].
The development of SLE can be categorized into several

phases with a cumulative effect. Initially, an interplay
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between environment, hormonal and genetic factors results
in decreased immunologic tolerance towards certain self
antigen. This systemic autoimmunity then results in
increased serum antinuclear and anti-glomerular autoanti-
bodies, leading to an enhanced autoimmune repertoire;
and aberrations in both the innate and adaptive arms of
the immune system play an important role in the genesis
and progression of lupus. Finally, immunological events
occur within the target organ and result in end organ
damage [4,5].
Studies of racial tendencies show that SLE occurs

more frequently in non-Caucasian individuals, support-
ing a role for genetic predisposition to SLE. In America,
SLE is more frequent in African-Americans, Hispanics
and Asians than in Caucasians, and has been described to
be three to four times higher among African-American
women compared to Caucasian women [6]. The past half
century has seen a ten-fold increase in the annual inci-
dence of SLE in industrialized Western countries [7,8],
with estimates of prevalence in the UK at 25 per 100 000,
and incidence approximately 1 (males) - 8 (females) per
100 000 [9-11]. The epidemiology of SLE in the develop-
ing world remains largely unknown due to poor disease
recognition, poor diagnostic tools and supposed “rarity” of
SLE in tropical areas [12-14]; people of African and Asian
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Figure 1 Stages in the pathogenesis of SLE. Environmental triggers (hormones, viruses etc.) and genetic factors along with other chance
events, act on the immune system to initiate autoimmunity. Symptoms of clinical illness appear soon after pathogenic autoimmunity develops.
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extraction living in industrialized countries, however,
demonstrate the highest prevalence rates in the world
[7,15]. Racial admixture [16] and increased exposure to
environmental factors such as tobacco products and viral
infections are thought to increase the risk in people of
African or Asian extraction living in industrialized coun-
tries [17]. Tropical infections such as malaria, on the
other hand, appear to offer protection from SLE [18].
Although some of these differences in population
prevalence of SLE may be explained by the effects of
Figure 2 General hypothesis for the pathogenesis of SLE. Increased pr
blebs lead to the release of chromatin into the circulation. Presence of chro
(APCs) and the formation of pathogenic immune complexes that incite glo
SAGE Publishing, reprinted by permission of SAGE.
environmental differences, genetic differences between
populations clearly contribute to the complexities of SLE
pathogenesis [19].

Cellular mechanisms underlying SLE
A core hypothesis for SLE pathogenesis implicates poorly
cleared or excessively produced apoptotic blebs as a con-
stant source of partially degraded nucleosomes (Figure 2)
[20]. Impaired clearance of dying cells in SLE may explain
the accumulation of apoptotic cells in tissues, while
oduction of apoptotic blebs and/or reduced clearance of apoptotic
matin in circulation leads to the activation of antigen-presenting cells
merulonephritis. From Munoz et al. 2008 [20], copyright © 2011 by
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secondary necrosis of these cells might contribute to the
chronic inflammation that is seen in this disease. Abnor-
mal phagocytosis of apoptotic cells in clinical and experi-
mental studies of lupus has been demonstrated [21,22];
and furthermore, Bijl et al. have demonstrated abnormal
phagocytosis in SLE patients, showing reduced uptake of
apoptotic cells by monocyte-derived macrophages as a
serum-dependent defect that is associated with decreased
levels of C1q, C4, and C3 [22].
During apoptosis, several proteins and nuclear materi-

als (DNA and RNA) are modified by cleavage, facilitating
specific, apoptosis-induced post-translational modifica-
tions of autoantigens (e.g. methylation, phosphorylation,
ubiquitination and citrullination). Normally apoptotic
cells are quickly removed by phagocytosis before release
of their modified contents. In SLE, however, removal of
apoptotic cells is dysregulated and the blebs and their
modified contents are exposed to the immune system at
the cell surface, resulting in recognition as non-self anti-
gens (danger signaling) [23]. Dendritic cells (DCs) become
activated by the modified autoantigens, leading to an im-
munogenic response and the formation of autoantibodies.
Autoimmunity in SLE thus occurs when self-molecules
evoke an immunologic challenge that activates the im-
mune system and stimulates host defense mechanisms
[24]. This ‘danger’ signaling can induce autoimmunity in
susceptible individuals through exogenous (pathogen-
associated molecular patterns – PAMPs) or endogenous
(damage-associated molecular patterns – DAMPs) path-
ways, in which DNA and RNA exhibit important im-
munological activity [25]. The PAMPs can also activate
effector and regulatory T-cells, break tolerance and stimu-
late self-reactive B-cells [26]. Recent evidence has shown
that toll-like receptors (TLRs) associated with these dan-
ger molecules mediate the signaling pathways that over-
ride the peripheral tolerance mechanisms, and promote
and sustain chronic inflammation and autoimmune dis-
eases [27,28]. Engagement of TLRs may serve two func-
tions: (i) up-regulation of co-stimulatory molecules
(CD80/CD86) which play an important role in the activa-
tion of chromatin-specific T helper cells [29], and (ii) up-
regulation of certain matrix metalloproteases (MMP2 and
MMP9) with the potential to cause significant damage in
the kidney in SLE patients [30,31]. Taken together, apop-
tosis and poor clearance of apoptotic materials are there-
fore key processes in the pathogenesis of SLE.

Genetic factors contributing to SLE
High heritability, monozygotic and dizygotic twin studies
[32-34], and incidence in first and second-degree rela-
tives [35,36] and siblings [37] all indicate a substantial
genetic component to SLE. Many linkage and associ-
ation studies also indicate regions of the genome asso-
ciated with the disease. Finally, a clear demonstration of
susceptibility differences by different ethnic groups sug-
gest that genetic diversity underlies such differences, and
that certain genetic backgrounds may alter the likelihood
of developing SLE (reviewed in [38]).
Aetiological genes for SLE were initially identified by a

hypothesis-driven approach, where candidate genes were
assayed for variants prevalent in patients compared to
healthy controls. The candidate gene approach best identi-
fies single genes of high aetiological effect, in a Mendelian
model of disease where mutation of one gene causes a
disease phenotype. Disease gene identification has since
shifted to a complex model of disease genetics, in which
multiple genes have small effects that together contribute
to the disease phenotype [39]. New technologies enable
genome-wide association studies, where disease associ-
ation with all SNPs across the genome can be tested in
one experiment, [40-42] requiring no pre-existing hypoth-
eses about the disease mechanisms, and generating new
hypotheses about disease mechanisms. Furthermore, next
generation sequencing techniques make more attainable
the sequencing of entire genomes of patients and case
controls in order to identify aetiological variants [43]. Can-
didate gene studies have identified multiple aetiological
variants in MHC class II receptor, Fcγ receptor gene and
complement cascade (C1a, C2 or C4) gene families.
Linkage analyses of affected families have identified

SLE-susceptibility loci containing strong candidate genes,
but in general have not provided necessary resolution to
identify individual disease variants. Genome-wide associ-
ation studies (GWAS), however, have rapidly increased the
identification of SLE genes. The majority of GWAS for
SLE to date are on European and Asian population pa-
tient/control populations (reviewed in [38], [44]), with
limited studies being conducted in African American
populations despite a higher incidence of SLE in this group
[45]. Genes that have been identified to date as causa-
tive genes for SLE are summarised in Additional file 1:
Table S1.

Functions of SLE-associated genes
The genes that have been identified to date as aetiological
genes for SLE are predominantly implicated in immunity
and immunoglobulin binding, and inflammatory re-
sponse. Analysis of Gene Ontology functional annota-
tion of these genes, as described in [46], shows the top
five most significantly overrepresented functions to be
“protein binding”, “immune system process”, “immune re-
sponse”, “immunoglobulin binding” and “protein complex
binding”. The top thirty associated Gene Ontology
annotations are shown in Additional file 2: Table S2 and
Additional file 3: Diagram S3. These terms are consistent
with a phenotype that entails activation of an auto-
immune response, resulting in aggregation of immune
complexes.
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Ingenuity pathway analysis (Ingenuity Systems, www.
ingenuity.com) of SLE-associated genes shows enrich-
ment of representation in well-defined canonical path-
ways. The top five enriched pathways are “dendritic cell
maturation” (p = 7.3 × 10-13), “IL-10 signaling” (p =
2.09 × 10-6), “complement system” (p = 2.81 × 10-6),
“systemic lupus erythematosus signaling” (p = 3.81 × 10-6),
and iNOS signaling (p = 1.05 × 10-5). Of interest, an initial
regulatory network analysis shows a high degree of inter-
action between 33 of the 67 molecules analysed, with three
clear sub-networks appearing (Figure 3): complement-
related molecules form one sub-network, and are con-
nected to the second sub-network containing Fc-gamma
receptors and their interacting molecules through the
binding of CRP to Fc receptor molecules. A third sub-
network implicates the NFkappaB (NF-kB) complex and
IL-10 in the interactions between signal transduction
molecules (STATs, TYK2, IRAK1) and their binding and
regulatory partners; and this sub-network connects to the
Fc receptor network through the interaction of STAT1
with FCGR1A. Many molecules in the complement
and Fc gamma receptor sub-networks also interact
with Ig G molecules. The top five upstream transcrip-
tion factors most commonly regulating the known
SLE-associated genes are the NF-kB complex - and
more specifically NFKB1, HDAC11, ZNF148 and
STAT6. NF-kB has been implicated in inflammatory
disease [47]; inhibition of the HDAC family has been
Figure 3 Network analysis of known SLE-associated genes. Network an
interactions between almost half of the known SLE-associated genes, show
regulatory partners that participate in the networks but are not previously
molecules have multiple interactions with network members, shown as do
previously demonstrated to play a role in models of
lupus ([48], reviewed in [49]); and a role for STAT6
in lupus has been postulated in an association study in
Chinese patients [50].
Although a substantial list of genes is associated with

SLE through GWAS and candidate gene studies, it is
still unclear how these genes may be contributing to the
disease phenotype, and this is also confounded by the
complex disease model where multiple genes are antici-
pated to each make small contributions to the disease
state [51]. Also, in many cases the genes are associated
to SLE through the ‘tagging SNPs’ – so the identified
SNP is not necessarily aetiological but rather a marker
for the discrete region of the genome (haploblock) con-
taining the disease variant [52].

SLE- associated single nucleotide polymorphisms
Altering a single base within the gene sequence can
cause an altered, or disease phenotype. Changing the
DNA sequence can result in a different amino acid
appearing in the translated protein (a non-synonymous
SNP); or a deletion or insertion of bases can cause a
frameshift mutation in the DNA whereby the protein
structure is significantly altered and often prematurely
truncated. SNPs in the regulatory sequence around a
gene may result in changes in the rate of synthesis or
degradation of proteins, or alter mRNA splicing events
that define final gene structure. To date, no single SNP
alysis using Ingenuity Pathway Analysis software shows regulatory
n as shaded molecules. Three sub-networks are circled. Potential
associated with SLE are shown as non-shaded molecules. Several IgG
tted lines.

http://www.ingenuity.com
http://www.ingenuity.com
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has been associated with a functional change at the pro-
tein level in patients with SLE (although a recent study
describes reduced Ets1 binding to the promoter of miR-
146a due to a functional SNP, resulting in reduced ex-
pression, described in section 7.2.4 [53]). With increased
understanding of genetics underlying disease, however,
new elements of gene regulation are being investigated
in the disease state, yielding some surprising results in
SLE cohorts.

Gene copy number variation in SLE
Copy number variation (CNV) arises when a section of
the genome containing an entire gene or genes is repli-
cated or deleted, causing extra copies of the gene in one
individual compared to another [54]. The net effect of
CNV is commonly an alteration in gene expression –
altered gene ‘dosage’ - with a consequent downstream
amplification or attenuation of the gene’s function. CNV
has been shown for SLE-associated genes: low copy
number of complement component 4 (C4a/C4b) [55]
and Fcγ receptor 3B (FCGR3B) genes increases risk of
SLE, whereas more copies of these genes have a protect-
ive effect. Complement component 4 is involved in the
clearance of apoptotic debris and immune complexes
[56], and an increase in complement expression could
increase this function and thus protect against the aggre-
gation of antibodies seen in SLE. Additionally, deficiency
of C4 has been extensively reported in SLE patients
(reviewed in [57]). The Fcγ receptors bind the Fc domain
of IgG antibodies and regulate immune responses via tyro-
sine phosphorylation of their active cytoplasmic domains.
FCGR3B is a functional regulator of neutrophil activation
through altered IgG binding, and had been known to
play a role in susceptibility to, and severity of SLE
(reviewed in [57]).

Dysregulation of microRNA in SLE
MicroRNAs (miRNA) are regulatory molecules that are
increasingly implicated in transcriptional dysregulation
associated with disease [58,59]. These are short (25 nu-
cleotide) single-stranded non-coding RNA molecules
that are processed from primary transcripts into stem-
loop-stem structures and finally to functional single
stranded RNA. This processed miRNA is complemen-
tary to a section of the target mRNA molecule, and will
thus bind to and inhibit mRNA translation or initiate
mRNA degradation (reviewed in [60]). miRNA mole-
cules regulate transcriptional networks in this way, with
central roles in some cancers, cell development, inflam-
matory response and neurodegenerative disorders [61-63].
The role of miRNA molecules in regulation of innate and
adaptive immunity and autoimmunity has been reviewed
extensively; and pertinent to the predominance of SLE
(and other autoimmune diseases) in women, the
regulation of immune system miRNAs by estrogen is also
discussed [59,64].
In 2007, Dai et al. [65] examined miRNA expression

in peripheral blood mononuclear cells (PBMC) from 23
SLE patients compared to 10 healthy controls, indentify-
ing seven consistently downregulated miRNAs in the dis-
ease state (miR-196a, miR-17-5p, miR-409-3p, miR-141,
miR-383, miR-112 and miR-184), and nine upregulated
miRNAs (miR-189, miR-61, miR-78, miR-21, miR-142-3p,
miR-342, miR-299-3p, miR-198 and miR-298). In further
studies on a subset of SLE patients, 36 upregulated and
30 downregulated miRNAs were identified in lupus
nephritis (LN) patients compared to controls [66]; and
29 and 50 differentially expressed miRNAs were found in
African American and European American LN patients
respectively [67]. Further studies identified MiR-148a and
MiR-21 as key microRNA molecules in lupus, with a role
for both in DNA hypomethylation in the disease state
[68]. MiR-21 is again implicated in SLE, with a proposed
role in T-cell response through regulation of PDCD4 [69].
MiRNA-126 contributes to SLE by targeting DNA methy-
lation [70], and downregulation of miR-181-a has been
associated with paediatric cases of SLE [71]. An assay of
miRNA-146a in PBMCs shows downregulation in SLE
patients in two independent studies [72,73], and underex-
pression of this microRNA may underlie SLE through
dysregulation of the type 1 interferon pathway [73]. Re-
cently, a SNP in the promoter of miR-146a was shown to
decrease binding of the transcriptional factor Ets1 with
concomitant decreased expression of the microRNA mol-
ecule. This may in turn cause upregulation of the type I
IFN pathway, as seen in these patients [53]. Decreased
levels of miR-146a (and miR-155) in serum from SLE
patients has been shown in a further study [74], and the
level of miR-155 is shown to be downregulated in regula-
tory T-cells from SLE patients [75].
The type of microRNA dysregulation associated with

SLE can also be indirect, for example Divekar et al. [75]
also show downregulation of gene expression for Dicer
in regulatory T-cells from SLE patients. Dicer is the
endoribonuclease that processes precursor microRNA
molecules to generate functional microRNAs (described
in [76]), suggesting that the milieu of active microRNA
molecules may generally be altered in regulatory T-cells
from SLE patients due to changes in miRNA processing.
In another study, Hikami et al. [77] show that in a co-
hort of SLE patients, a disease-associated polymorphism
in the 3’-untranslated region of the SPI1 gene falls in a
binding region for miR-569.
There is ever-growing evidence that microRNA regula-

tion is altered in the disease state; and specifically in
SLE. Further research in this field will need to bring to-
gether the different strands of evidence for a more cohe-
sive picture of microRNA regulation, and dysregulation



Tiffin et al. Orphanet Journal of Rare Diseases 2013, 8:2 Page 6 of 8
http://www.ojrd.com/content/8/1/2
in SLE. A summary of some of the miRNA molecules
implicated in SLE is shown in Additional file 4: Table S4.

Mouse models for SLE
Several mouse strains spontaneously develop a disease
that closely resembles SLE, resulting in the production of
autoantibodies, followed by development of immune mol-
ecule complexes in the kidneys with associated damage;
and include the strains MRL-Faslpr, BXSB.Yaa, the F1 hy-
brid between NZB and NZW, and inbred derivatives of
these strains [78]. Over 100 regions in the mouse genome
have been associated with SLE in the mouse by linkage
analysis. These regions are called quantitative trait loci
(QTL) and are extensively reviewed by Morel (2010) [79].
Some mouse SLE QTL can also be shown to overlap with
human QTL associated with lupus heritability [80]. With
extensive progress in generating knock-out mouse models
and using new technologies to define existing mouse
models, the number of mouse models available to study
SLE is on the increase: a comprehensive list of 45 mouse
models currently associated with the disease SLE can
be obtained by a simple search of the Mouse Genome
Informatics database, a database hosted by the Jackson
Laboratory, USA (http://www.informatics.jax.org/) [81].
The orthologous disease-associated genes for both mouse
and human are also clearly documented and show the ex-
tent of the overlap between disease genes for the two spe-
cies. The results obtained by this search are shown in
Additional file 5: Table S5. Availability of information on
human genetics underlying SLE has made it increasingly
possible to verify that the functional pathways underlying
pathogenesis in the two species are similar [79,82]. Thus
parallel research into disease genetics underlying mouse
models of SLE can inform research into the human dis-
ease, and similarly progress made in understanding genet-
ics underlying the human disease can refine mouse
models further. An example of this is the use of mouse
models of SLE in the investigation of microRNA expres-
sion patterns in SLE [83].

Summary
Research to date has identified multiple facets of SLE, in-
cluding a better understanding of the cellular and environ-
mental processes leading to the disease state as well as
genetic abnormalities that are associated with the disease.
There have been many advances in understanding genetic
factors that are associated with the disease – in many
cases through GWAS – but there is still a pressing need
to interpret such factors with regard to their biological im-
pact. The way in which fundamental immune and bio-
logical responses are perturbed by these genetic factors
needs to be better understood before there can be similar
advances in the diagnostic, prognostic and therapeutic
management of SLE for maximum benefit to the patient.
Additional files
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