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Abstract

Background: Classically characterized by early onset insulin-dependent diabetes mellitus, optic atrophy, deafness,
diabetes insipidus, and neurological abnormalities, Wolfram syndrome (WFS) is also associated with atypical
brainstem and cerebellar findings in the first decade of life. As such, we hypothesized that gait differences between
individuals with WFS and typically developing (TD) individuals may be detectable across the course of the disease.

Methods: Gait was assessed for 13 individuals with WFS (min 6.4 yrs, max 25.8 yrs) and 29 age-matched, typically
developing individuals (min 5.6 yrs, max 28.5 yrs) using a GAITRite W walkway system. Velocity, cadence, step length,
base of support and double support time were compared between groups.

Results: Across all tasks, individuals with WFS walked slower (p = 0.03), took shorter (p ≤ 0.001) and wider
(p ≤ 0.001) steps and spent a greater proportion of the gait cycle in double support (p = 0.03) compared to TD
individuals. Cadence did not differ between groups (p = 0.62). Across all tasks, age was significantly correlated with
cadence and double support time in the TD group but only double support time was correlated with age in the
WFS group and only during preferred pace forward (rs= 0.564, p = 0.045) and dual task forward walking (rs= 0.720,
p = 0.006) tasks. Individuals with WFS also had a greater number of missteps during tandem walking (p ≤ 0.001).
Within the WFS group, spatiotemporal measures of gait did not correlate with measures of visual acuity. Balance
measures negatively correlated with normalized gait velocity during fast forward walking (rs = −0.59, p = 0.03) and
percent of gait cycle in double support during backward walking (rs = −0.64, p = 0.03).

Conclusions: Quantifiable gait impairments can be detected in individuals with WFS earlier than previous clinical
observations suggested. These impairments are not fully accounted for by the visual or balance deficits associated
with WFS, and may be a reflection of early cerebellar and/or brainstem abnormalities. Effective patient-centered
treatment paradigms could benefit from a more complete understanding of the progression of motor and other
neurological symptom presentation in individuals with WFS.
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Background
Diabetes insipidus, diabetes mellitus, and optic atrophy
(DIDMOAD) or Wolfram syndrome (WFS) is associated
with a host of symptoms [1-4] including diabetic, psy-
chiatric [5], neurologic, opthalmologic [6] and urologic
[7] complications. An autosomal recessive disease with a
reported prevalence between 1 in 100,000 [8] and 1 in
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700,000 [2], the diagnosis of WFS is confirmed via pre-
sence of one or both of the identified WFS genes [9-12].
Complications of the disorder result in reduced quality
of life and premature death, with a reported median life
expectancy of 30 years [2]. Currently, effective interven-
tions are lacking and there is no known cure for WFS.
The brainstem and cerebellum are thought to be par-

ticularly vulnerable to the neurodegenerative process in
WFS [2]. In a single case of WFS, Pakdemirli et al. [13]
reported atrophy of the brainstem and cerebellum as
well as the cerebral cortex. Clinical evaluation of mag-
netic resonance images (MRIs) in a small sample of
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young individuals (mean age 17.5 years) with WFS also
revealed atrophy in the brainstem [14]. This finding was
confirmed and extended by a recent, objectively quanti-
fied analysis of a larger and younger sample of people
with WFS, which found reduced gray and white matter
volumes and reduced white matter microstructural integ-
rity within the brainstem and cerebellum as compared to
age and gender comparable healthy and type 1 diabetic
control groups [15]. As the cerebellum and brainstem
have been commonly linked to gait and balance function
[16-19], a clinical presentation of ataxic gait may be
expected in WFS. However, until recently gait and bal-
ance abnormalities in WFS have only been vaguely and
qualitatively described.
“Truncal ataxia causing unsteady gait and falls” [2]

was reported but not quantified in 15 of 45 individuals
with WFS in the late third and throughout the forth
decade of life [2]. A more recent review of individual
case histories found that clinically apparent gait abnor-
malities can appear in the second decade of life [3]. We
have previously quantified balance performance in young
individuals with WFS and found that balance impairment
was common in these children and related to the severity
of neurological soft signs rather than chronological age
[20]. Based on these findings, we hypothesized that
quantifiable gait impairments may also be detectable
early in life in individuals with WFS compared to typic-
ally developing (TD) individuals.
Should gait deficits be present in individuals with WFS,

understanding the underlying causes of the impairments
would be helpful in informing treatment options. For
example, gait impairments could be a direct result of
deficits in balance [20]. Alternatively, gait impairments
could result from deficits in visual acuity, which are
common in individuals with WFS [4,21,22], and have
been shown to impact typical gait development in other
populations [23]. Finally, it is possible that the motor
system is altered at an early age and leads to both balance
and gait deficits [3,15]. Understanding this information
will help characterize WFS neurological features, which
may be the target of future pharmaceutical intervention.
Furthermore, quantification of atypical gait patterns
could be useful for developing physical therapy interven-
tions to improve gait function in everyday life for people
with WFS.
The objectives of this study were to: 1) compare spa-

tiotemporal gait parameters of individuals with WFS to
TD controls and 2) determine the relationship between
visual acuity, balance, and gait impairment in individuals
with WFS. We hypothesized that individuals with WFS
would have decreased overground walking velocity,
increased cadence, take shorter and wider steps, and
spend a greater percentage of time in the double support
phase as compared to TD controls. Further, we expected
that both visual acuity and balance would be related to
gait performance in individuals with WFS.

Methods
Participants
Thirteen individuals diagnosed with WFS (8 female,
mean age 15.5 years, SD 6.3 yrs, min 6.4 yrs, max
25.8 yrs) and thirty TD young individuals (16 female,
mean age 13.2 years, SD 6.2 yrs, min 5.6 yrs, max
28.5 yrs) participated. The Washington University Wol-
fram Syndrome Registry (http://wolframsyndrome.dom.
wustl.edu/medical-research/Wolfram-Syndrome-Home.
aspx) was used to recruit all individuals with WFS. Data
were collected as part of an annual Wolfram Syndrome
Research Clinic at the Washington University School of
Medicine in St. Louis, Missouri. Balance and neuroima-
ging data from this clinic have been previously published
[15,20]. All individuals with WFS had diabetes mellitus
and optic atrophy before 18 years of age and genetic
confirmation of a WFS1 mutation. Exclusion criteria
included being naïve to the diagnosis of WFS, compli-
cations of the disease which made travel difficult, or
inability to participate in the majority of the research
tests. Inclusion criteria for TD individuals included no
known developmental delay or serious medical condition.
Typically developing individuals were examined for neuro-
logical soft signs via the Physical and Neurological Exam-
ination for Subtle Signs (PANESS) [24], and were
excluded if they presented more than two standard devia-
tions below the mean for their age group. No TD indivi-
duals were excluded on this basis. Legal guardians
provided informed written consent for all participants
under age 18. All participants provided either informed
written consent or assent prior to participation in accord
with the procedures approved by the Human Research
Protection Office of the Washington University School
of Medicine.
Height, weight, and year in school were collected from

all participants on the day of testing. Prior to beginning
the gait trials, bilateral measures of leg length were col-
lected by measuring from the greater trochanter to the
lateral malleolus. For the WFS patients, best correctable
visual acuity was measured for left and right monocular
conditions as well as binocular vision using the distance
Snellen visual acuity chart. Here we report only binocular
visual data. One individual with WFS was not able to
complete the visual testing due to diabetic complications.
Blood glucose levels of the individuals with WFS were
monitored by each individual’s care provider throughout
the entirety of the Wolfram Syndrome Research Clinic.
Readings were taken and recorded by study personnel at
various points during the two day visit. Demographic
data for each individual with WFS and summary data for
the TD individuals are provided in Table 1.

http://wolframsyndrome.dom.wustl.edu/medical-research/Wolfram-Syndrome-Home.aspx
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Table 1 Clinical and demographic data for individuals with WFS and descriptive statistics for the typically developing
(TD) group

Gender Age School Year Height (m) Mass (kg) Visual Acuity Clinical Features (yrs)

female 6.4 1 1.13 19.70 20/50 WFS(5), DM(4), DI(*), OA(5), HL(no)

male 8.3 3 1.24 24.90 20/20 WFS(3), DM(3), DI(7), OA(N/A), HL(no)

male 9.3 4 1.26 24.10 20/100 WFS(7), DM(7), DI(*), OA(6), HL(no)

female 11.9 7 1.64 43.70 20/70 WFS(9), DM(6), DI(7), OA(9), HL(no)

female 12.6 7 1.38 40.50 20/250 WFS(8), DM(6), DI(11), OA(7), HL(yes)

female 12.6 6 1.45 39.30 No data WFS(8), DM(7), DI(11), OA(8), HL(no)

female 14.7 9 1.54 45.20 20/50 WFS(13), DM(3.9), DI(N/A), OA(13), HL(yes)

male 15.4 10 1.59 46.60 20/200 WFS(11), DM(10), DI(14), OA(11), HL(no)

female 17.1 12 1.58 87.90 20/25 WFS(16), DM(5), DI(N/A), OA(16), HL(no)

male 18.9 13 1.72 60.80 20/160 WFS(7), DM(5), DI(7), OA(7), HL(yes)

male 23.9 17 1.79 87.10 20/70 WFS(17), DM(7), DI(17), OA(7), HL(yes)

female 24.7 14 1.53 73.80 ++ WFS(12), DM(2), DI(12), OA(5), HL(yes)

female 25.8 17 1.64 58.10 20/100 WFS(15), DM(13), DI(19), OA(13), HL(no)

WFS Mean (SD) 15.5 (6.3) 9.2 (5.2) 1.5 (0.20) 50.1 (22.5)

TD Mean (SD) 13.4 (6.1) 7.8 (6.0) 1.5 (0.19) 46.4 (18.1) n/a N = 29 (16 females, 13 males)

WFS = Age of Wolfram syndrome diagnosis, DM = onset of diabetes mellitus, OA = onset of optic atrophy, DI = onset of diabetes insipidus, HL = presence of
hearing loss.
* Not formally diagnosed but on DDAVP (desmopressin tablet) for enuresis.
++ individual able to detect hand motion at one foot.
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Balance was assessed using the mini-Balance Evalu-
ation Systems Test (mini-BESTest). This 14-item clinical
battery is used to assess balance in four component
areas (anticipatory transitions, postural response, sensory
orientation and dynamic gait) and provides a single
number summary of balance performance (maximum
possible score = 32). These data have been previously
reported in their entirety [22].

Gait assessment
Kinematic features of gait were assessed on a 4.8 m
GAITRite walkway system (CIR Systems, Havertown,
Pennsylvania, USA), which has been called an “emerging
clinical tool” for use with children [25] and has previ-
ously been used to quantify spatiotemporal gait para-
meters in typically developing children aged 1 to 10 years
[26]. Each individual completed a minimum of five trials
of the following five gait conditions: 1) forward walking
at preferred speed (FP), 2) forward walking at a fast speed
(FF), 3) forward walking while performing a dual task
(FD), 4) forward tandem walking (FT), and 5) backward
walking at preferred speed (BP). The order of the tasks
was randomized, but all five trials of the given task were
completed prior to beginning the next task. A start/finish
line was placed one meter from each end of the mat to
allow for capture of steady state walking without acceler-
ation or deceleration. Participants were guarded during
all trials to prevent falls and injury. Individuals with
visual impairments were oriented to the testing space
prior to beginning data collection. If the individual left
the walkway prior to completion of the task, stumbled,
or needed assistance from the spotter, the trial was dis-
carded and immediately repeated. Each trial was initiated
with a verbal cue and data recording began as soon as
the individual contacted the GAITRite mat.
FP and BP walking were performed at each individual’s

preferred speed with no cues relative to speed or com-
pletion time. For FF trials, each individual was instructed
to walk as fast as possible without running. Dual task
walking consisted of preferred-speed forward walking
while listing as many items as possible in a given cat-
egory. The categories consisted of ‘animals’, ‘things you
see in the sky’, ‘games you play with a ball’, ‘colors,’ and
‘foods’. During these trials, the individual was accompan-
ied closely by an investigator who recorded the number
of correct, unique responses. The investigator did not
initiate the trial and walked slightly behind the individual
to avoid influencing the overground velocity of the par-
ticipant. For tandem walking trials, individuals were
instructed to walk with one foot in front of the other, as
though they were on a tightrope or balance beam. Parti-
cipants were instructed to walk with as much space be-
tween steps as was comfortable. Instructions directed
the participants to not contact the heel of the front foot
to the toe of the rear foot; however, once the trials began
no corrective feedback was given. A blue, 3.8 cm wide,
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guide line was place down the center of the GAITRite
mat to provide a visual target for the tandem task.

Dependent variables
Five variables of interest were used to quantify unique
components of gait in a clinically useful manner. Ca-
dence, normalized velocity, normalized base of support,
step extremity ratio and percentage of the gait cycle
spent in double support time. These specific measures
were selected as they are clearly defined, easily measured
with appropriate technology, and can be addressed
through rehabilitation intervention. Cadence, measured
in steps per minute, was calculated by dividing the time
needed to complete the trial by the number of steps
taken. Velocity, measured in meters per second, was cal-
culated by dividing the distance between initial and final
footfall by the time to complete the trial. Due to the het-
erogeneity in height of the individuals, leg length mea-
sures were used to normalize velocity by dividing the
velocity by the mean of the individual’s leg lengths. Base
of support was defined as the perpendicular distance
from the imaginary line connecting the center of the
heel on one foot to the center of the heel on the oppos-
ite foot during two consecutive footfalls. Base of support
was calculated by averaging the independently calculated
values for the left and right sides. To generate a height
normalized value, the average base of support value was
divided by the individual’s height and multiplied by 100.
The step extremity ratio is derived by dividing step
length by leg length, and was computed by averaging
both left and right side step extremity ratios. Finally, the
percent of the gait cycle spent in double support is the
duration of time the individual spent with both feet in
contact with the floor divided by the total time needed
to complete the trial and multiplied by 100.
Tandem walking trials could not be assessed using the

GAITRite software due to a large number of parallel,
overlapping, or backward steps. Therefore, tandem trials
were scored based upon the number of times an individual
Figure 1 Tandem gait trials were assessed by counting the number o
linear path of progression. (A) Trials in which all steps fell on the linear t
(C) missteps were scored on the number of times the individual deviated f
that were off that trajectory.
experienced a loss of balance while traversing the walk-
way. A loss of balance was defined as any misstep or series
of missteps which did not fall on the specified linear
trajectory (Figure 1). Each trial was visually scored by
viewing the entire length of the GAITRite walkway and
manually counting the number of deviations from the
subjectively assessed linear trajectory. A misstep was
scored when a lateral deviation from the linear trajec-
tory was noted.

Data analysis
IBM© SPSS© Statistics Version 19 (IBM Corporation,
Armonk, New York) was used for statistical analyses.
For all conditions, trials with less than four consecutive,
identifiable, full footfalls were excluded from analysis.
36 total trials were discarded (9 trials from 6 WFS
subjects, 27 trials from 15 TD subjects). Data from one
TD individual (age 5.6) could not be used due to poor
footfall data on more than half of the recorded trials.
These data have been removed from all portions of the
analysis including the demographic description of partici-
pants. Additionally, dual task walking data from a second
TD child (age 11.15) were removed as she could not
complete the task without coming to a full stop multiple
times during the trial. Data were averaged across valid
trials for each condition. All individuals had a minimum
of three valid trials for each condition.
The Shapiro-Wilk test was used to test the data for

normal distribution. Demographic variables were not
normally distributed (Shapiro Wilk p<.05), so groups
were compared on these variables with non-parametric
statistics (independent sample Mann Whitney U).
All spatiotemporal gait measures were normally dis-

tributed, thus parametric statistics were applied. A group
(TD and WFS) by task (FP, FF, FD and BP) mixed model
analysis of variance (ANOVA) was used to test for differ-
ences both within and between groups in each spatio-
temporal gait measure separately (cadence, normalized
velocity, step extremity ratio, normalized base of support,
f times the individual had a footfall or series of footfalls off the
rajectory were scored as no missteps. Trials with one (B) or multiple
rom the linear trajectory and not on the number of individual steps
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the percent of the gait cycle spent in double support). A
Chi-square test was used to compare the percentage of
individuals in each group who had at least one misstep
during tandem walking. An a priori level of α<0.05 was
set for determining statistical significance.
Bivariate correlations were used to assess the relation-

ship between age and spatiotemporal gait variables.
P-values and Spearman’s correlation coefficient (rs) are
reported for all correlations. An a priori level of α<0.05
was set for determining statistical significance. Within
the WFS group, bivariate correlations were used to assess
the relationship between visual acuity, balance [20] and
spatiotemporal gait measures.

Results
Demographic data for both groups are shown in Table 1.
WFS and age-matched controls did not differ by age
(Z = −1.08, p = 0.28), height (Z = −0.59, p = 0.56),
weight (Z = 0.37, p = 0.71), or year in school (Z = 1.06,
p = 0.29). Additionally, the average number of verbal
responses generated during dual task walking trials for
TD and WFS did not differ significantly (F = 0.408,
p = 0.53) between groups. Mean blood glucose levels
taken during the study for the individuals with WFS aver-
aged 222.5 mg/dL (SD = 69.1 mg/dL, max = 312.5 mg/dL,
min = 94 mg/dL). No patients experienced any acute
neurological symptoms related to hypoglycemia or hyper-
glycemia during the study.

Between group spatiotemporal gait data
A main effect of group was found for all gait measures
except cadence (F = 0.25, p = 0.62). Individuals with
WFS walked consistently slower (normalized velocity,
F = 5.2, p ≤ 0.03), took relatively shorter steps (step
extremity ratio, F = 14.7, p ≤ 0.001) with a wider normal-
ized base of support (F = 14.2, p = 0.001) and had a
greater amount of the gait cycle spent in double support
(F = 10.2, p = 0.003) than TD individuals (Figure 2).

Between task spatiotemporal gait data
A significant main effect of task was present for all
measures (p ≤ 0.001). During FF walking trials, indivi-
duals averaged the highest cadence (cadence = 157.2,
SD = 22.4), fastest velocity (unitless normalized velocity
= 2.9, SD = 0.05), largest step extremity ratio (step ex-
tremity ratio = 1.09, SD = 0.02) and the smallest percent
of the gait cycle spent in double support (percent double
support = 14.3, SD = 0.6). The largest normalized base
of support occurred during backward walking (unitless
normalized base of support = 9.9, SD = 0.5), while the
smallest normalized base of support occurred during
dual task forward walking (unitless normalized base of
support = 5.9, SD = 0.5). Dual task forward walking also
had the fewest steps per minute (cadence = 110.2,
SD = 13.8). Backward walking trials had the slowest
(unitless nVel = 1.3, SD = 0.31), shortest steps (step
extremity ratio = 0.62, SD = 0.02), widest base of support
(unitless normalized base of support = 9.9, SD = 0.5) and
longest percent of the gait cycle spent in double support
(percent double support = 20.9, SD = 0.6). No group by
task interactions were present (Table 2).

Tandem walking
The groups differed in the number of missteps during
tandem walking (F = 28.4, p ≤ 0.001). On average, healthy
individuals lost their balance less than one time per ten
tandem walking trials (mean misstep per trial = 0.03,
SD = 0.08), while individuals with WFS averaged
over seven deviations per ten trials (mean misstep per
trial = 0.72, SD = 0.71). Individuals with WFS were sig-
nificantly more likely to experience a misstep than TD
individuals (χ2 = 15.3, df =1, p≤ 0.001). Nine of 13 (69 %)
of the individuals with WFS but only three of 29 healthy
individuals (10 %) experienced one or more losses of
balance during the tandem walking trials.

Age
No significant correlations were present between age
and any of the normalized spatiotemporal gait measures
(i.e., normalized velocity, step extremity ratio and nor-
malized base of support) for individuals with WFS
(Table 3). During FP walking trails, age was correlated to
normalized velocity (rs= −0.57, p ≤ 0.001) and step ex-
tremity ratio (rs= −0.47, p = 0.010) for TD individuals.
Additionally, in TD individuals age was correlated to
normalized velocity (rs= −0.70, p ≤ 0.001) forward fast
walking trials. All other correlations of age and nor-
malized spatiotemporal gait measures failed to achieve
significance (Table 3).
In the TD group, cadence was significantly correlated

to age during all gait tasks. Cadence was not correlated
with age for individuals with WFS during any of the
tested tasks (Figure 3). Age and percent of the gait cycle
spent in double support were significantly correlated in
TD individuals across all gait tasks and in WFS during
FP and FD tasks (Table 3).

Vision, balance and gait
Visual acuity scores for the WFS group are reported in
Table 1. Two individuals were not able to fully complete
the vision test. One missed the second day of testing due
to diabetic complications and the other could not suc-
cessfully perform the vision assessment as her vision
was too impaired. Data presented here are from the
remaining eleven individuals.
Within the WFS group, individual visual acuity scores

were not correlated with cadence, normalized velocity,
normalized base of support, step extremity ratio or the



Figure 2 Cadence (A), normalized velocity (B), average normalized base of support (C), average step extremity ratio (D) and
percentage of gait cycle spent in double support (E) of individuals with WFS (black bars) and TD individuals (gray bars) during forward
preferred, forward fast, dual task and backward walking tasks. Cadence values did not differ between groups. Group level differences were
present for all other spatiotemporal measures. Values are mean +/− SD.
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Table 2 Main effects of group and task and two-way interactions

Cadence
(steps/min)

p-value Normed
Velocity

p-value Step
Extremity
Ratio

p-value Normed
Base of
Support

p-value % Double
Support

p-value

group WFS 124.4 ± 4.4 = 0.620 1.7 ± 0.08 * = 0.028 0.82 ± 0.02 ** < 0.001 8.2 ± 0.5 ** = 0.001 20.0 ± 0.9 ** = 0.003

TD 127.1 ± 2.9 2.0 ± 0.06 0.91 ± 0.01 5.8 ± 0.4 16.5 ± 0.6

task FP 121.3 ± 13.7 ** ≤ 0.001 1.9 ± 0.38 ** ≤ 0.001 0.92 ± 0.02 ** ≤ 0.001 6.1 ± 0.3 ** ≤ 0.001 17.9 ± 0.6 ** ≤ 0.001

FF 157.2 ± 22.4 2.9 ± 0.52 1.09 ± 0.02 6.2 ± 0.3 14.3 ± 0.6

FD 110.2 ± 13.8 1.5 ± 0.29 0.82 ± 0.01 5.9 ± 0.5 19.9 ± 0.7

BP 116.3 ± 20.0 1.3 ± 0.31 0.62 ± 0.02 9.9 ± 0.5 20.9 ± 0.6

group x task

WFS FP 120.5 ± 11.4 = 0.936 1.8 ± 0.30 = 0.604 0.89 ± 0.03 = 0.603 7.2 ± 0.6 = 0.948 19.2 ± 1.0 = 0.462

FF 154.0 ± 16.9 2.7 ± 0.48 1.04 ± 0.03 7.3 ± 0.6 16.0 ± 1.1

FD 108.8 ± 12.2 1.4 ± 0.26 0.78 ± 0.02 7.2 ± 0.8 22.1 ± 1.2

BP 114.4 ± 16.8 1.1 ± 0.34 0.56 ± 0.03 11.2 ± 0.9 22.8 ± 1.1

TD FP 121.7 ± 14.7 2.0 ± 0.41 0.96 ± 0.02 5.1 ± 0.4 16.6 ± 0.6

FF 158.6 ± 24.6 3.0 ± 0.51 1.14 ± 0.02 5.0 ± 0.4 12.7 ± 0.7

FD 110.9 ± 14.6 1.6 ± 0.29 0.86 ± 0.01 4.6 ± 0.5 17.7 ± 0.8

BP 117.1 ± 21.5 1.3 ± 0.28 0.68 ± 0.02 8.6 ± 0.6 19.0 ± 0.7

WFS = individuals with Wolfram syndrome; TD = typically developing individuals; FP = forward preferred; FF = forward fast; FD = forward dual task; and
BP = backward preferred.
Values are means ± SD.
* denotes significant correlation at the 0.05 level.
** denotes significant correlation at the 0.01 level.

Table 3 Significance (top) and correlation coefficients (bottom) between age (years) and gait measures for each task

Cadence
(steps/min)

Normalized
Velocity

Step
Extremity
Ratio

Normalized
Base of Support

% Double
Support

WFS FP Age Sig. (2-tailed) 0.642 0.388 0.279 0.859 0.045 *

rs 0.143 0.262 0.325 −0.055 0.564

FF Age Sig. (2-tailed) 0.150 0.405 0.873 0.929 0.128

rs −0.423 −0.253 −0.049 −0.027 0.445

FD Age Sig. (2-tailed) 0.845 0.529 0.674 0.915 0.006 **

rs −0.060 −0.192 −0.129 0.033 0.720

BP Age Sig. (2-tailed) 0.854 0.318 0.199 0.366 0.198

rs 0.060 0.315 0.399 0.287 0.399

TD FP Age Sig. (2-tailed) 0.000 ** 0.001 ** 0.010 * 0.056 0.000 **

rs −0.648 −0.574 −0.470 −0.359 0.703

FF Age Sig. (2-tailed) 0.000 ** 0.000 ** 0.359 0.337 0.003 **

rs −0.695 −0.703 −0.177 −0.185 0.539

FD Age Sig. (2-tailed) 0.016 * 0.062 0.799 0.814 0.000 **

rs −0.451 −0.357 0.050 0.047 0.706

BP Age Sig. (2-tailed) 0.002 ** 0.119 0.282 0.451 0.011 *

rs −0.549 −0.301 0.211 0.148 0.475

* denotes significant correlation at the 0.05 level.
** denotes significant correlation at the 0.01 level.
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Figure 3 Cadence versus age for individuals with WFS (black) and TD individuals (gray) during (A) forward preferred, (B) forward fast,
(C) dual task and (C) backward walking tasks. Cadence was significantly correlated with age in all four task conditions for the TD individuals.
Cadence was not significantly correlated with age for individuals with WFS in any condition.
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percent of the gait cycle spent in double support during
any of the gait tasks (Table 4). Visual acuity was also not
correlated with the number of missteps during tandem
walking (rs=0.44, p = 0.18).
Balance data from the mini-BESTest for all thirteen

individuals with WFS were previously reported [20].
Visual acuity was not correlated with mini-BESTest
scores (rs = −0.57, p = 0.19). Individual balance scores
were negatively correlated with normalized velocity in
the FF task (rs = −0.59, p = 0.03), indicating that indivi-
duals with worse balance walked with a faster normalized
velocity (Figure 4). The percent of the gait cycle spent in
double support during backward walking was also nega-
tively correlated with mini-BESTest scores (rs = −0.64,
p = 0.03), indicating that individuals with worse balance
spent a greater percentage of the gait cycle in double



Table 4 Significance (top) and correlation coefficients (bottom) between visual and gait measures for each gait task

Cadence
(steps/min)

Normalized
Velocity

Step Extremity
Ratio

Normalized Base
of Support

% Double
Support

FP Visual Acuity Sig. (2-tailed) 0.34 0.85 0.53 0.58 0.43

rs 0.32 −0.06 −0.21 −0.19 −0.27

FF Visual Acuity Sig. (2-tailed) 0.46 0.98 0.60 0.44 0.36

rs 0.25 0.01 −0.18 −0.26 −0.31

FD Visual Acuity Sig. (2-tailed) 0.45 0.98 0.21 0.29 0.72

rs 0.26 −0.01 −0.41 −0.35 0.12

BP Visual Acuity Sig. (2-tailed) 0.26 0.35 0.66 0.24 0.85

rs 0.40 0.33 0.16 −0.41 −0.07

Pickett et al. Orphanet Journal of Rare Diseases 2012, 7:92 Page 9 of 12
http://www.ojrd.com/content/7/1/92
support during backward walking (Figure 4). Mini-
BESTest scores did not correlate with any other spatio-
temporal measure (cadence, normalized base of support
or step extremity ratio) during any of the gait tasks
(Table 5). Mini-BESTest scores were not correlated with
number of missteps during tandem walking (rs = −0.48,
p = 0.10).

Discussion
The goal of this study was to quantify spatiotemporal
gait function in young individuals with WFS and com-
pare these individuals to a group of TD individuals. Al-
though ataxic gait has been noted in clinical reports of
WFS [2,3], to our knowledge, no study aside from our
own prior work focused on balance deficits [20] has
attempted to quantify motor deficits in the WFS popu-
lation. As hypothesized, individuals with WFS walk sig-
nificantly slower, take shorter and wider steps, spend
more time in double support and have more difficulty
performing tandem walking compared to typically devel-
oping individuals. Deficits in the WFS groups were
Figure 4 Significant correlations between mini-BESTest and (A) norm
gait cycle spent in double support for the WFS group. Higher mini-BES
present across all tested gait tasks. These differences
do not appear to be directly associated with age, visual
deficits or impaired balance in WFS patients. These find-
ings indicate that gait is measurably and independently
impaired in young individuals with WFS.
As compared to the TD group, the WFS group showed

significant deficits in normalized velocity, normalized
base of support, step extremity ratio and the percent of
the gait cycle spent in double support across all gait
tasks. The spatiotemporal gait abnormalities in WFS may
indicate the use of compensatory strategies for decreased
balance. Supporting this idea, individuals with WFS were
more likely to experience a loss of balance resulting in a
lateral deviation during tandem walking. Similarly, volun-
tary changes in step width and length have been shown
to alter the stability of trunk motion [27]. In an examin-
ation of turning strategies of individuals with cerebellar
ataxia, Mari et al. [28] showed that during a demanding
gait task, such as turning, ataxic patients displayed wider
and shorter steps. The authors theorized that the
observed gait difference between healthy and ataxic
alized velocity during forward fast gait and (B) percentage of the
Test scores correspond to better balance.



Table 5 Significance (top) and correlation coefficients (bottom) between mini-BESTest scores and gait measures

Cadence
(steps/min)

Normalized
Velocity

Step Extremity
Ratio

Normalized
Base of Support

% Double
Support

FP mini-BESTest Sig. (2-tailed) 0.94 0.55 0.74 0.59 0.55

rs −0.03 0.18 0.10 0.17 −0.18

FF mini-BESTest Sig. (2-tailed) 0.13 0.03 * 0.12 0.59 0.87

rs −0.45 −0.59 −0.46 0.16 0.05

FD mini-BESTest Sig. (2-tailed) 0.83 0.78 0.86 0.49 0.51

rs −0.07 −0.09 0.05 0.21 0.20

BP mini-BESTest Sig. (2-tailed) 0.86 0.42 0.38 0.21 0.03 *

rs −0.06 0.26 0.28 −0.39 −0.64

* denotes significant correlation at the 0.05 level.
** denotes significant correlation at the 0.01 level.
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individuals was a compensatory strategy used to reduce
instability. Slower walking velocity has also been previ-
ously been linked to increased stability [29] indicating
that individuals will compensate for a loss of stability via
a decrease in gait velocity. Dingwell et al. [30] noted that
individuals with diabetic peripheral neuropathy demon-
strate slower walking speeds and increased dynamic sta-
bility as compared to healthy, age-matched individuals.
They concluded that decreased walking speed is a com-
pensatory strategy used by the patient group to maintain
stability during walking. As such, we hypothesized that
the observed deficits in spatiotemporal gait measures
would be related to previously reported balance deficits
in individuals with WFS.
We have previously reported a deficit in balance in

individuals with WFS [20], particularly during tasks
completely reliant on balance and on which compensa-
tory strategies cannot be employed, such as standing on
one foot or standing on an unstable surface. In contrast,
during the dynamic gait subsection of the mini-BESTest
which relies on gait-related balance tasks such as chan-
ging velocity and turning the head while walking, no def-
icits were detected in WFS. Perhaps this is because they
were able to employ compensatory strategies during this
group of tasks that could not be used during more static
balance tasks, such as a wider stance. However, if the
observed differences in gait between WFS and TD indi-
viduals are the result of strategies used to compensate
for balance deficits, a clear association between balance
and spatiotemporal gait measures would be expected.
However, there appears to be no consistent correlation
between spatiotemporal gait measures and previously
reported balance scores, suggesting that other factors
should be explored.
Only two spatiotemporal gait features, normalized fast

forward gait velocity and double support during back-
ward walking, were significantly correlated with balance.
The significant negative correlation between mini-
BESTest score and normalized velocity was unexpected.
This indicates that individuals with WFS with lower
mini-BESTest scores (worse balance) performed FF
walking trials at higher velocity than individuals with
WFS and higher mini-BESTest scores (better balance).
This result is strongly driven by the performance of a
single individual who scored poorly on the mini-
BESTest but was able to walk at a fast velocity. We are
only able to speculate at this time, but this type of high
velocity gait with low overall balance may lead to an
increased number of falls. Future studies should include
a falls assessment to address this question and may be
helpful in identifying the needs of the patient group.
In addition to balance, vision has been repeatedly

linked to locomotor performance [31,32]. Specifically, in
young people, visual impairment correlates with spatio-
temporal gait deficits [23,33]. In WFS, visual deficits are
well described (for review see [34]) thus we expected gait
impairments in individuals with WFS to correlate with
measures of visual impairment. However, we did not
find any correlation between visual acuity and any spa-
tiotemporal measures of gait function, suggesting that
vision may not be a key factor in the gait differences
noted in WFS compared to TD individuals. Here again,
as with correlations to measures of balance, the small
sample size should be noted.
Previous reports indicate that children may exhibit

mature gait patterns as early as four years of age [35],
though others argue that gait continues to follow a de-
velopmental trend and does not reach adult-like patterns
until after the seventh year and perhaps even beyond the
tenth year of age [36]. As our sample spans from five to
26 years, age-related changes in spatiotemporal gait
measures cannot be overlooked. Three of the selected
measures (velocity, base of support and step length)
were normalized to account for anatomically related de-
velopmental changes such as increased leg length and
height. Within the WFS group, no significant correla-
tions were present between age and these normalized
measures. In the TD group, only three of the twelve
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normalized variables examined were significantly corre-
lated with age. However cadence, a non-normalized vari-
able, was significantly negatively correlated with age
across all gait tasks in the TD group but not in the WFS
group. This matches our previous report of significant
correlations between balance and age in the TD group
but not in the WFS group [20]. This lack of a clear rela-
tionship between age and cadence within the WFS
population may indicate that individuals with WFS are
neurologically affected early in their lifespan and thus do
not conform to normal gait developmental patterns.
This notion is further supported by the early presence of
reduced gray and white matter volumes and reduced
white matter microstructural integrity within the brain-
stem and cerebellum as compared to age and gender com-
parable healthy and type 1 diabetic control groups [15].
However, caution is warranted as the sample of indivi-
duals with WFS in the present study is relatively small.
Based upon the current findings, gait impairments can-

not be accounted for by the particular sensory or motor
deficits we evaluated. Additionally, age does not consist-
ently relate to spatiotemporal gait measures in WFS. The
overall model of neurological symptom presentation and
the corresponding treatment approach to WFS is compli-
cated by the observed deficits in multiple sensory and
motor systems as well as the unique phenotypic presen-
tation of these symptoms for each patient diagnosed with
WFS. To date, the sensory and motor characteristics of
individuals with WFS have been primarily qualitatively
described. Clinically noted deficits have been reported
but are rarely quantified. Longitudinal data quantitatively
tracking neurological symptoms in a larger sample across
the lifespan will be necessary to fully address this ques-
tion. However, the presentation of early gait and balance
deficits, along with the presence of early abnormalities of
the brainstem and cerebellum indicates that neurological
symptom presentation occurs in early childhood, and
could be addressed clinically at an early age.

Limitations
As the present investigation includes only 13 individuals
with WFS and these individuals span the range of six to
twenty-six years of age, a complex multimodal assessment
of symptom presentation and compensatory strategy is
beyond the scope of this study. Longitudinal data track-
ing symptom progression and subsequent gait changes
would allow for an ideal and novel examination of dis-
ease progression and could inform targeted drug and
clinical interventions.

Conclusions
Wolfram Syndrome is rare and debilitating with neuro-
logical motor symptom onset occurring far earlier than
previously reported. We have quantified deficits in
normalized velocity, stride length, normalized base of
support, and the percent of the gait cycle spent in double
support in a group of young individuals with WFS. These
data provide evidence of the early emergence of gait
abnormalities in WFS.
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