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Abstract

Background: Oculocutaneous albinism (OCA) is caused by a group of genetically heterogeneous inherited defects
that result in the loss of pigmentation in the eyes, skin and hair. Mutations in the TYR, OCA2, TYRPT and SLC45A2
genes have been shown to cause isolated OCA. No comprehensive analysis has been conducted to study the
spectrum of OCA alleles prevailing in Pakistani albino populations.

Methods: We enrolled 40 large Pakistani families and screened them for OCA genes and a candidate gene, SLC24A5.
Protein function effects were evaluated using in silico prediction algorithms and ex vivo studies in human
melanocytes. The effects of splice-site mutations were determined using an exon-trapping assay.

Results: Screening of the TYR gene revealed four known (p.Arg299His, p.Pro406Leu, p.Gly419Arg, p.Arg278*) and
three novel mutations (p.Pro21Leu, p.Cys35Arg, p.Tyr411His) in ten families. Ex vivo studies revealed the retention of
an EGFP-tagged mutant (p.Pro21Leu, p.Cys35Arg or p.Tyrd11His) tyrosinase in the endoplasmic reticulum (ER) at
37°C, but a significant fraction of p.Cys35Arg and p.Tyr411His left the ER in cells grown at a permissive temperature
(31°Q). Three novel (p.Asp486Tyr, p.Leu527Arg, c.1045-15 T > G) and two known mutations (p.Pro743Leu, p.
Ala787Thr) of OCA2 were found in fourteen families. Exon-trapping assays with a construct containing a novel
€.1045-15 T > G mutation revealed an error in splicing. No mutation in TYRP1, SLC45A2, and SLC24A5 was found in
the remaining 16 families. Clinical evaluation of the families segregating either TYR or OCA2 mutations showed
nystagmus, photophobia, and loss of pigmentation in the skin or hair follicles. Most of the affected individuals had
grayish-blue colored eyes.

Conclusions: Our results show that ten and fourteen families harbored mutations in the TYR and OCA2 genes,
respectively. Our findings, along with the results of previous studies, indicate that the p.Cys35Arg, p.Arg278* and
p.Gly419Arg alleles of TYR and the p.Asp486Tyr and c.1045-15 T> G alleles of OCA2 are the most common causes of
OCA in Pakistani families. To the best of our knowledge, this study represents the first documentation of OCA2
alleles in the Pakistani population. A significant proportion of our cohort did not have mutations in known OCA
genes. Overall, our study contributes to the development of genetic testing protocols and genetic counseling for
OCA in Pakistani families.
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Introduction

Among the most visible phenotypic traits in humans is
skin color. Loss of skin, hair and iris pigmentation, a
condition known as oculocutaneous albinism (OCA),
represents a significant load of human genetic diseases.
OCA can manifest itself in syndromic and nonsyndromic
forms under a variety of inheritance models [1]. At
present, mutations in at least 16 loci have been causally
linked with OCA [1,2]. More genes in humans are likely
to be identified as implicated by new OCA syndromes
[3,4]. Mutations at four loci, OCAI (TYR), OCA2
(OCA2), OCA3 (TYRPI) and OCA4 (SLC45A2), have
been shown to be necessary and sufficient to cause iso-
lated OCA [1]. Approximately 450 different pathogenic
alleles of these four genes have been documented
(Human Gene Mutation Database (HGMD), www.hgmd.
org/), and most of these sequence variations are located
in the TYR gene.

Human chromosome 11q14.3 harbors the TYR gene
(MIM# 606933), which encodes tyrosinase [5]. Tyrosin-
ase is expressed in melanocytes and controls the biosyn-
thesis of melanin from tyrosine at three levels [5]. To
date, 291 pathogenic variants of the TYR gene have been
identified in individuals with the OCA1l phenotype
(HGMD). There is a presumptive genotype-phenotype
correlation in which the severe pathogenic or null alleles
of the TYR gene result in the OCA1A (MIM# 203100)
phenotype, characterized by the loss of pigmentation in
the skin, hair and eyes with translucent irises [6]. Hypo-
morphic alleles produce a spectrum of clinical pheno-
types, known as OCA1B (MIM# 606952), which range
from low to nearly normal levels of skin and hair pig-
mentation in adults.

OCA2 (MIM# 203200) is located on human chromo-
some 15q11-q13 and has two non-coding and 23 cod-
ing exons. OCA2 encodes a polypeptide of ~110 kDa
with 12 putative transmembrane helices. As a member
of the Na*/H" antiporter family, the OCA2 protein is
thought to play an essential role in maintaining the pH
of the melanosomes, which regulates tyrosinase activity
[7-10]. The OCA2 protein also participates in the sort-
ing and transport of tyrosinase and tyrosinase-related
protein 1 (TYRP1) to the plasma membrane [11-13].
OCA2 mutations are the most common causes of
OCA in Africa, with a prevalence rate as high as
1:3,900 being observed [14].

Human chromosome 9q23 harbors the TYRPI gene
(MIM# 115501), which is known to cause OCA type 3
(MIM 203290; a.k.a Rufous OCA). The seven known
coding exons of TYRPI (GenBank NM_000550) encode
a tyrosinase-related protein of ~61 kDa with 41% se-
quence identity and 58% similarity to tyrosinase [15].
TYRP1 has partial tyrosinase hydroxylase activity and
catalyzes the oxidation of 5,6-dihydroxyindole-2-
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carboxylic acid in the melanin biosynthesis pathway
[16,17]. As of November 2012, only nine TYRPI muta-
tions have been reported in the HGMD.

The OCA4 phenotype (MIM# 606574) is caused by
mutations in the SLC45A2 gene (MIM# 606202, ak.a.
MATP), which is located on human chromosome 5p13.3.
In the HGMD, 76 pathogenic alleles of SLC45A2 have
been reported to date. In humans, seven known coding
exons of SLC45A2 transcribe four alternatively spliced
variants. The longest spliced isoform (GenBank
NM_016180) encodes a solute carrier family 45, member
2 (SLC45A2) protein composed of 530 amino acids and
has a molecular weight of ~58 kDa. Although its precise
function has not been elucidated, SLC45A2 probably acts
as a melanosomal protein and substance transporter
[18,19].

To the best of our knowledge, no comprehensive mo-
lecular analysis of these four known OCA genes has been
conducted in Pakistani families segregating OCA. How-
ever, nine pathogenic variants of the TYR gene, including
c.344delGA, p-Arg278*, p-Ser315_A316del, p-
GIn328Glu, p.Glu376* p.Gly419Arg, p.Pro431Thr, p.
Pro431Leu and p.Glu453* have been identified in mostly
sporadic cases from Pakistan [20-25]. In addition to TYR
alleles, only a single point mutation (c.1117 C>T, p.
Arg373*) in TYRPI gene has been reported in a large con-
sanguineous Pakistani family [25]. As a corollary of the in-
imitable socio-cultural customs in the population of
Pakistan, approximately 60% of marriages are consanguin-
eous, of which more than 80% are between first cousins
[26]. These large consanguineous families are a powerful
resource for genetic studies of recessively inherited disor-
ders like OCA. In the present study, we analyzed the four
OCA genes in 40 large Pakistani families to characterize
the genetic lesion and to establish a mutational profile of
the Pakistani albino population. In addition, we screened
SLC24A5 (MIM# 609802), which is responsible for ocular
albinism and hypopigmentation in Slc24a5 knockout mice
and is known to regulate melanogenesis in humans
[27,28]. The results of this study will be important for fu-
ture diagnosis, genetic counseling, and molecular epidemi-
ology of OCA.

Materials and methods

Family participation and clinical evaluation

This study was approved by the IRB Committees at the
Children’s Hospital Research Foundation, USA (2010—
0452) and the Institute of Molecular Biology & Biotechnol-
ogy, Pakistan. Informed written consent was obtained from
the adult subjects and the parents of minor subjects.
Detailed clinical histories were obtained from participating
family members and affected individuals were examined
by an Ophthalmologist and a physician to rule out any ob-
vious syndromic forms of OCA. Clinical features of OCA,
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Figure 1 Pedigrees of Pakistani families carrying TYR mutations. Pedigrees of ten multi-generational families segregating recessive
nonsyndromic OCA due to mutations in the TYR gene. Filled and empty symbols represent affected and unaffected individuals, respectively.
Double lines indicate consanguineous marriages. Asterisks indicate subjects enrolled in the protocol that contributed DNA samples.

such as hypopigmentation of the hair and skin and the
presence of eye aberrations, including nystagmus, stra-
bismus, photophobia and poor vision, were evaluated.
Peripheral blood samples were collected from each partici-
pating individual for genomic DNA extraction.

Mutational analysis

The primers used for PCR amplification and sequencing
of the TYR, OCA2, TYRPI, SLC45A2 and SLC24A5
genes were designed using the Primer3 web site. The se-
quencing method for the PCR products has been
described previously [29]. For specific amplification of
exons 4 and 5 of TYR, we used the primers and PCR
conditions described previously [30]. Briefly, the coding
and noncoding exons of TYR, OCA2, TYRP1, SLC45A2,
SLC24A5 were PCR amplified from 50 ng genomic
DNA, using ABI Veriti thermocyclers (Applied Biosys-
tems, Austin, TX). PCR reactions (final volume 20 pl)
were performed with genomic DNA in the presence of 5
pmol each of forward and reverse primers, 200 mM each
dNTP, 1 x PCR buffer (GenSrcipt), 1.5-2.5 mM MgCl,
(GenScript), and 0.5 U of a thermostable DNA polymer-
ase. For sequencing reaction, we added 3.2 pmol of pri-
mer, 0.2 pl of Big Dye Terminator Ready Reaction Mix
(ABI Biosystems), and 2 ul of 5 x dilution buffer
(400 mM Tris—HCIl pH9 and 10 mM MgCl,). An ABI
3730x] DNA capillary sequencer was used to resolve the
products, and Lasergene DNAstar software was used to
analyze the results. Co-segregation of the mutations with
OCA in each family was confirmed by sequencing. Con-
trol DNA samples from an ethnically matched Pakistani
population were sequenced for mutant alleles of TYR
and OCA2. Three prediction programs, Polyphen-2 [31],
SNPs3D [32], and MutationTaster [33], were used to de-
termine the effect of novel missense mutations. Effects
of missense mutations on the structure of tyrosinase and
OCA2 were also analyzed using the Project HOPE web
server [34].

Fluorescently tagged TYR expression constructs

The EGFP-tagged, full-length human TYR cDNA con-
struct was generated using PCR primers located in
exons 1 and 5. A retinal cDNA library (Clontech,
Mountain View, CA) was used as the template source.
The sequence-verified PCR product was inserted into
the pEGFP-C2 vector (Clontech, Mountain View, CA).
Constructs encoding the p.Pro21Leu, p.Cys35Arg and p.

Tyr411His mutant forms of tyrosinase were prepared by
site-directed mutagenesis (Agilent Technologies, Santa
Clara, CA).

Cell culture conditions, transfection and immunostaining
Human melanocyte cells were transiently transfected
using Fugene-6 (Promega, Madison, WI) with 1.5 pg of
the desired construct per well in a 6-well dish. After
transfection, cells were incubated for 48 hours at either
37°C or 31°C followed by fixation with 4% paraformalde-
hyde. For visualization of the endoplasmic reticulum and
early endosomes, anti-calregulin (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA) and anti-EEA1 (Abcam,
Cambridge, MA) antibodies were used, respectively. A
Zeiss LSM700 confocal microscope was used for
imaging.

Exon-trapping assay

To determine the effect of splice site mutation (c.1045-
15 T > G) found in five OCA families, the wild-type and
mutant exon 10 along with 200 bp flanking introns of
OCA2 gene were PCR-amplified, cloned into the pSPL3
vector (Invitrogen, Carlsbad, CA), and sequence-verified.
Purified, cloned DNA of the experimental, wild-type, and
empty vector control constructs were separately trans-
fected into COS-7 cells using the Fugene-6 reagent.
Forty-eight hours after transfection of the pSPL3 con-
structs, RNA was extracted from the COS-7 cells using
TRIzol reagent (Invitrogen, Carlsbad, CA), and single-
stranded cDNA was synthesized (Clontech, Mountain
View, CA). Primary PCR amplification of the cDNA was
performed with vector primers. Ten microliters of each
amplimer was analyzed on a 2% agarose gel. DNA bands
were extracted and sequenced with the vector primers.

Results

Genetic and clinical analyses of TYR (OCAT)

Study subjects from forty families, segregating congeni-
tal onset, nonsyndromic, recessive OCA, were enrolled
from different cities in the Punjab province of Pakistan.
Sequence analysis of the TYR gene revealed seven prob-
able pathogenic variants in ten of these families (Fig-
ure 1, Tables 1, 2). Of these seven mutant alleles, four
have been previously reported and include c.832 C>T
(p-Arg278*), c.896A>G (p.Arg299His), ¢.1217 C>T
(p.Pro406Leu) and «¢1255 G>A (p.Gly419Arg)
[5,20,24,35]. Three novel missense substitutions were



Table 1 Mutant alleles of TYR found in ten Pakistani families

Nucleotide Exon  Effect on Frequencies  Family Ethnicity  Polyphen2  SNPs3D Mutation Allele frequency  Known frequencies  References
change“ protein in control Taster in our OCA1 in other
samples* families populations
Missense
c62C>T 1 p.Pro21Leu 0/380 PKABO74  Sayyed Damaging Damaging  Pathogenic ~ 10% N/A This study
c103T>C 1 p.Cys35Arg 0/380 PKABOO1 Malik Damaging Damaging  Pathogenic ~ 20% N/A This study
PKABO65 Malik Jutt
C.896A>G 2 p.Arg299His 0/372 PKAB109  Warraich Damaging Damaging Pathogenic 10% Caucasian 12.5%; [10,36-40]
Arab-Christian 1.6%,
2.6% and 3.3%;
Chinese 18.75%;
Indian 4.34%.
c1217 C>T 4 p.Pro406Leu  0/372 PKAB153  Malik Jutt ~ Damaging Damaging  Pathogenic ~ 10% Caucasian 2.94% [37,41,42]
and 25%; German
14.28%.
c1231T>C 4 p.Tyr411His 0/372 PKAB103  Arian Damaging Damaging  Pathogenic ~ 10% N/A This study
c1255G>A 4 p.Gly419Arg 0/372 PKABO73  BhatiJutt Damaging Damaging  Pathogenic ~ 20% Caucasian 0.83%; [20,36,37,43,44]
PKAB0O78 Indo-Pakistan 25%;
Pakistan 0.83%;
Indian 4.34%
and 20%;
South-Indian 16.6%.
Nonsense
c832C>T 2 p.Arg278* 0/372 PKABO57 Shaikh 20% Guayanan 12.5%; [9,10,20,36,37,39,43-48]
PKAB155  Rajpoot Jewish 2.6%;

Japanese 12.5%,
22.2% and 100%;
European 2.5%;
Mexican 0.83%;
Indian 0.83% and
4.34%; Eastern Indian
8.3%, 25% and

100%; Syrian 0.83%;
Chinese 18.75%.

*Novel mutations are in bold. *Frequencies were determined by sequencing at least 372 chromosomes from geographically and ethnically-matched subjects without any history of ocular disease. N/A: not applicable.
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Table 2 Clinical assessment of the affected individuals with mutations in TYR and OCA2

Gene/ Mutation Sex Age Hair color Skin Iris Visual Acuity Type of Fundus  Foveal Photophobia* Nystagmus Con

Family (protein) (yrs) color color Right Left refraction error hypoplasia

TYR

PKABO74  p.Pro21Leu M 19 Brown Pinkish white ~ Grey/Brown  4/60 4/60 Myopic Albinotic ~ Yes Present Yes Yes

PKABOO1  p.Cys35Arg M 40 White Pinkish white  Grey/Blue 6/38 6/38 Compound myopic  Albinotic ~ Yes Present Yes Yes
hypermetropic
astigmatism

PKABO65  p.Cys35Arg F 28 White White? Grey/Blue N/A N/A N/A N/A N/A Present Yes No

PKABO57  p.Arg278* F 7 White White® Light Brown  N/A N/A N/A N/A N/A Present Yes Yes

PKAB155  p.Arg278* M 16 White White*? Grey/Blue N/A N/A N/A N/A N/A Present Yes Yes

PKAB109  p.Arg278* M 24 N/A N/A N/A N/A N/A N/A N/A N/A Present Yes Yes

PKAB153  p.Pro406Leu F 18 Yellow White® Light Grey N/A N/A N/A N/A N/A Present Yes Yes

PKAB103  p.Tyrd11His M 30 White Pinkish White ~ Grey/Blue 6/60 6/60 Compound Albinotic  Yes Present Yes No
hypermetropic

PKABO73  p.Gly419Arg M 45 White White? Grey/Blue N/A N/A N/A N/A N/A Present Yes No

PKABO78  p.Gly419Arg F 12 White White*? Grey/Blue N/A N/A N/A N/A N/A Present Yes Yes

OCA2

PKABO52  p.Asp486Tyr F 15 White White Grey/Blue N/A N/A N/A N/A N/A Present Present Yes

PKABO54  p.Asp486Tyr F 13 Yellowish- White  White®? Blue 6/60 6/60 Compound Albinotic  Hypoplasia ~ Present Present Yes
Myopic

PKABOS55  p.Asp486Tyr F 1.5 White White Light Grey N/A N/A N/A N/A N/A Present Present Yes

PKABO67  p.Asp486Tyr M 35 White White? Grey/Blue N/A N/A N/A N/A N/A Present Present No

PKAB101  p.Asp486Tyr M 25 White White? Grey/Blue 6/60 6/60 Mixed Albinotic  Hyoplasia Present Present Yes
Astigmatism

PKAB0O63  p.Met318lle F 5 White White® Grey/Blue N/A N/A N/A N/A N/A Present Present Yes

p.Leu527Arg

PKABO58  p.Pro743Leu M 30 White White® Grey/Blue 1/60 4/60 Hypomyopic Albinotic ~ N/A Present Present No

PKABO72  p.Pro743Leu M 6 White White? Grey/Blue N/A N/A N/A N/A N/A Present Present Yes

PKABO71  p.Ala787Thr M 10 Yellowish-White ~ White®? Blue Fc3 Fc3 Compound Albinotic  Hypoplasia ~ Present Present Yes
Hypermetropic

PKAB6O  c1045-15T>G F 6 White White®® Grey/Brown  6/36 6/36 Hypermetropic Albinotic  Hypoplasia ~ Present Present Yes
Astigmatism

PKABO68 c.1045-15T>G F 7 Yellowish-White ~ White® Blue/Brown  N/A N/A N/A N/A N/A Present Present Yes

PKABO79 c1045-15T>G M 19 Yellowish-White  Reddish Grey/Brown  N/A N/A N/A N/A N/A Present Present Yes

PKAB151 c1045-15T>G F 6 White White® Grey/Blue N/A N/A N/A N/A N/A Present Present Yes

PKAB152 ¢c1045-15T>G F 12 N/A N/A N/A N/A N/A N/A N/A N/A Present Present Yes

*All individuals show squinting in normal sunlight. 2Reddish spots throughout the skin and lips appeared sun damaged. °Show blistering on exposed skin and generalized sunburn redness. N/A not available, Cons

consanguineous union.
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Figure 2 Novel TYR mutations and resulting OCA1 phenotypes. A. Electropherograms of amplimers from genomic DNA templates illustrating
homozygosity for the substitution mutations found in the affected individuals of the families. Arrows indicate the site of the mutations. All of the
mutations described here are numbered from the ATG start codon (GenBank NM_000372). B. Clustal W alignment of tyrosinase proteins from
various species that shows the conservation of residues at positions 21, 35 and 411 among ten species. The conserved amino acids are shown
with a dark gray background, and the nonconserved amino acids are shown with a white background. C. Photographs of ten OCA1 probands.
The family number and the mutation identified in the TYR gene are given for each proband; some of the probands have used hair dyes.

identified including p.Pro21Leu (c.62 C>T), p.
Cys35Arg (c.103 T>C) and p.Tyr411His (c.1231 T>C)
(Figure 2A). All of these missense mutations affected
amino-acid residues that are conserved among the
tyrosinase orthologs (Figure 2B). We performed a
haplotype analysis using eight closely linked single nu-
cleotide polymorphisms (SNPs) in TYR to identify po-
tential founder effects for the recurrent variants (p.
Arg278*, p.Gly419Arg and p.Cys35Arg). Selection of
these eight SNPs for haplotype analysis in Pakistani
OCA families was based on the observance of high
heterozygosity (> 0.3) in 32 control samples randomly
collected from the Pakistani population. The results
were consistent with common ancestors for each of
the recurrent alleles in the Pakistani families studied
here (data not shown).

All of the affected individuals from the ten families
had nystagmus and photophobia, regardless of their sex
and age (Figure 2C, Table 2 and Additional file 1: Table
S1). Inter-familial variation of hair color was noted
among individuals, ranging from white to honey blonde
or brown (Figure 2C, Table 2 and Additional file 1: Table
S1). Notably, reddish spots and marked sun-damage on
the skin and grossly enlarged veins in the cheeks and lips
were observed (Figure 2C).

Functional analysis of novel missense alleles of tyrosinase
Three prediction programs, specifically, Polyphen-2
[31], SNPs3D [32], and MutationTaster [33], suggested
that each of the three new missense mutations were
deleterious (Table 1). We also used the HOPE predic-
tion program [34] to assess further the effect of the
missense mutations on the secondary structure of the
encoded protein. Both the p.Pro21 and p.Cys35 residues
are located in the amino terminal region. Due to their
charge, size, and hydrophilic properties, the amino acids
lysine and arginine at positions 21 and 35, respectively,
were predicted to disrupt protein topology, which could
result in protein misfolding. Also, p.Tyr411 is located
close to a defined copper-binding site within the lu-
minal domain; inserting histidine at this position was
predicted to cause an empty space in the core of the
protein and the loss of hydrophobic interactions, be-
cause of the smaller size and hydrophilicity of histidine.

Generally, missense alleles of the TYR gene result in
the retention of the encoded mutant protein in the

endoplasmic reticulum (ER) [49]. To determine the ef-
fect of the three novel missense mutations (p.Pro21Leu,
p-Cys35Arg and p.Tyr411His) on the localization of tyro-
sinase, we transiently transfected human melanocytes
with GFP-tagged, full-length wild-type and mutant TYR
¢DNA constructs (Figure 3). Wild-type tyrosinase was
localized predominantly throughout the cytoplasm of
melanocytes with some expression in the ER (Figure 3).
The low expression of wild-type tyrosinase in the ER
might be due to newly synthesized polypeptides that are
retained in the ER by chaperones until they are properly
folded and assembled [50]. Immunofluorescence studies
with calregulin (an ER marker) and EEA1 (an early endo-
some marker) demonstrated that the mutant proteins
predominantly co-localized with calregulin, indicating re-
tention in the ER (Figure 3). A portion of the known
human and mouse TYR mutations, especially those
present in the copper-binding region, have shown
temperature-sensitive behavior [5,35,51-54]. Therefore,
we also tested the effect of temperature on the
localization of wild-type and mutant tyrosinase proteins
by growing transfected melanocytes at 37°C and 31°C
(Figures 3 and 4). Interestingly, a decrease in
temperature resulted in an increase in the cytoplasmic
vesicular co-localization of the p.Cys35Arg and p.
Tyr411His mutant protein with EEA1 (Figure 4). Mela-
nocytes that were transfected with wild-type and p.
Pro21Leu constructs and grown at 31°C, did not show
any significant change in the localization pattern relative
to cells grown at 37°C (Figure 4).

Frequency of the rs1042602 cSNP in the Pakistani
population
Previous studies have shown a biased distribution of
the TYR cSNP, p.Ser192Tyr (rs1042602) among the
various populations studied in the International Hap-
Map Project (http://hapmap.ncbi.nlm.nih.gov/). To de-
termine the minor allele frequency (MAF) of the
rs1042602 cSNP in the Punjab province of Pakistan, we
genotyped 200 unrelated, normal individuals from dif-
ferent ethnic groups (Figure 5). Significant variation in
the frequency of c¢575 C>A in different regions of
Pakistan was observed (Figure 5 and Additional File 2:
Figure S1).

All of the families in our study were enrolled from
the Punjab province of Pakistan, and five of the
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Figure 3 Subcellular distribution of wild-type and mutant tyrosinase in human melanocytes grown at 37°C. Subcellular distribution of
wild-type and mutant (p.Pro21Leu, p.Cys35Arg and p.Tyr411His) tyrosinase proteins (green) in transiently transfected human melanocytes
grown at 37°C. Calregulin and EEA1 were used as markers for the endoplasmic reticulum (red) and the early endosome (red),
respectively. For each construct, boxed regions were magnified in the adjacent panels. Merged images show the co-localization of the
p.Pro21Leu, p.Cys35Arg and p.Tyr411His tyrosinase mutations with calregulin, which indicates ER retention. The scale bar represents 10 pum
for all panels.

forty families that were screened for TYR had a ¢575 C>A. We found that ¢.575 C>A in these two
c¢.575 C>A (p.Ser192Tyr) polymorphism. In two of families did not co-segregate with the OCA pheno-
these five families, we did not find any other muta- type. Thus, we did not consider p.Ser192Tyr to be a
tion in TYR, except for the heterozygous pathogenic variant.
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Figure 4 Subcellular distribution of wild-type and mutant tyrosinase in human melanocytes grown at 31°C. The subcellular localization of
GFP-tyrosinase in wild-type and p.Pro21Leu-transfected cells was not significantly different when cells were incubated at 31°C or at 37°C. After
transfection with either p.Cys35Arg or p.Tyr411His mutant constructs, the melanocytes grown at 31°C showed an increase in the cytoplasmic
vesicular co-localization of the mutant protein with EEAT. For each construct, boxed regions were magnified in the adjacent panels. The scale bar
represents 10 um for all panels.
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Figure 5 Allele frequency of the rs1042602 cSNP in the Pakistani population. The distribution of an ancestral C and derived A allele of TYR
among Pakistani population. DNA samples from 200 individuals belonging to various ethnic groups within province of Punjab, Pakistan were
genotyped for rs71042602. Also shown is the Human Genome Diversity Project data for comparison [55]. Details are available at the HGDP website
(http://hgdp.uchicago.edu/).

Genetic and clinical analyses of OCA2

Sequence analysis of the OCA2 gene revealed six variants
in fourteen families (Figures 6 and 7, Table 3), including
c.954 G> A, p.Met318lle; ¢.1045-15 T > G; ¢.1456 G>T,
p.Asp486Tyr; c¢.1580 T > G, p.Lys527Arg; ¢.2228 C>T, p.
Pro743Lys; and ¢.2359 G > A, p.Ala787Thr. Three differ-
ent prediction algorithms were used to determine the
effects of the missense mutations identified in our cohort.
Three of the four missense alleles were predicted to be
damaging by all three programs (Table 3). The fourth
change, ¢.954 G > A (p.Met318lle), was predicted to be a
benign polymorphism (Table 3). Furthermore, ClustalW
alignment of the OCA2 proteins from eleven different
species showed that the methionine residue at position
318 is not conserved and in fact, mouse, rat, rabbit,
frog, and Drosophila have a leucine at this position,
which is an amino acid closely related to isoleucine
(Figure 7). In contrast, the remaining two residues
(p.Asp486 and p.Lys527) mutated in other families
are highly conserved in the eleven species analyzed
here (Figure 7). Although not found in the DNA
samples from 200 ethnically matched control indivi-
duals, p.Met318lle segregated in cis with another
missense mutation (p.Lys527Arg) of OCA2 in the
PKABO063 family, thereby preventing us from exploring
its functional role in OCA2 pathogenesis.

Five of the OCA2 families segregated a c.1045-
15 T>G change, and five other families had a
c.1456 G>T (p.Asp486Tyr) mutation (Figure 6 and
Table 3). We performed haplotype analyses of eight
closely linked short tandem repeats and single nucleotide
polymorphisms to identify potential founder effects for

recurrent variants of the OCA2 gene. The results are
consistent with common ancestors for each of the two
alleles (Table 3).

There was no obvious genotype-phenotype correl-
ation observed in the affected individuals harboring dif-
ferent OCA2 gene alleles (Table 2 and Additional file
1: Table S1). The affected individuals from the fourteen
families had nystagmus and photophobia, regardless of
their sex and age (Figure 7C, Table 2 and Additional
file 1: Table S1). Most of the affected individuals had
white or yellowish white hair color (Figure 7C, Table 2
and Additional file 1: Table S1). Inter-familial variation
in iris color was noted, with tones ranging from light
grey to blue-brown (Table 2). Similar to OCAl fam-
ilies, the presence of reddish spots and marked sun-
damage on the skin with grossly enlarged veins in the
cheeks and lips was observed. Some of the affected
individuals were observed to use hair dyes to color
their hair (Figure 7C, Table 2 and Additional file 1:
Table S1).

Although there were no pathogenic mutations in
the OCA2 promoter or in the cis-regulating element
present in intron 86 of the HERC gene regulatory
region [56], we found the blue eye color-associated
allele (TAAGTG) of SNP rsi12913832 in five of the
OCA2 families (Table 3). In these five families, the
rs12913832 “G” allele was found to be in linkage
disequilibrium with the c.1456 G>T (p.Asp486Tyr)
mutation in the OCA2 gene (Table 3). Affected indi-
viduals of these five families had grayish-blue
or blue eye color (Table 2 and Additional file 1:
Table S1). The presence of the blue eye color
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Figure 6 Pedigrees of Pakistani families segregating OCA2 mutations. Pedigrees of fourteen multi-generational families with mutations
identified in the OCA2 gene. Filled and empty symbols represent affected and unaffected individuals, respectively. Double lines indicate
consanguineous marriages. Asterisks indicate subjects enrolled in the protocol that contributed DNA samples.

1

allele of SNP rs12913832 might contribute to the Effect of the c.1045-15 T >G mutation on splicing

OCA phenotype by reducing the expression of To determine if ¢.1045-15 T>G (Figure 8A) alters the
the mutated OCA2 protein in these affected indivi- normal splicing of OCA2 mRNA, we made two con-
duals [56]. structs of genomic DNA for exon trapping. One
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used hair dyes.

Figure 7 Novel OCA2 mutations and resulting OCA2 phenotypes. A. Electropherograms of amplimers from genomic DNA templates
illustrating homozygosity for the substitution mutations found in the affected individuals of the families. Arrows indicate the site of the mutations.
All mutations described here are numbered from the ATG start codon (GenBank NM_000275). B. Clustal W alignment of OCA2 proteins from
various species shows conservation of the residues at positions 318, 486 and 527 among twelve species. The conserved amino acids are shown
with a dark gray background, and the nonconserved amino acids are shown with a white background. C. Photographs of fourteen OCA2
probands. The family number and the mutation identified in the OCA2 gene are given for each proband; a number of the probands shown have

construct was for the wild-type genomic sequence
spanning intron 10 through intron 11, and the other
had the splice site mutation ¢1045-15 T>G
(Figure 8B). The transfected empty pSPL3 vector pro-
duced the expected product of 177 bp, whereas the
wild-type exon 10 splice site produced two bands, one
with (249 bp) and one without (177 bp) exon 10 spli-
cing, when amplified with vector primers (Figure 8B),
which might indicate the presence of weak splice junc-
tions around exon 10. When transfected in the exon
trapping system, the construct with the mutated 5’
splice site (c.1045-15 T > G) produced a band of 177 bp
that had exon 10 spliced out (Figure 8B). Although a
weak band of ~249 bp was occasionally observed, se-
quencing revealed an aberrant spliced product. The
results from the exon-trapping assay demonstrate that
the ¢.1045-15 T > G mutation results in an mRNA that
skips exon 10. If only exon 10 is skipped, then there is
a deletion of twenty-four amino acids, thereby resulting
in the loss of the third transmembrane domain of the
full-length protein. However, analysis of known OCA2
transcripts indicated that exon 10 is alternatively spliced
in most human tissues (Figure 8C). Quantitative real-
time PCR analysis indicated that the OCA2 transcript
including exon 10 is more abundant in human retina
compared to transcripts without exon 10 (Figure 8E).

Genetic analysis of TYRP1, SLC45A2 and SLC24A5 genes
Although we did not screen the unknown regulatory
regions, sequencing of all the non-coding and coding
exons of the TYRPI, SLC45A2 and SLC24AS5 genes in
the 40 families segregating nonsyndromic OCA did not
reveal any obvious pathogenic mutations (Figure 8D).

Discussion

In this study, we identified seven different pathogenic
variants, three of which are novel, as the cause of OCA1
in ten Pakistani families. Two of the novel missense
mutations, p.Pro21Leu and p.Cys35Arg, replaced highly
evolutionarily conserved amino acid residues. The p.
Cys35Arg mutation was found in two families, and SNP
analysis revealed a common haplotype harboring this al-
lele, which indicates a founder effect. The other common
alleles found in the OCA1l families were p.Gly419Arg
and p.Arg278* (Table 2). Both of these variants have

been previously found in other Pakistani families
[23,25,35]. Although no genotype data are available from
the previous studies, our SNP analysis revealed common
haplotypes in families sharing the same mutations. Our
findings, along with the results of previous studies, indi-
cate that p.Cys35Arg, p.Arg278* and p.Gly419Arg are
the three most common mutations causing OCA1 in
Pakistani families [23,25,35].

Interestingly, two of the novel variants, p.Cys35Arg
and p.Tyr411His, might have temperature-sensitive be-
havior that could be due to a subtle conformational de-
fect or gross protein misfolding [57]. A phenotypic
evaluation of individuals homozygous for this allele did
not reveal a temperature-sensitive phenotype. The loss of
pigmentation in exposed skin areas was not strikingly
different than that in less-exposed skin areas (e.g., legs,
chest or abdomen); this finding could be due to the ef-
fect of the hot local climate (37°C - 52°C) on melanocyte
growth and melanogenesis in the skin [58].

The association of the rs1042602 ¢cSNP of TYR with
squamous cell carcinoma of the skin in Caucasians and
with pigmentation variation in the south Asian popula-
tion has been documented [59,60]. This cSNP results in
the substitution of serine with tyrosine at position 192
(p.Ser192Tyr) within the first copper-binding site (CuA)
of tyrosinase [61]. Enzymatic analyses have revealed an
approximately 40% reduction in the catalytic activity of
tyrosinase, due to the p.Ser192Tyr mutation [61]. Inter-
estingly, the distribution of the rs1042602 cSNP alleles
varies significantly among different individuals from dif-
ferent geographical origins within Pakistan and thus pro-
vides a useful marker for epidemiological studies
(Additional file 2: Figure S1).

In the cohort of Pakistani families segregating OCA
studied here, fourteen out of forty families have muta-
tions in OCA2. These results indicate that OCA2 is more
prevalent than OCA1 in Pakistan in contrast to the In-
dian population [36,62]. Of the six distinct mutations in
the OCA2 gene, three (p.Asp486Tyr, p.Leu527Arg,
¢.1045-15 T > G) have not been found in any of the vari-
ous ethnic populations analyzed to date; therefore, they
may be specific to Pakistani albino individuals. Of the
two known mutations, p.Pro743Leu was previously iden-
tified in individuals of Caucasian, African-American and
European ancestry [37,63-65], whereas the second mutation,



Table 3 Mutations of OCA2 segregating in Pakistani families

Nucleotide Frequency in Effect on Location Family  Ethinicity Haplotype* Polyphen 2 SNPs3D  Mutation Taster Allele frequency Regulatory
change’ control samples protein $1-52-53-54-55-56-S7-S8 this study region
sequence®
Missense
c.954 G>A 0/200 p.Met318lle  loop TM2-3 PKAB063  Warraich CCCGAT-GA Benign Benign Polymorphism 7.14% TAAATG
c.1456 G>T 0/344 p.Asp486Tyr  within TM7 PKABO52  Lanjay T-C-T-A-A-C-A-G Damaging Damaging Pathogenic 3571% TAAGTG
PKABO54 Mehay T-C-T-A-A-C-A-G TAAGTG
PKABO55  Mehay T-C-T-A-A-C-A-G TAAGTG
PKAB067 Ghallu T-C-T-A-A-C-A-G TAAGTG
PKAB101  Chaaki T-C-T-A-A-C-A-G TAAATG
c.1580 T>G 0/298 p.Leu527Arg  within TM8 PKABO63  Warraich C-C-C-G-AT-G-A 7.14% TAAATG
c2228 C>T p.Pro743Leu loop TM12-13 PKABO58 Arain C-CT-G-A-C-A-A Damaging Damaging Pathogenic 14.30% TAAATG
PKABO72  Joyia C-C-T-G-A-C-A-A TAAATG
2359 G>A p.Ala787Thr  within TM13  PKABO71 Chohan C-CG-C-G-A-CGA Damaging  Damaging Pathogenic 7.14% TAAATG
Splice site
c.1045-15T>G 0/364 splicing within TM3 PKABO60  Bubar CCT-G-A-T-G-A Damaging ~ Damaging Pathogenic 35.71% TAAATG
error® PKAB068  Sindhu Jutt C-C-T-G-A-T-G-A TAAATG
PKAB079  Abbasi C-CT-G-A-T-G-A TAAATG
PKAB151  Ansari T-C-T-G-A-T-G-A TAAATG
PKAB152  Ansari CCT-G-AT-G-A TAAATG

*Given in bold are the novel variants found in this study. *SNPs used for haplotyping: S1, rs17565841; S2, rs12592307 (p.5788S); 53, rs1800411 (p.C517C); S4, rs1900758; S5, rs1800410; S6, rs10852218; S7, rs1800404; S8,
r512913832. According to Feb. 2009 UCSC Human Genome browser assembly (GRCh37/hg19), the S2 to S6 are present within the coding (S2 and S3) or intronic regions of OCA2. "Human Splicing Finder program
(http://www.umd.be/HSF/) predicted a cryptic splice donor site 12 nucleotide upstream of known splice acceptor site for exon 9 due to the mutation. *Conserved regulatory element sequence present within intron 86
of the HERC2 gene. N/A not applicable. TM transmembrane domain. TMpred-Prediction of transmembrane regions and orientation (http://www.ch.embnet.org/software/TMPRED_form.html) was used for OCA2 domain

prediction.
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Figure 8 Functional analysis of c.1045-15 T > G mutation. A. Electropherograms of amplimers from genomic DNA templates illustrating
homozygosity for the wild-type and c.1045-15 T> G substitution mutation found in the affected individuals of the five OCA2 families. The arrow
indicates the site of the mutation. B. To determine the effect of the c.1045-15 T> G mutation on splicing, exon 10 with 200 bp of the flanking
intron of OCA2 was introduced into the pSPL3 vector and analyzed through an in vitro splicing assay. The transfected empty pSPL3 vector
produced the expected product of 177 bp, whereas the wild-type exon 10 splice site produced two bands with (249 bp) and without (177 bp)
exon-10 splicing when amplified with vector primers, which might indicate the presence of weak splice junctions around exon 10. The construct
with the c.1045-15 T> G mutation produced a band of 177 bp, which upon sequencing, revealed the skipping of exon 10. With the mutant
construct, a weak band of ~249 bp was occasionally observed, but sequencing revealed an aberrant splice product. C. Human OCA?2 isoforms with
and without exon 10 are expressed in many tissues. D. Molecular genetic analysis of known OCA genes in a cohort of forty Pakistani families
indicates that (a) OCA2 mutations are the most common cause of OCA, and (b) a significant number of families do not have mutations in the
known OCA genes. E. Real-time quantitative RT-PCR analysis of TYR mRNAs level in human melanocytes, retina and testis cDNA libraries. Cy is the
observed threshold number of PCR cycles required for detection of the amplification product; ACy is the calculated difference in C; between the
TYR gene and an internal control standard (GAPDH) measured in the same sample. AAC; is the calculated difference in ACt between the
experimental and exon 9-11 isoform in retina. Compared to the retina and testis, melanocytes have a relatively high expression of both exon
9-10 and exon 9-11 isoforms of TYR.

p.Ala787Thr, was initially identified in the Chinese popula-
tion [66]. Another missense mutation, p.Ala787Val, affecting
the same codon of the OCA2 gene as p.Ala787Thr, was also
reported to cause oculocutaneous albinism [67], further con-
firming the necessity of the alanine residue at this position
for proper OCA2 protein function.

Affected individuals of five OCA2 families were homo-
zygous for the ¢.1045-15 T >G mutation. Although the
in vivo effects of ¢.1045-15 T>@G are not known, this

mutation is expected to produce only the OCA2 isoform
without exon 10, which is predicted to encode a protein
with no third transmembrane domain. Therefore, the
level of normal OCA2 full-length protein required for
the transport of tyrosinase to the plasma membrane
might be affected by ¢.1045-15 T>G and thus cause
OCA.

We found inter-familial variation in the clinical
phenotype among the families segregating the same
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alleles of TYR or OCA2 (Table 2 and Additional file
1: Table S1). However, no obvious genotype-
phenotype correlation was observed. A significant
overlap in the range of phenotypes in individuals
with TYR (OCA1l) and OCA2 mutations was found,
which makes genetic screening obligatory for the
diagnosis of the type of albinism of the affected
individuals. We compared the frequencies of all mu-
tant TYR and OCA2 alleles among our forty OCA
families. Mutations in exons 1, 2 and 4 combined
accounted for all of the mutant alleles of the TYR
gene in our cohort (Table 1). For the OCA2 gene,
mutations in exons 10 and 14 collectively accounted
for ~67% (10/15) of mutant alleles. Taken together,
hierarchical mutation screening of these five exons
of OCA genes in the nonsyndromic albino Pakistani
population might reveal pathogenic alleles in ap-
proximately 43% (95% confidence interval: 28.5 -
57.9%) of cases and would be a cost-effective ap-
proach for molecular diagnosis.

Mutations in the protein coding exons or in the splice
junctions of TYR, OCA2, TYRP1 and SLC45A2 and
SLC24A5 were not found in 16 families. There are at
least three possible reasons to explain these findings.
First, cryptic mutations might be present in the regula-
tory or splicing elements of these genes. Presently, we do
not know the locations of the regulatory elements of
these genes. Secondly, although family clinical histories
and evaluation suggested no other clinical phenotype be-
sides OCA, some of these families might have syndromic
OCA. Currently, mutations in at least 12 loci have been
causally linked with syndromic OCA [1,2]. There may
also be an additional gene in which mutant alleles cause
nonsyndromic OCA. Several previous studies of the four
known OCA genes revealed no mutations in some of the
affected individuals screened [36,68,69]. A need clearly
exists for further genetic examination of this disease, as
does the opportunity to understand this complex dis-
order more clearly.

Conclusions

Our results show that twenty-four families harbor
twelve mutations (six previously reported and six
novel mutations), but 40% of the ascertained OCA
families had no apparent pathological mutations in
the known OCA genes. Although our sample size
was not large enough, based on our results, it is
tempting to speculate that OCA2 mutations are
more prevalent than OCAI mutations in the Paki-
stani population. Nevertheless, this information
would be useful for future diagnosis, genetic coun-
seling and molecular epidemiology of OCA in the
Pakistani population.
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Additional files

Additional file 1: Table S1. Clinical assessment of the affected
individuals with mutations in TYR and OCA2.

Additional file 2: Figure S1. Schematic and geographical
representation of allele frequency of the rs7042602 cSNP in the Pakistan.
The distribution of an ancestral C (black) and derived A allele (gray) of
TYR among Pakistani population.*All individuals show squinting in normal
sunlight. “Reddish spots throughout the skin and lips appeared sun
damaged. ®Show blistering on exposed skin and generalized sunburn
redness. Cons: consanguineous union.
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