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Abstract

Background: Usher Syndrome type II (USH2) is an autosomal recessive disorder, characterized by moderate to
severe hearing impairment and retinitis pigmentosa (RP). Among the three genes implicated, mutations in the
USH2A gene account for 74-90% of the USH2 cases.

Methods: To identify the genetic cause of the disease and determine the frequency of USH2A mutations in a
cohort of 88 unrelated USH Spanish patients, we carried out a mutation screening of the 72 coding exons of this
gene by direct sequencing. Moreover, we performed functional minigene studies for those changes that were
predicted to affect splicing.

Results: As a result, a total of 144 DNA sequence variants were identified. Based upon previous studies, allele
frequencies, segregation analysis, bioinformatics’ predictions and in vitro experiments, 37 variants (23 of them
novel) were classified as pathogenic mutations.

Conclusions: This report provide a wide spectrum of USH2A mutations and clinical features, including atypical
Usher syndrome phenotypes resembling Usher syndrome type I. Considering only the patients clearly diagnosed
with Usher syndrome type II, and results obtained in this and previous studies, we can state that mutations in
USH2A are responsible for 76.1% of USH2 disease in patients of Spanish origin.
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Disease Name and Definition
Usher syndrome
Usher syndrome (USH) is an autosomal recessive dis-
ease characterized by hearing loss, retinitis pigmentosa
(RP), and, in some cases, vestibular dysfunction. It is
clinically and genetically heterogeneous and is the most
common cause underlying deafness and blindness of
genetic origin. Clinically, USH is divided into three
types. Usher type I (USH1) is the most severe form and
is characterized by severe to profound congenital deaf-
ness, vestibular areflexia, and prepubertal onset of pro-
gressive RP. Type II (USH2) displays moderate to severe

hearing loss, absence of vestibular dysfunction, and later
onset of retinal degeneration. Type III (USH3) shows
progressive postlingual hearing loss, variable onset of
RP, and variable vestibular response. To date, five USH1
genes have been identified: MYO7A (USH1B), CDH23
(USH1D), PCDH15 (USH1F), USH1C(USH1C), and
USH1G(USH1G). Three genes are involved in USH2,
namely, USH2A (USH2A), GPR98 (USH2C), and
DFNB31 (USH2D). USH3 is rare except in certain popu-
lations, and the gene responsible for this type is USH3A.

Background
Usher syndrome (USH) is an autosomal recessive dis-
ease characterized by the association of hearing loss and
visual impairment due to retinitis pigmentosa (RP), with
or without vestibular dysfunction. It is the most
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frequent cause of concurrent deafness and blindness of
genetic origin and its general prevalence ranges from 3.3
to 6.4 per 100.000 live births [1]. In Spain, the estima-
tion is 4.2/100.000 [2].
USH is clinically and genetically heterogeneous. Three

clinical forms are distinguished: USH1, USH2 and USH3
and nine genes have been identified responsible so far.
Five causative genes have been reported for USH1:
MYO7A, USH1C, CDH23, PCDH15 and USH1G. Three
genes for USH2: USH2A, GPR98 and DFNB31. Mean-
while only one gene has been described for USH3:
USH3A [3,4].
USH2 appears to be the most common clinical form

of the disorder, accounting for more than 50% of all
Usher cases [5,6]. Among the three genes described for
USH2, USH2A is the most commonly mutated gene. It
is responsible for approximately 74-90% of USH2 cases
[2,7]. Mutations in USH2A, are also responsible for aty-
pical Usher syndrome and recessive non-syndromic RP
[8,9]. The USH2A gene, located on chromosome 1q41
[10], was initially described as comprising 21 exons,
encoding a protein of 1546 amino acids [11,12]. How-
ever, in 2004, van Wijk et al. (2004) identified 51 addi-
tional exons at the 3’ end of USH2A [13]. The longest
transcript consists of 72 exons, encoding a protein of
5202 amino acids. In addition, Adato et al. (2005), iden-
tified an alternative spliced exon 71 in mouse tran-
scripts, expressed in the inner ear and well conserved in
vertebrates [14]. The long isoform b is characterized by
containing a transmembrane region, followed by an
intracellular domain with a PDZ-binding motif, which
interacts with the PDZ domain of harmonin and whirlin,
integrating USH2A into the USH protein network
[14,15].
Initially, studies of the USH2A gene covered just exons

2-21 [11,16-18,8,12,19,20,9,21,22], but only 45-63% of
the expected USH2A mutations were identified. Never-
theless, since the discovery of the long isoform, several
mutational analyses of all 72 exons have been carried
out in diverse populations [23-30]. As a result, many
novel pathogenic mutations have been identified, includ-
ing splicing mutations at non-canonical positions of
splice sites [31]. However, the majority of these changes
only appear in a few cases, with the exception of the
common ancestral p.Glu767fs mutation, located at exon
13, which is the most prevalent USH2A mutation in sev-
eral populations [16].
In the present study we have performed an exhaustive

mutational screening of the long isoform b of USH2A to
identify new patients with mutations in this gene, and to
detect the second mutation in patients with one pre-
viously detected USH2A mutation. Some cases had pre-
viously been studied for exon 13 or for the 21 first
USH2A exons [19,9], or analyzed using the genotyping

microarray for Usher syndrome (Asper Biotech, Tartu,
Estonia; [32]). Furthermore, we have used in silico and
in vitro analysis to evaluate the functional consequences
on gene expression and protein function of several
nucleotide changes.

Materials and methods
Subjects
Eighty-eight (88) unrelated Spanish patients diagnosed
of Usher syndrome were included in this study. They
were recruited from the Federación de Afectados de
Retinosis Pigmentaria de España (FARPE) and also from
the Ophthalmology and ENT Services of several Spanish
Hospitals as part of a large-scale study on the genetics
of Usher syndrome in the Spanish population.
On the basis of their clinical history and ophthalmolo-

gic, audiological, neurophysiological and vestibular tests,
58 of these families were clinically classified as USH2
while 11 displayed atypical Usher syndrome. Detailed
clinical data could not be obtained for 19 patients and
these remained as non classified (USHNC).
Previously, 40 of these 88 patients were studied for

exon 13, while 24 were analysed for the first 21 exons of
USH2A and 42 were analyzed with the genotyping
microarray for Usher syndrome (Asper Biotech, Tartu,
Estonia). At that time, the version of the array detected
429 previously described mutations in eight of the nine
genes reported for the disease. As a result of these pre-
vious analyses, eighteen of them were found to carry
one mutated allele, but the second mutation could not
be detected. These mutations have been included in the
statistical summaries presented herein. These patients
were subjected to mutation screening of the exons that
had not been analyzed. In the remaining patients, we
carried out the study of exons 2-72 (including the alter-
natively spliced exon 71).
When DNA samples from patients’ relatives were

available, we carried out a segregation analysis.
One hundred unrelated individuals of Spanish origin

without hearing loss or RP family history were screened
as controls to evaluate the frequency of the mutations
found in the patient sample.

Mutation analysis
Genomic DNA from patients and controls was extracted
from peripheral blood samples following standard proto-
cols. The coding exons and flanking intronic sequences
of USH2A were amplified by PCR using primers and
conditions described by Aller et al. (2004; 2006) [9,23].
The amplified DNA fragments were analysed by direct
sequencing using the Big Dye Terminator v.3.1 kit
(Applied Byosistems, Carlsbad, CA), and purified
sequencing reactions were analysed in an ABI PRISM
3730 DNA analyzer (Applied Byosistems, Carlsbad, CA).
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The obtained sequences were compared with the con-
sensus sequence NM_206933.2. The +1 position corre-
sponds to A in the ATG translation initiation codon.

Predictions of the pathogenic effect of missense
variations
To predict whether a rare missense variant is deleter-
ious, we used the combined results of three different
computer algorithms:
-Sort Intolerant From Tolerant (SIFT) (available at

http://sift.jcvi.org) uses sequence homology to predict
whether a change is tolerated or deleterious.
-The polymorphism phenotyping program, PolyPhen

(available at http://genetics.bwh.harvard.edu/pph/) uses
sequence conservation, structure and SWISS-PROT
annotation to characterize an amino acid substitution as
benign, possibly deleterious or probably deleterious.
-Pmut (available at http://mmb2.pcb.ub.es:8080/PMut/

) provides prediction by neural networks, which use
internal databases, secondary structure prediction and
sequence conservation. This program provides a binary
prediction of “neutral” or “pathologic”.

Splice-site Prediction programs
Intronic, isocoding and missense changes were analyzed
using the programs NNSPLICE (http://fruitfly.org:9005/
seq_tools/splice.html), Human Splicing Finder (HSF)
version 2.4 (http://www.umd.be/HSF/) and NetGene2
(http://www.cbs.dtu.dk/services/NetGene2/) in order to
predict whether those changes could be affecting, creat-
ing or eliminating donor/acceptor splice sites.

Minigene constructions and expression
Minigene constructs were generated, using the exon
trapping expression vector pSPL3. For each mutation,
the exon and intronic flanking sequences were amplified
from the patient’s DNA, using the High Fidelity Phusion
polymerase (Finnzymes, Espoo, Finland). Amplicons
were inserted between the XhoI/NheI and XhoI/BamHI
restriction sites for the variants p.E2496E and p.V382M,
respectively, using T4 DNA ligase (Invitrogen Corpora-
tion, Carlsbad, CA). The p.V382M mutation was gener-
ated by site-directed mutagenesis. All vectors were
confirmed by direct sequencing. The minigene con-
structs were transfected into COS-7 cells as described
before [33]. RNA extraction and RT-PCR analysis was
perfomed as previously described [34,31]. Missplicing
percentages were measured using the Alpha Imager
2200 (version 3.1.2) software (AlphaInnotech Corpora-
tion, San Francisco, CA, USA).

Results
The molecular analysis of the USH2A gene in 88 unre-
lated USH Spanish patients revealed 37 different

pathogenic mutations. Among these, a total of 23 muta-
tions were novel (See Tables 1, 2 and 3). At least one
pathogenic mutation was found in 43 out of 88 unre-
lated patients (48.9%). Thirty-three patients were classi-
fied as USH2, five as USHA (atypical Usher syndrome)
and five as USHNC (Usher syndrome non classified). In
25 out of these 43 cases the two causative mutations
were detected (58.1%), five patients were homozygous
and 20 compound heterozygous. Detailed clinical mani-
festations of these 25 patients and 3 additional patients
with one pathogenic and one probably pathogenic muta-
tion (UV3; likely to be pathogenic but cannot formally
be proven) are summarized in Table 4.
In this study, a total of 144 variants were detected: 25

were truncating mutations and five were splice-site
mutations (located at the conserved AG/GT dinucleo-
tides of the splice site). The pathogenic effect of these
variants is clear. But, in addition, 48 missense, 20 silent
and 46 intronic variants were identified. According to
previous studies, allele frequencies, segregation analysis,
bioinformatics’ predictions and in vitro experiments, the
missense, silent and intronic changes were classified into
4 different categories: pathogenic, possibly pathogenic
(UV3), possibly non-pathogenic (possibly neutral, UV2)
and non-pathogenic (neutral). (See Tables 1, 2,3 and 5).

Missense variants
Fourty-eight missense variants were identified (See
Table 2). Twenty-nine were considered as non-patho-
genic because all of them were already described as
non-pathogenic in other studies [https://grenada.lumc.
nl/LOVD2/Usher_montpellier, [35]].
Nine nucleotide changes were classified as possibly

non-pathologic (UV2). p.G713R, p.S841Y, p.S2196T, p.
S2639P, p.G4692R and p.K5026E have already been
reported in other works and categorized as possibly
non-deleterious or of unknown pathogenecity [https://
grenada.lumc.nl/LOVD2/Usher_montpellier, [35]].
Meanwhile, p.N2377S, p.N2394K and p.E4921K have
not been described previously, so they were analyzed
with the three sequence analysis programs (SIFT, Poly-
phen and PMUT). None of those changes was predicted
to be clearly deleterious (See Table 6).
Four missense variants were classified as possibly-

pathogenic (UV3). The variants p.R303H and p.Y1992C
were described previously [https://grenada.lumc.nl/
LOVD2/Usher_montpellier, [35]]. The novel change p.
N3894D was not found in 200 control alleles and the
segregation analysis proved that it co-segregates with
the disease. However, only one program considered it as
clearly pathogenic (See Table 6). The new p.V382M
change, which affects the first base of exon 7, was not
found in control samples and it was predicted to slightly
affect splicing. The minigene assays only revealed a mild
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increase of the transcript excluding exon 7 (Figure 1,
band d) when the variant was present, in comparison to
the wild-type sequence.
Finally, six missense mutations were considered as patho-

genic. p.C759F and p.C3267R were already described by
others authors as damaging [https://grenada.lumc.nl/
LOVD2/Usher_montpellier, [35]]. p.C3358Y and p.P4818L
were classified by McGee et al. (2010) [30] and the LOVD-
USH Database as likely-pathogenic (UV3). However, in the
present study, p.C3358Y was detected in a patient together

with another nucleotide change (p.C3267R) and the segre-
gation analysis confirmed that the mutations were not in
the same allele. p.P4818L was detected in a patient together
with two other mutations that directly or indirectly cause a
truncated protein (p.Q3368X and c.5278delG). The segrega-
tion analysis confirmed that the deletion and the nonsense
mutation were in cis and the missense variant was in the
other allele and cosegregated with the disease. The segrega-
tion analyses support the damaging effect of p.C3358Y and
p.P4818L, so we have considered them as pathogenic. p.

Table 1 USH2A truncating and splice-site mutations

Nucleotide change Exon Predicted effect Predicted pathology No. of alleles References

Nonsense mutations

c.820C > T 5 p.R274X + 2 Present study

c.1518T > A 8 p.Y506X + 1 Bernal et al., 2005

c.3883C > T 18 p.R1295X + 1 Dreyer et al., 2000

c.4474G > T 21 p.E1492X + 2 Bernal et al., 2005

c.4645C > T 22 p.R1549X + 1 Baux et al., 2007

c.7854G > C 41 p.W2618X + 1 Present study

c.9753T > A 50 p.C3251X + 2 Present study

c.10102C > T 51 p.Q3368Xa + 1 Present study

c.10759C > T 55 p.Q3587X + 2 Baux et al., 2007

c.11146C > T 57 p.Q3716X + 1 Present study

c.14175G > A 65 P.W4725X + 1 Present study

Deletions and insertions

c.918_919insGCTG 6 p.S307AfsX17 + 1 Present study

c.1214delA 7 p.N405IfsX3 + 5 Bernal et al., 2005

c.1629_1645del 10 p.F543LfsX2 + 1 Present study

c.2299delG 13 p.E767SfsX21 + 8 Eudy et al., 1998

c.5278delG 26 p.D1760MfsX10a + 1 Present study

c.5540_5541dup 27 p.N1848X + 1 Present study

c.6319_6324delinsTAAA 32 p.V2107X + 1 Present study

c.8890dupT 45 p.W2964LfsX89 + 1 Present study

c.8954delG 45 p.G2985AfsX3 + 1 Present study

c.9261delT 47 p.E3088KfsX9 + 1 Present study

c.10272_10273dupTT 52 p.C3425FfsX4 + 1 Aller et al., 2006

c.11566delA 60 p.S3856VfsX28 + 1 Present study

c.12093delC 62 p.Y4031X + 1 Present study

c.13140delA 63 p.V4381CfsX10 + 1 Present study

Splice-site mutations

c.1328 + 1G > T IVS7 Ex7 splice defect + 1 Present study

c.1841-2A > G IVS10 Ex11 splice defect + 2 Bernal et al., 2003

c.11548 + 2T > G IVS59 Ex59 splice defect + 1 Present study

c.12067-2A > G IVS61 Ex62 splice defect + 4 Auslender et al., 2008

c.15053-1G > A IVS69 Ex70 splice defect + 1 Present study

+: Denotes pathogenic mutations.

No. of alleles: Number of alleles identified in patients.
aThese two mutations are allelic.

Novel pathogenic mutations described in this study are in bold.
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Table 2 Missense changes in USH2A

Nucleotide change Exon Amino acid change Predicted pathology No. of alleles Ref.

c.373G > A 2 p.A125T - 81 Dreyer et al., 2000

c.130G > A 2 p.G44R + 1 Present Study

c.688G > A 4 p.V230M - 3 Dreyer et al., 2000

c.908G > A 6 p.R303He UV3 1 Yan et al., 2009

c.1144G > A 7 p.V382Mb UV3 1 Present Study

c.1434G > C 8 p.E478D - 4 Seyedahmadi et al., 2004

c.1663C > G 10 p.L555V - 2 Bernal et al., 2003

c.1931A > T 11 p.D644V - 6 Weston et al., 2000

c.2137G > C 12 P.G713R UV2 2 Dreyer et al., 2000

c.2276G > T 13 p.C759F + 3 Dreyer et al., 2000

c.2522C > A 13 p.S841Y UV2 1 Jaijo et al., 2009

c.4457G > A 21 p.R1486K - 75 Dreyer et al., 2000

c.4714C > T 22 p.L1572F - 7 Dreyer et al., 2008

c.4994T > C 25 p.I1665T - 31 Kaiserman et al., 2007

c.5975A > G 30 p.Y1992Ce UV3 1 McGee et al., 2010

c.6317T > C 32 p.I2106T - 117 Aller et al., 2006

c.6506T > C 34 p.I2169T - 85 Aller et al., 2006

c.6587G > C 34 p.S2196T UV2 2 Jaijo et al., 2009

c.6713A > C 35 p.E2238A - 1 Aller et al., 2006

c.6875G > A 36 p.R2292H - 2 Dreyer et al., 2008

c.7130A > G 38 p.N2377S UV2 1 Present Study

c.7182C > A 38 p.N2394K UV2 1 Present Study

c.7506G > A 40 p.P2502P - 11 Baux et al., 2008

c.7685T > C 41 p.V2562A - 1 Dreyer et al., 2008

c.7915T > C 41 p.S2639P UV2 3 McGee et al., 2010

c.8624G > A 43 p.R2875Q - 9 Aller et al., 2006

c.8656C > T 43 p.L2886F - 9 Aller et al., 2006

c.9262G > A 47 p.E3088K - 1 Dreyer et al., 2008

c.9296A > G 47 p.N3099S - 12 Aller et al., 2006

c.9343A > G 47 p.T3115A - 9 Dreyer et al., 2008

c.9430G > A 48 p.D3144N - 8 Aller et al., 2006

c.9595A > G 49 p.N3199D - 9 Baux et al., 2007

c.9799T > C 50 p.C3267R + 5 Aller et al., 2006

c.10073G > A 51 p.C3358Y + 1 McGee et al., 2010

c.10232A > C 52 p.E3411A - 94 Aller et al., 2006

c.10636G > A 54 p.G3546R + 4 Present Study

c.11504C > T 59 p.T3835I - 30 Present Study

c.11602A > G 60 p.M3868V - 34 Aller et al., 2006

c.11677C > A 60 p.P3893T - 2 Dreyer et al., 2008

c.11680A > G 60 p.N3894D UV3 1 Present Study

c.12343C > T 63 p.R4115C - 2 van Wijk et al., 2004

c.14074G > A 64 p.G4692Rc UV2 1 McGee et al., 2010

c.14453C > T 66 p.P4818L + 1 Aller et al., 2006

c.14513G > A 66 p.G4838E - 1 McGee et al., 2010

c.14543G > A 66 p.R4848Q - 1 McGee et al., 2010

c.14761G > A 67 p.E4921K UV2 1 Present Study

c.15076A > G 70 p.K5026E UV2 1 McGee et al., 2010
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G44R and p.G3546R were novel; none of them was
detected in 200 control alleles. The variant p.G44R was
detected in a single patient and p.G3546R in three cases
(one homozygous and two compound heterozygous cases);
the results of the three computational analyses classified
them as pathogenic (See Table 6).

Silent variants
We also identified 20 silent variants, 17 were previously
described as neutral [[36], https://grenada.lumc.nl/
LOVD2/Usher_montpellier, [35]] and three were novel
(See Table 3). Only the variant p.E2496E was categor-
ized as pathogenic. It was not found in 200 control
alleles and the segregation analysis confirmed that this

mutation co-segregates with the disease. We detected
this variant in trans in a patient who also had a prema-
ture stop codon. According to in silico analyses, it was
predicted to create a de novo donor splice site (data not
shown). The splicing alteration was confirmed using
hybrid minigenes. The mutant construct generated a
transcript that lacked the last 106 nucleotides of exon
40 (Figure 1, band b). This loss of nucleotides creates a
new open reading frame, leading to a premature stop
codon five amino acids downstream.

Intronic variants
Fourty-six intronic variants located at non-canonical posi-
tions of splice sites, of which 20 are novel, were detected

Table 2 Missense changes in USH2A (Continued)

c.15091C > T 70 p.R5031W - 2 Dreyer et al., 2008

+: Denotes pathogenic mutations; UV3: Probably pathogenic mutations; UV2: probably non- pathogenic mutations; - : neutral varirants.

No. of alleles: Number of alleles identified in patients.
bThese variant may alter normal splicing.
cPatient with this change also has two other clearly pathogenic mutations in USH2A.
e p.R303H and p.Y1992C were initially described as being pathogenic mutations by Yan et al., 2009 (ref. 29) and McGee et al., 2010 (ref. 30) respectively, but we
have classified them as UV3 in accordance with the specific locus database for Usher syndrome: https://grenada.lumc.nl/LOVD2/Usher_montpellier

Novel pathogenic mutations and novel probably pathogenic mutations (UV3) described in this study are in bold.

Table 3 Silent variants in USH2A

Nucleotide change Exon Amino acid position Predicted pathology No. of alleles Ref.

c.504A > G 3 p.T168T - 75 Baux et al., 2008

c.1179A > G 7 p.Q393Q - 1 Aller, 2008

c.1419C > T 8 p.T473T - 36 Dreyer et al., 2000

c.2109T > C 12 p.D703D - 7 Weston et al., 2000

c.2256T > C 13 p.H752H - 3 Dreyer et al., 2008

c.3945T > C 18 p.N1315N UV2 3 Present Study

c.4371G > A 20 p.S1457S - 1 Dreyer et al., 2000

c.5031C > A 25 p.G1671G - 22 Aller et al., 2006

c.5751C > T 28 p.Y1917Y UV2 1 McGee et al., 2010

c.7488A > G 40 p.E2496Eb + 1 Present Study

c.7506G > A 40 p.P2502P - 11 McGee et al., 2010

c.11736G > A 61 p.E3912E - 2 Dreyer et al., 2008

c.11907A > T 61 p.P3969P - 2 Dreyer et al., 2008

c.11946A > T 61 p.L3982L - 29 Dreyer et al., 2008

c.12093C > T 62 p.Y4031Y - 1 Dreyer et al., 2008

c.12612A > G 63 p.T4204T - 129 Dreyer et al., 2008

c.12666A > G 63 p.T4222T - 58 Dreyer et al., 2008

c.13191G > A 63 p.E4397E - 23 Dreyer et al., 2008

c.14481C > T 66 p.A4827A - 1 McGee et al., 2010

c.14664G > A 67 p.T4888T UV2 1 Present Study

+: Denotes pathogenic mutations; UV2: probably non- pathogenic mutations; - : neutral variants.

No. of alleles: Number of alleles identified in patients.
bThese variant may alter normal splicing.
cPatient with this change also has two other clearly pathogenic mutations in USH2A.

Novel pathogenic mutations described in this study are in bold.
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Table 4 Genotype-phenotype correlations of USH patients with both mutations found in this study

Patient Mutations Year
of

Birth

Diagnosis Age of
diagnosis

Sensorineural
Hearing Loss

Vestibular
Function

Onset of
Night

Blindness

Onset of
Visual Field

Loss

Visual Field Visual
Acuity

Eye
Fundus

ERG Cataracts

RP1310* c.12067-2A > G/
c.12067-2A > G

USHNC

RP1274* p.E1492X/p.E1492X 1969 USH2 Moderate-severe
and stable

NormalA 1

RP1633 p.E1492X/p.E1492X 1962 USH2 25 Since infancy NormalA 25 25 Concentric loss 0,2/0,4 1 No
response

BE

RP1607 p.G3546R/p.G3546R 1925 USH2 33 Mild-moderate NormalA 16 25 Marked
concentric loss

0,6/0,6 1 Moderate
alteration

BE

RP1599* c.1214delA/c.1214delA 1980 USH2 Moderate, since
infancy

NormalA 20 30 Moderate
concentric loss

0,6/0,7 1 Moderate
alteration

BE

RP259 c.1214delA/p.C3267R 1974 USHA 19 Profound since 6
years

Vestibular
DysfunctionA

6 Concentric
loss (19 years)

0,35/
0,35 (19
years)

1 No
response

No (19
years)

RP1349 c.2299delG/c.1214delA 1954 USH2 Moderate-severe NormalB 15 20 Marked
concentric loss

0,4/0,3
(30 years)

2

RP1493 c.2299delG/c.8890dupT 1973 USH2 30 Congenital,
moderate and

stable

NormalB 29 29 Concentric loss
(at 31 years)

Normal
(31 years)

1 No
response
(31 years)

No (31
years)

RP1632 c.2299delG/c.8954delG 1961 USH2 Since infancy NormalB 23 25 <0,1BE 2 No
response

BE

RP1715* c.2299delG/
c.1629_1645del

1986 USH2 22 Moderate and
stable since 6 years

NormalB 16 20 Slight
concentric loss
(at 25 years)

Normal
(25 years)

1 No
response

No

RP1775 c.2299delG/p.R303H# 1961 USHA 30 Moderate since 7
years and
progressive

23 22

RP1618 p.C3267R/
c.6319_6324delinsTAAA

1964 USH2 Severe-profound NormalA 30 30 Marked
concentric loss

0,1/0,1 2 No
response

BE

RP1442* p.C3267R/c.12093delC 1962 USH2 20 Congenital,
moderate and

stable

NormalB 15 20 Concentric loss,
5° (at 43 years)

0,5/0,2
(43 years)

2 LE (37
years) RE
(43 years)

RP1703* p.C3267R/p.C3358Y 1936 USHA 50 Since 64 years 50 55 Reduced (67
years)

1 Yes

RP1759 p.C3267R/p.Y1992C# 1945 USH2 62 Congenital,
moderate and

stable

NormalB 62 Abnormal
response

Yes (62
years)

RP1625* c.12067-2A > G/p.
R274X

1976 USH2 25 Since infancy NormalA 19 24 Concentric loss 0,1/0,1 2 No
response

BE

RP1631 c.1841-2A > G/p.R274X 1976 USH2 Since infancy NormalA 28 28 Concentric loss 0,7/0,6 1 No
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Table 4 Genotype-phenotype correlations of USH patients with both mutations found in this study (Continued)

RP951 c.1214delA/p.C3251X 1969 USH2 25 Congenital, severe
and stable

NormalB 25 18 Reduced (23
years)

2 No
response
(30 years)

No (30
years)

RP1558 p.R1549X/c.1328 + 1G
> T

1933 USH2 43 Severe and
progressive since

20 years

NormalB Before
puberty

-10°C 0,007/
0.03

2

RP1539* p.R1295X/p.N3894D# 1987 USH2 20 Congenital,
moderate and

stable

NormalB 20 17 Concentric loss
(20 years)

2

RP1172* c.10272_10273dupTT/p.
W2618X

1964 USH2 23 Moderate and
stable since 7 years

NormalB 23 18 Concentric loss
(38 years)

No
response
(39 years)

RP1641* p.C759F/p.W4725X 1967 USHA Moderate and
progressive

Central
vestibular
pathologyA

18 22 Marked
concentric

loss

0,1/0,2 2 No
response

BE

RP1667* p.C759F/c.11548 + 2T
> G

1954 USH2 15 Mild and slightly
progressive

NormalB 15 8 RE (30
years)

RP690M* p.P4818L/p.Q3368X +
c.5278delG

1972 USH2 22 Congenital,
moderate and

stable

NormalA 22 8 0,3/0,3
(32 years)

1 No
response
(31 years)

BE (25
years)

RP532 p.Y506X/p.Q3587X 1968 USH2 Profound NormalA 15 20 Marked
concentric loss

0,1/0,1 2 No
response

BE

RP946* p.Q3587X/p.E2496E 1982 USHNC 17

RP1613 c.9260delT/p.G44R 1971 USH2 30 Severe NormalA 20 20 Marked
concentric loss

0,1/0,6 2 Abnormal
response

BE

RP1615 c.11566delA/c.15053-
1G > A

1975 USH2 27 Moderate since
infancy

NormalA 24 25 Marked
concentric loss

0,5/0,5 2 No
response

BE

*Parental origin of the mutations was determined; #Patients with possibly pathogenic mutations (UV3).

Age of diagnosis, onset of night blindness and visual field loss are expressed in years.
A: results of clinical examinations; B: self reported symptoms.

Eye fundus 1: Bone spicules deposits, attenuation of vessels and waxy pollar of the optic nerve head. Eye fundus 2: 1 + macular affectation.

ERG: Electroretinography; BE: Both Eyes; LE: Left Eye; RE: Right Eye.

Patients clinically classified as USHA or USHNC are highlighted in bold.
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in the USH2A gene sequence. According to computational
analysis, most of these novel variants were classified as
possibly non-pathologic (UV2). (See Table 4).

Discussion
In the present study, we have performed a wide muta-
tional screening of the USH2A gene in 88 unrelated

Spanish patients diagnosed with Usher syndrome. This
analysis has led us to identify a total of 37 different
pathogenic mutations, 23 of which had not been pre-
viously described: six nonsense, eleven deletions/inser-
tions, two missense, three splice-site mutations and one
isocoding variant. At least one mutation was identified
in 43 cases and the two responsible mutations were
detected in 25 patients (five homozygous and 20 com-
pound heterozygous cases).
The genotype-phenotype correlation for those patients

bearing two mutations is illustrated in Table 5. Most
cases presented with classical USH2 clinical features.
But, interestingly, in one patient (RP-259), the sensori-
neural hearing loss was profound, RP started at the age
of 6 years and he also had vestibular dysfunction (clini-
cal findings typical for USH1). In another intriguing
case, phenotype manifestations started at the age of 50
years (RP-1703). We cannot discard the possibility that
additional changes in USH2A or in other USH genes,
present in these patients, have some modifying effect on
the phenotype [37,38].
It is complicated to predict the consequences of mis-

sense, silent and intronic changes, in order to discrimi-
nate neutral variants from those with a pathogenic
effect. We have used a number of bioinformatics’ tools
to predict the damaging effect of these variants. How-
ever, we must bear in mind that these results are only
computing predictions and additional studies are neces-
sary to confirm the effect of those changes not clearly
classified. In this sense, in vitro analyses for two variants
located at non canonical splice sites which were pre-
dicted to affect the splicing (p.E2496E and p.V382M)
showed that p.E2496E creates a de novo donor splice
site stronger than the wild type site that leads to the
loss of the last 106 nucleotides of exon 40. Thus, we
have considered it as pathogenic. On the other hand,
the presence of p.V382M revealed a mild increase of the
transcript excluding exon 7 (Figure 1, band d) when the
variant was present, but still, the normal transcript has a

Table 5 Novel intronic variants

Nucleotide change Intron Predicted
pathology

No. of
alleles

c.1328 + 52T > C IVS7 - 3

c.1841-61G > A IVS10 - 11

c.4627 + 32G > T IVS21 UV2 1

c.6485 + 18C > T IVS33 UV2 1

c.6486-54T > C IVS33 UV2 2

c.6486-43T > A IVS33 UV2 1

c.6657 + 29C > A IVS34 UV2 1

c.8681 + 18A > G IVS43 UV2 1

c.8681 + 53T > G IVS43 UV2 1

c.8681 + 118A > G IVS43 UV2 1

c.9056-52G > T IVS45 UV 1

c.9372-50A > G IVS47 UV2 1

c.9740-59G > A IVS49 UV2 1

c.9958 + 128A > G IVS50 - 4

c.10388-123T > C IVS52 UV2 1

c.13812-78A > G IVS63 UV2 1

c.14134-53T > C IVS64 UV2 1

c.14343 + 36G > C IVS65 UV2 1

c.15298-35T > A IVS70 UV2 1

c.15298-1153G > A(g.798209G
> A) d

IVS71 UV2 1

UV2: probably non- pathogenic mutations; - : neutral variants.

No. of alleles: Number of alleles identified in patients.
dThe intronic variant g.798209G > A affects the last nucleotide of the cochlea
specific exon 71. g.DNA numbering starts at nucleotide position 1 in Human
Refseq: NG_009497.1 GI:222352133, which represents the minus (-) strand of
USH2A.

Table 6 Results from the three different analysis programs used to predict the pathogenicity of novel missense
changes

SIFT PolyPhen PMUT

p.G44R Affect (Score 0.01) Probably damaging Pathogenic (NN output 0.5113)

p.N2377S Tolerated (Score 0.44) Possibly damaging Neutral (NN output 0.2372)

p.N2394K Tolerated (Score 0.23) Possibly damaging Neutral (NN output 0.5113)

p.G3546R Affect (Score 0.01) Probably damaging Pathogenic (NN output 0.1799)

p.N3894D Tolerated (Score 0.05) Probably damaging Neutral (NN output 0.0522)

p.E4921K Tolerated (Score 0.85) Benign Neutral (NN output 0.3130)

SIFT: SIFT Score ranges from 0 to 1. The amino acid substitution is predicted to be damaging if the score is < 0.05, and tolerated if the score is 0/> 0.05.

PolyPhen: “Probably damaging” (it is believed most likely to affect protein function or structure), “Possibly damaging” (it is believed to affect protein function or
structure), “Benign” (most likely lacking any phenotypic effect).

PMUT: NN output is the original output from the neural network for this mutation and its parameters. If that output is bigger than 0.5 it is predicted as
pathogenic, otherwise as neutral.
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stronger expression. For this reason, this change has
been classified as UV3.
The majority of mutations were found once or twice.

Only the c.2299delG mutation was identified in more
than 5 alleles. However, the cohort in our study is biased,
because those patients in whom two mutations were
detected in previous analyses (study of exon 13, exons 2-
21 or microarray analyses) were not included in this
work. Actually, the allele frequency of the c.2299delG
mutation in the Spanish population is 15%, which is
lower, in any case, than in other populations [39].
Figure 2 shows the distribution of all the pathogenic

mutations detected in the present study, along the dif-
ferent domains of the USH2A protein. Mutations are
located evenly throughout the protein and no “hot
spots” were observed. Interestingly, there are two
domains in which mutations are not detected: the trans-
membrane and intracellular domains. None of the stu-
dies performed in USH2A have detected mutations in
the intracytoplasmatic region, involved in the interaction
of the USH2A protein with harmonin and whirlin.
There are more than 160 pathogenic variants described

in previous studies. Noteworthy, 23 mutations reported
in this work are novel. If we compare the mutations
detected in this study with those found in other Cauca-
sian populations, only five mutations are common with
the studies of Baux et al. (2007) [25] and McGee et al.
(2010) [30] and three with the work of Dreyer et al.
(2008) [28]. However, we can also find similarities with
other populations, like non-Ashkenazi Jews. The splice-

site variant c.12062-2A > G was detected in three
patients, in homozygous state in one of them. This muta-
tion was initially described by Auslender et al. (2008)
[26], as one of the most USH2A prevalent mutations in
non-Ashkenazi Jews. Later, it was also detected in the
American population [30]. We do not know the origin of
our three patients, but it is tempting to speculate that
they are descendant of those Sephardic Jews that were
expelled from Spain in 1492 [40].
We did not find any mutation in 45 families while in

18 the second mutation remained unidentified. The
number of detected pathogenic variants is probably
underestimated, because there may be mutations in
regions which have not been analyzed (introns, 3’ and 5’
untranslated regions (UTRs), promoter region, distant
enhancers...) or large insertions, deletions and rearrange-
ments that cannot be detected with the conventional
PCR techniques. Moreover, some of these patients may
have mutations in other genes like GPR98, which seems
to be responsible for approximately 3-6% of USH2 cases
[41,42] or DFNB31, although the studies indicate a
minor role of DFNB31 in USH2 [43,44]. Furthermore,
USH1 genes may be responsible for phenotypically
USH2 patients. Jaijo et al. (2010) [32] found two muta-
tions in CDH23 in two patients diagnosed as USH2 and
a high phenotypic heterogeneity due to CDH23 variants
has been reported [45,46].
In this report, we have detected at least one mutation

in 48.9% (43/88) of total patients. Considering only the
patients clearly diagnosed with Usher syndrome type II,

WT p.E2496E WT p.V382M

%MISSPLICING 14 14 79 83 7 5 22 16

a

b

c

d

Figure 1 In vitro splicing assays for p.E2496E and p.V382M mutations. Gel electrophoresis shows the different splicing processes for WT
minigene and mutants constructions. COS-7 cells transfection experiments were performed in duplicate. Numbers at the bottom of gels indicate
the proportion (%) of misspliced transcripts compared to the full-length transcript. For the p.E2496E mutation, an evident increase of band b
(corresponding to the aberrant transcript that only contains 37pb of the exon 40) can be observed with regard to the WT minigene expression
product. For the p.V382M variant a small increase of the exon 7 skipping in the mutant minigene expression is observed (band d).
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the mutation detection ratio raises to 56.9% (33/58).
This detection rate is lower than expected because, as it
has been mentioned before, the patient sample included
in this study is biased. Thus, if we take into account all
our USH2 patients studied so far (including results from
previous studies [[19,9,23,32], unpublished data] and the
present work), our database includes 102 typical USH2
patients with at least one mutation detected in the
USH2A gene and 32 typical USH2 patients who have
been studied for all exons of this gene and no mutation
was found (Table 7). Thereby, our mutation detection
rate rises considerably to 76.1% (102/134), making our
percentage similar to those obtained by Baux et al.
(2007) [25] and Dreyer et al. (2008) [28].
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Table 7 Comparison between results obtained from the sample included in the present report with the global results
for our total series.

PRESENT REPORT SAMPLE TOTAL SERIES#

0 MUT 1 MUT 2 MUT 1 + 2 MUT* 0 MUT 1 MUT 2 MUT 1 + 2 MUT*

USH2 43.1% (25/58) 22.4% (13/58) 34.5% (20/58) 56.9% (33/58) 23.9% (32/134) 16.4% (22/134) 59.7% (80/134) 76.1% (102/134)

USHA 54.5% (6/11) 18.2% (2/11) 27.3% (3/11) 45.5% (5/11) 33.3% (8/24) 25% (6/24) 41.6% (10/24) 66.7% (16/24)

USHNC 73.7% (14/19) 15.8% (3/19) 10.5% (2/19) 26.3% (5/19) 64% (16/25) 12% (3/25) 24% (6/25) 36% (9/25)

TOTAL 51.1% (45/88) 20.5% (18/88) 28.4% (25/88) 48.9% (43/88) 30.6% (56/183) 16.9% (31/183) 52.5% (96/183) 69.4% (127/183)

We consider as a mutation (MUT) only those clearly pathogenic. If we also consider UV3, the total figures in the present report sample are 51.1% (45/88); 17%
(15/88); 31.9% (28/88) and 48.9% (43/88) for 0 MUT, 1 MUT, 2 MUT and 1 + 2 MUT respectively.

* Percentage of patients with at least one mutation in USH2A: patients with only one mutation + patients with 2 mutations (1MUT + 2MUT).
# TOTAL SERIES represents the global results obtained from this, together with previous studies [19,9,23,32, unpublished data and present work]
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