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Abstract

defect, shortcutting the diagnostic cascade.

Background: Inherited metabolic diseases (IMDs) comprise a diverse group of generally progressive genetic
metabolic disorders of variable clinical presentations and severity. We have undertaken a study using microarray
gene expression profiling of cultured fibroblasts to investigate 68 patients with a broad range of suspected
metabolic disorders, including defects of lysosomal, mitochondrial, peroxisomal, fatty acid, carbohydrate, amino
acid, molybdenum cofactor, and purine and pyrimidine metabolism. We aimed to define gene expression
signatures characteristic of defective metabolic pathways.

Methods: Total mRNA extracted from cultured fibroblast cell lines was hybridized to Affymetrix U133 Plus 2.0
arrays. Expression data was analyzed for the presence of a gene expression signature characteristic of an inherited
metabolic disorder and for genes expressing significantly decreased levels of mRNA.

Results: No characteristic signatures were found. However, in 16% of cases, disease-associated nonsense and
frameshift mutations generating premature termination codons resulted in significantly decreased mRNA
expression of the defective gene. The microarray assay detected these changes with high sensitivity and specificity.

Conclusion: In patients with a suspected familial metabolic disorder where initial screening tests have proven
uninformative, microarray gene expression profiling may contribute significantly to the identification of the genetic

Background

At least 300 different IMDs have been described [1]
and new disorders are being identified [2,3] due to
increasing awareness and advances in identification
techniques. The birth prevalence of IMDs in the West
Midlands is estimated to be 1 in 784 live births, extra-
polating to approximately 800 new cases per year in
the UK as a whole [4]. The majority of patients (72%)
are diagnosed by the age of 15 years, with only one-
third diagnosed by the age of one year. Any hope of
effective treatment rests on precise and early diagnosis
[4,5]. The diagnosis of IMDs may be a long and tedious
process. The first step relies on matching clinical pre-
sentation to a potentially defective metabolic pathway.
These investigations may take several months to com-
plete, and even after this time, it may not be possible
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to make a diagnosis. Indeed, our experience in the Pur-
ine Research Laboratory at Guy’s and St Thomas’ Hos-
pitals shows that a definitive diagnosis is only made in
about 1% of children investigated for a suspected pur-
ine or pyrimidine disorder, with one reason being the
overlap in clinical presentation between unrelated
metabolic disorders. In the majority of cases, referrals
are made for purposes of disease exclusion, or as part
of a differential diagnosis.

We have undertaken a study using microarray gene
expression profiling of cultured fibroblasts to investigate
patients with a broad range of suspected metabolic dis-
orders, including defects of lysosomal, mitochondrial,
peroxisomal, fatty acid oxidation, carbohydrate, amino
acid, molybdenum cofactor, and purine or pyrimidine
metabolism (Table 1). The aim of the study was to
define a gene expression signature characteristic of
a defective metabolic pathway. No characteristic
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Table 1 Inherited metabolic disorders included in this
study and number of patients.

Num of
patients

N =68

Disorder

Lysosomal storage disorders
Niemann Pick A, B, C

Gaucher disease

Tay-Sachs disease

Cystinosis

Batten’s disease
Aspartylglucosaminuria

Fabry's disease

PN TN

Farber's disease

Purine and Pyrimidine disorders
Lesch-Nyham disease/HPRT deficiency
Purine nucleotidase (PNP) deficiency
Adenylosuccinate lyase (ADSL) deficiency
Adenosine deaminase (ADA) deficiency

N — = N W

Dihydropyrimidine dehydrogenase (DPD) deficiency
Peroxisomal disorders

Zellweger disease

[NSIN

Adrenoleukodystrophy
Rhizomelia chondrodisplasia punctata 1
Urea cycle defect

Argininosuccinic aciduria 2

Fatty acid oxidation disorders

Carnitine transport defect 2
Short-chain acyl-CoA dehydrogenase (SCAD) 1
deficiency

Medium-chain acyl-CoA dehydrogenase (MCAD) 2
deficiency

Very long-Chain acyl-CoA dehydrogenase (VLCAD) 1
deficiency

Mitochondrial disorders

Deoxy-guanosine kinase (DGUOK) deficiency
Surfeit-1 (SURF1) deficiency

Polymerase DNA-directed gamma (POLG) deficiency

—_ W = —

Lactic acidosis

Carbohydrate metabolism

Glycerol kinase (GK) deficiency 1
Pompe disease 2
Others

Molybdenum cofactor deficiency 2

Isolated sulphite oxidase deficiency 1
Unknown disorders 14
Non-affected

transcriptome-wide signatures were evident. However,
we found that in 16% of cases the defective gene could
be identified from the gene expression data irrespective
of the underlying metabolic disorder.
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Methods
Patient samples and tissue culture
Human skin fibroblast cell lines from 68 patients with
suspected or confirmed metabolic disorders (Table 1)
were recovered from the cell bank held by the Enzyme
Laboratory, Medical and Molecular Genetics,
Guy’s Hospital. Cells were cultured with Ham’s F10
medium supplemented with 10% foetal bovine serum,
2% L-glutamine (200 mM), 2% penicillin (5.0 IU/ml)
and streptomycin (5.0 ug/ml) at 37°C in a closed system.
Passage numbers were recorded where known.

Cell lines were screened for Mycoplasma infection
using Venor’GeM mycoplasma detection kit for conven-
tional PCR (Minerva Biolabs GmbH, Germany).

RNA extraction and microarrays

Cells were grown in triplicate to sub-confluence. Total
RNA from triplicate flasks was extracted using the
RNeasy® Mini kit"(QIAGEN, Crawley, UK). The pooled
RNA was then concentrated using RNeasy® MinElute™-
Cleanup kit (QIAGEN) and quantified by spectrophoto-
metric analysis measuring absorbance at 260 and 280
nm. Double stranded cDNA was synthesised from 5 pg
RNA using the Affymetrix One-cycle cDNA synthesis
kit following the manufacturer’s instructions (Affyme-
trix, High Wycombe, UK). Synthesis of Biotin-Labelled
cRNA was performed using the Affymetrix GeneChip
IVT Labelling kit, following the manufacturer’s instruc-
tions. Labelled cRNA was then purified (sample cleanup
module) and fragmented and 15 pg hybridized to Affy-
metrix GeneChip® Human Genome U133 Plus 2.0 arrays
overnight.

Analysis of mycroarray data

Probe level summarization of all arrays was performed
twice using two different methods: Robust multiarray
averaging [6] (RMA) and Factor analysis for robust
microarray summarization [7] (FARMS). In addition,
Informative/Non-Informative (I/NI) P-values were
computed [8]. Control probe sets and probe sets with a
relatively large number of non-aligning probes or non-
uniquely aligning probes were excluded. Inclusion cri-
teria for a probe set were that 7 or more probes (out of
a total of 11 for most probe sets) had to perfectly
match the human transcriptome, and the median num-
ber of perfect matches per probe had to be less than
1.5 for a probe set to be included. In the case of the
RMA-summarized data, a probe set had to also exceed
a median expression level of 100 (linear scale) across
all arrays, resulting in 11,753 probe sets entering into
the subsequent analyses. In the FARMS case, only
informative probe sets were considered (I/NI P-value
of less than 0.6), leaving a total of 9,787 probe sets for
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analysis. We refer to the measurements taken by the
included probe sets for a patient sample as the sample’s
expression profile. Principal component analysis (PCA)
was applied to identify and quantify independent
sources for the variance observed in the data. Matlab
r2007a was used for correlation, hierarchical clustering
and PCA.

We used two metrics to determine the degree to
which a gene expression measurement x constitutes an
outlier: Dixon’s Q statistic defined as (2nd-to-minimal-
value-x)/range, and a variant of Grubb’s outlier test sta-
tistic MAD-Grubb and defined as (median-x)/MAD
where MAD is the median absolute deviation. MAD-
Grub was preferred to Grubb’s standard statistic, as it is
outlier-resistant, which is beneficial for the detection of
outliers at the extreme low end of the distribution, since
irrelevant extreme values at the high end of the distribu-
tion have little or no influence on the median or the
MAD.

PCR and Sequencing analysis

The coding region of genes of interest was sequenced
from genomic DNA extracted from cultured fibroblast
cell lines. Intron-located primers were designed using
Primer3 v.0.4.0 website [9] for the following genes:
AGA, ADA, ADSL, GAA, ACADM, HPRTI1, SURFI,
MOCS2, DGUOK, NPCI1, NPC2, HEXA (Additional file
1). PCR products were purified using QIAquick®’PCR
purification Kit (QIAGEN). Dye-terminator cycle
sequencing was performed using the BigDye’terminator
v3.1 cycle sequencing kit (Applied Biosystems, Warring-
ton, UK). Excess dye terminators were removed using
Agencourt®CleanSeq® (Beckman Coulter, High
Wycombe, UK). Samples were run on an ABI PRISM
3130 x 1 Genetic Analyzer (Applied Biosystem).
Sequences were analysed by Mutation Surveyor Local
v3.20 (Biogene, Kimbolton UK).

Results

Search for a gene expression signature

To search for a metabolic signature, principal compo-
nent analysis (PCA) was applied to identify and quantify
independent sources of variation observed in the data.
PCA identified no single dominating source of variance
(Figure 1). The first and second principle components
(PCs) accounted for ~20% and ~15% of overall variance,
with the microarray batch experimental variable being
the source of these two components of overall variance
(Figure 2), as opposed to patient gender or disease cate-
gory (Figure 3 and 4). Although, the analytical variance
introduced by batching the arrays in different experi-
ments was greater than the variation due to biological
factors, batching arrays was not a dominant source of
variance overall. This was a first indication that
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Figure 1 Principal component analysis of microarray data. PCA
determines the independent axes along which the data exhibits the
largest variation. The first ten principal axes/components and their
contribution to the overall variance in the data are shown. No
single component contributes more than 20% to the overall
experimental variation.

transcriptional profiles do not effectively discriminate
between different categories of metabolic disease.
Correlation analysis showed that correlation coeffi-
cients (r?) for any pair of expression profiles ranged
from 0.73 to 0.98. While r* was greater than 0.9 for all
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Figure 2 Principal component analysis-the effect of microarray
batch. An experimental batch effect is apparent. The figure shows a
projection of the array measured gene expression profiles of all
patients onto the plane spanned by the first two principal
components (PCs) that is the two axes along which the data vary
the most. Each expression profile (filled circles) is coloured
according to microarray batch membership. PC1 separates profiles
in the light blue batch (toward the left) from those in the yellow
batch (toward the right), while PC2 separates grey (toward the top)
from purple, salmon and pale red (towards the bottom; Additional
file 2 'Samples).
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Figure 3 Principal component analysis-effect of patient gender.
There is no correspondence between PC1 and 2 and patient
gender. A projection of all expression profiles onto the plane
spanned by the first two PCs is shown. There is no clustering of
male (blue) or female (red) arrays, indication that gender does not
contribute substantially to gene expression variation. Grey =
unknown; see also Additional file 2 ‘Samples’).

pairs of replicate samples (arrays 23 & 67, 17 & 61, 20 &
59, 16 & 62), a sample and its replicate did not
typically achieve the maximum r? (Additional file 2
‘FARMS_CCs’). There were other non-identical samples
from the same microarray batch for which r* was
greater. Since the replicate of a sample was always pro-
cessed as part of a different batch, this suggests that
there were systematic differences between the
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Figure 4 Principal component analysis-effect of metabolic
disease class. There is no obvious relationship between disease
class and the first two PCs. Expression profiles were projected onto
the plane spanned by the first two PCs. Each expression profile was
coloured according to metabolic disease class (see also Additional
file 2 'Samples)).
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microarray batches which were sufficiently large to
make replicates appear to be relatively uncorrelated,
even though in absolute terms, the correlation between
replicates was high. More importantly, this also indicates
the absence of disease-dependent systematic effects on
gene expression profiles that are large enough to super-
sede the technical microarray batch effect. This was
underscored by the results of applying unsupervised
hierarchical clustering to the data (Figure 5). The eight
most distinct non-singleton clusters tended to partition
the set of samples along microarray batch boundaries,
and not according to patient gender or disease class
(Additional file 2 ‘Samples’).

Outlier (NMD) detection

While metabolic diseases do not appear to result in a
specific gene expression profile characteristic of dis-
ease-class, we observed that in 14/68 (21%) of the
assayed patient fibroblast cell lines, mRNA expression
of the gene responsible for the metabolic defect was
decreased and well separated from the population
(Figure 6). DNA sequencing identified mutations con-
sistent with nonsense-mediated decay (NMD) of the
mRNA (Table 2).

We then determined whether NMD of the disease-
causing gene was systematically detectable from the
microarray data using outlier statistics. We used two
metrics to determine the degree to which a gene expres-
sion measurement x constitutes an outlier relative to the
patient population: Dixon’s Q statistic defined as 2nd-
to-minimal-value-x)/range, and a variant of Grubb’s out-
lier test statistic MAD-Grubb defined as median-x)/
MAD where MAD is the median absolute deviation. For
each metric, we investigated sensitivity and specificity
with respect to NMD detection. Since we suspected that
the results also depended on the choice of microarray
probe-level summarization method, we performed the
analysis twice, using Factor analysis for robust microar-
ray summarization (FARMS) or Robust multiarray aver-
aging (RMA) respectively.

Using the FARMS-summarized data (Additional file 2
‘FARMS_Gols), we found that a threshold of Dixon’s Q
> 0.25 achieved maximum sensitivity. For 11 out of the
14 positive NMD patients, the measurement of a probe
set for the specific mutated gene exceeded the threshold.
Three patients (33, 49, and 93) were considered false
negatives as the probe set or sets for the affected gene
(ACADM, GAA, MOCS?2) were excluded a priory due to
having been called non-informative during data pre-
processing. Therefore, lowering the Dixon’s Q threshold
did not increase sensitivity and hence, 11/14 was the
maximally achievable sensitivity. Using the MAD-Grubb
metric, maximum sensitivity was achieved with a thresh-
old of >4.5.
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Figure 5 Heat map visualization of pair-wise correlation coefficients and corresponding hierarchical clustering dendrogram. There is
some batch effect, with arrays from the same batch tending to cluster. For example, there are distinct clusters comprising only arrays from the
grey batch. The clusters do not reflect gender or disease class. Heat map visualization of pair-wise correlation coefficients (; left) between arrays
and corresponding hierarchical clustering dendrogram (using average linkage and 1-r* as the distance metric). The branches corresponding to
the eight most distinct non-singleton clusters are labeled by asterisks. A cluster was considered distinct if its inconsistency coefficient (IC) was 1.9
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For the RMA-summarized data (Additional file 2
‘RMA_Gols’), a threshold of Dixon’s Q > 0.25 gave a sensi-
tivity of 12 out of 14 positive controls, with the false nega-
tives being 49 and 93. Maximum sensitivity (13/14) was
achieved for a threshold of 0.19, which was exceeded for a
MOCS2 probe set in patient 93. Patient 49 remained a
false negative due to the only GAA probe set having been
excluded during pre-processing. Using the MAD-Grubb
metric, maximum sensitivity was achieved with a threshold
of > 5.4.

Next, we investigated the specificity of the Dixon’s Q
and MAD-Grubb outlier metrics. Specifically, we deter-
mined, separately for each sample, the fraction of probe
sets for which Dixon’s Q (or MAD-Grubb) was less than
the threshold, while systematically varying the threshold.
We estimated the false positive rate (FPR) for a sample as
the fraction of probe sets exceeding the threshold. This is
a conservative estimate, since for some of the false positive

genes polymorphism affecting mRNA expression may be
responsible for the decreased expression.

For FARMS-summarized data and a threshold of Dix-
on’s Q > 0.25 (maximum sensitivity 11/14), the false
positive rate (FPR) was <0.1% for all samples except
sample 34 (FPR < 0.25%. In absolute terms, an FPR of
< 0.1% corresponded to, on average, less than 10 probe
sets per sample exceeding the threshold from a total of
9,787 probe sets. For the MAD-Grubb threshold of
> 4.5 (maximum sensitivity 11/14), the FPR was < 0.9%
for most samples. The exceptions were four samples 33,
36, 32, 34 with FPR > 1%, all from the same microarray
batch. So, at maximum sensitivity, the FPR for the
MAD-Grubb metric was an order of magnitude larger
than for Dixon’s Q, and MAD-Grubb was more suscep-
tible to microarray batch effects.

For RMA-summarized data and a threshold of Dixon’s
Q > 0.25 (sensitivity 12/14), the FPR was <0.25% for all



Arenas Hernandez et al. Orphanet Journal of Rare Diseases 2010, 5:34
http://www.ojrd.com/content/5/1/34

¥
K] y a = &
. - +
2 a = 1 1
g 1° - ]
a § - i
3 ¥ LI
H = ] B
E B s Gy &
5
£
5
£
s
W L m 8- ™
2 s 7 H
< L} L
F H o, T8
E n * 0 T
I
4 46 1B
49 .
2
o
= N e ~ - Gene symbol
5 2 2§53 3 EYC QL
o g o g W o v a o =
g < ] T T Q9 =2 =z 2
=4 a =

Figure 6 Genes identified with premature termination codon
mutations leading to nonsense mediated decay. Messenger RNA
expression levels for all patients for selected genes are shown. The
outliers seen at the bottom of distribution correspond to patients
(numbered) with nonsense mediated decay associated mutations.
The genes ACADM, GAA and MOCS2 were excluded from analysis
through probe set selection and classified as false negatives.

but two samples (34 and 36; FPR > 1%). For MAD-
Grubb > 5.4 (maximum sensitivity 13/14), the FPR
was < 0.9% for all but four samples (33, 36, 32, 34; FPR
> 1%). For Dixon’s Q > 0.19 (maximum sensitivity 13/
14), the FPR was < 0.5%, again except for samples 34
and 36. Given the total number of 11,753 probe sets in
the analysis, an FPR of < 0.25% corresponds to < 30
probe sets.
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Discussion

No evidence of a gene expression signature characteris-
tic of a specific metabolic disorder was found using
PCA and hierarchical clustering. Few studies have
attempted to characterise mRNA profiles in inherited
metabolic disorders. Using microarray-generated expres-
sion data, Bozzato et al, compared three fibroblast cell
lines from patients with mucolipidoses type IV, an auto-
somal recessive lysosomal storage disorder, to three con-
trol cell lines, and reported differential expression of a
number of genes belonging to endosome/lysosome traf-
ficking, lysosome biogenesis, organelle acidification and
lipid metabolism [10]. The authors concluded that dif-
ferential expression of these genes correlated with
altered biological processes associated with the disease.
Bifsha et al noted down regulation of ubiquitin C-
terminal hydrolase (UCH-L1) in eight different lysoso-
mal storage disorder samples [11] suggesting that
impairment of the ubiquitin-dependent protein degrada-
tion pathway may contribute to increased cell death
seen in some of these disorders. We found no clustering
of patients with lysosomal disorders that would indicate
a gene expression signature. Considerable variation in
levels of gene expression between different patient cell
lines was found. We have however not defined a ‘normal
range’ for the expression of individual genes as 65/68 of
cell lines in the study were derived from patients with a
suspected metabolic defect. Gene expression would also
be expected to vary under different culture conditions
to those used in this study. A proportion of the cohort

Table 2 Genes with mutations resulting in premature termination codons and nonsense mediated decay.

Gene MIM entry Chip number Mutation Predicted effect
ACADM* 607008 33 €.321-324delATTA Premature termination
c199T > C, [Y67H]
ADA 608958 46 350G > A, [W117X], second mutation unknown Premature termination
ADSL 608222 67 ¢.7G > C, [A3P] AA substitution
c.578C > T, [R190X] Premature termination
AGA 613228 89 c.788delT Premature termination
DGUOK 601465 8 .398C > T, [R105X] Premature termination
GAA* 606800 49 c.2560C > T, [R854X] Premature termination
HEXA 606869 2 €.1278-1282insTATC, second mutation unknown Premature termination
HEXA 606869 84 €.1278-1282insTATC, second mutation unknown Premature termination
HPRT1 300322 73 g.VS6+2T > A 3'splice junction (exon insertion)
HPRT1 300322 75 glVS7+1G > T Exon 7 skipping
MOCS2* 603708 93 564G > C, [W228C] exon 5 skipping
€.726-727delAA Premature termination
NPC1 607623 85 ¢.1189C > T, [Q397X] Premature termination
NPC2 601015 6 c.58G > T, [E20X] Premature termination
SURF1 185620 9 €.326-327insAT 326-336 del TCTGCCAGCC Premature termination

€.823-842del ATCGTGACCTGGTGAAGTC

* Genes excluded from analysis through probe set selection and classified as false negatives
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variation, < 20%, can be ascribed to a batch effect or
variation between different experiments. Although varia-
tion between experiments is low, this may have been
sufficient to mask the identification of a metabolic sig-
nature. Non-genetic factors which may contribute to
variation in gene expression seen in the population
include passage number of the cell lines and differences
between cell culture medium batch.

We were able to detect significantly decreased mRNA
expression levels of the defective gene relative to the
expression range in the study cohort in 11/68 (16%)
patients. The low levels of mRNA correlating with pre-
mature termination codon (PTC) mutations are consis-
tent with nonsense mediated mRNA decay (NMD), a
process which enables the cell to eliminate faulty mRNA
that would otherwise translate into aberrant truncated
proteins with potential toxic effects for the organism
[12-14].

Our results suggest that FARMS-summarization and
Informative/Non-Informative (I/NI)-filtering [8] of the
array data combined with the Dixon’s Q outlier metric
provide the best trade-off between sensitivity (> 78%;
11/14 patients) and specificity (> 99.9%) for the purpose
of NMD detection. The sensitivity can be improved (>
92%) by using RMA-summarization combined with rela-
tively conservative low-expression threshold filtering
and/or using the MAD-Grubb outlier metric. However,
this reduces specificity by an order of magnitude which,
given the total number of tests performed (~10,000
probe sets), can lead to dozens of genes being identified
as potentially undergoing NMD (Additional file 2
‘NMD_summary’, ‘FARMS_NMD’, ‘RMA_NMD’).

Using FARMS-summarization and I/NI-filtering of the
array data, three false negatives were identified with
NMD-associated mutations in ACADM, MOCS2 and
GAA. These three genes were identified as outliers and
true positives when Dixon’s Q outlier metric was
applied to the unfiltered data. This represents a limita-
tion of the assay as only genes with significant levels of
expression in fibroblasts were included in the analysis in
order to maximize specificity. As a result, disease asso-
ciated genes expressed at a low level or not expressed at
all in fibroblasts will be excluded from the analysis.

For FARMS-summarized data and a threshold of Dix-
on’s Q > 0.25 (maximum sensitivity 11/14 patients), the
false positive rate (FPR) of < 0.1% corresponded on
average, to less than 10 of 9,787 probe sets per sample
exceeding the threshold for detection as an outlier. For
example, for cell line 73 with a confirmed deficiency of
the enzyme HPRT due to the mutation, HPRTg.IVS6
+2T > A (Table 2), genes LPP, SKIL, ZNF281, PDLIM?7,
COL1A2, and AMIGO2 were detected as outliers in
addition to HPRT1 (Table 3). For cell line 75, also with
a confirmed deficiency of enzyme HPRT, with mutation,
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HPRTg.IVS7+1G > T (Table 2), genes SF1, MARS,
TCEA2, ANKRDI3A, and PHFI13 (Table 3) were
detected as outliers in addition to HPRTI. The outlier
genes identified in the two HPRT deficient patients
were different and none of these genes to our knowl-
edge are disease associated. It is also possible that low
levels of mRNA detected as false positives may be the
result of promoter variants or asymptomatic heterozy-
gous PTC mutations; however this was not investigated.
Clinical phenotypes provide guidance to limit the num-
ber of candidate disease-associated genes for further
investigation.

There are more than 300 different inherited metabolic
diseases [4,15]. Nonsense and frameshift mutations gen-
erating PTCs account for approximately one third of
mutations in human genetic diseases [16]. In our study,
the defective gene could be identified in 16% of patients
with an IMD. Fibroblast cell cultures are often estab-
lished in patients with suspected familial metabolic dis-
orders where initial screening tests have proven
uninformative. It is in this group of patients where gene
expression may contribute significantly to shortcutting
the diagnostic cascade.

Conclusion

In this study, we investigated whether microarray gene
expression profiling of cultured fibroblasts could identify
the metabolic defect in 68 patients with proven or sus-
pected inherited metabolic diseases. Using this
approach, we were able to identify the defective gene in
16% of patients irrespective of the underlying metabolic
defect. There are a number of emerging technologies
which will find application in the routine diagnosis of
genetic disorders. These include targeted re-sequencing
chips aimed at specific groups of disorders [17] and
massively parallel next generation sequencing, which is
orders of magnitude more expensive than gene expres-
sion profiling. We suggest that due to the relatively low
cost of microarray gene expression profiling, this tech-
nology has a role to play in the diagnosis of genetic dis-
orders where first-line screening tests are uninformative.

Additional material

Additional file 1: Table S1. Primers and PCR conditions

Additional file 2: Excel spread sheet containing the following data.
Sample/Patient annotation, FARMS_CCs: Pair-wise correlation coefficients
between gene expression profiles for all samples, based on FARMS data,
FARMS_Gols: Annotation and outlier test for metabolic genes of interest
using FARMS expression values and I/NI filtering, RMA_Gols: Annotation
and outlier test for metabolic genes of interest using RMA expression
values and 100 as expression cut-off, FARMS_NMD: NMD candidates
based on FARMS data, RMA_NMD: NMD candidates based on RMA data,
NMD_summary: Number of probe sets exceeding Dixon Q threshold.
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Table 3 Genes identified as false positives (FP) after FARMS-summarization and I/NI-filtering of the data combined

with Dixon’s Q outlier metric in true positive (TP) patients.

Patient TP NMD gene Num of  Gene symbol

identifier symbol FP

85 NPC1 12 LBH, SGCD, SLC1A4, PHF10, ID4, NRAS, ST00A4, SHMT2, SETBP1, BACET, LONRF1, CXXC5

6 NPC2 0 -

2 HEXA 0 -

84 HEXA 2 LRCH2, CHCHD7

89 AGA 7 SSR2, FART, NOL12, NAV1, TRIOBP, SCCPDH, HSP90B

75 HPRT1 5 SF1, MARS, TCEA2, ANKRD13A, PHF13

73 HPRT1 6 LPP, SKIL, ZNF281, PDLIM7, COLTA2, AMIGO2, STUB1, CD44, RAD23A, ZNF598, PCGF1, EMP1,
FXYD5

67 ADSL 21 STEAP1, MAP4K4, TMEM22, ASCC2, PDLIM4, HGS, ACAP3, PNKP, EMP3, LMNA, FLII, C11orfés,
FLIT0357

46 ADA 7 ILTR1, APLP2, SLC30A1, ANKRD57, APLP2, SOCS2, RECK

8 DGUOK 1 TMEM47

9 SURF1 1 CIRBP
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