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Abstract 

Background Paroxysmal Nocturnal Haemoglobinuria (PNH) is an ultra‑rare, acquired disorder that is challenging 
to diagnose due to varied symptoms, heterogeneous patient presentations, and lack of awareness among health‑
care professionals. This leads to frequent misdiagnosis and delays in diagnosis. This study evaluated the feasibility 
of a machine learning model to identify undiagnosed PNH patients using structured electronic health records.

Methods The study used data from the Optimum Patient Care Research Database, which contains electronic health 
records from general practitioner (GP) practices across the United Kingdom. PNH patients were identified by the pres‑
ence, and control patients by the absence of a PNH diagnosis code in their records. Clinical features (symptoms, 
diagnoses, healthcare utilisation) from 131 patients in the PNH group and 593,838 patients in the control group, were 
inputted to a tree‑based XGBoost machine learning model to classify patients as either “positive” or “negative” for PNH 
suspicion. The algorithm was finalised after additional exclusions and inclusions applied. Performance was assessed 
using positive predictive value (PPV), recall and specificity. As the sample used to develop the algorithm was not rep‑
resentative of the true population prevalence, PPV was additionally adjusted to reflect performance in the wider 
population.

Results Of all the patients in the PNH group, 27% were classified as positive (recall). 99.99% of the control group were 
classified as negative (specificity). Of all the patients classified as positive, 60.4% had a diagnosis of PNH in their record 
(PPV). The PPV adjusted for the population prevalence of PNH was 19.59 suggesting nearly 1 in 5 patients flagged 
may warrant further PNH investigation. The key clinical features in the model were aplastic anaemia, pancytopenia, 
haemolytic anaemia, myelodysplastic syndrome, and Budd‑Chiari syndrome.

Conclusion This is the first study to combine clinical understanding of PNH with machine learning, demonstrating 
the ability to discriminate between PNH and control patients in retrospective electronic health records. With further 
investigation and validation, this algorithm could be deployed on live health data, potentially leading to earlier diag‑
nosis for patients who currently experience long diagnostic delays or remain undiagnosed.
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Background
Paroxysmal nocturnal haemoglobinuria (PNH) is an 
acquired clonal haematopoietic disorder. It is a rare dis-
ease with a prevalence of 3.81 per 100,000 [1] and is char-
acterised by anaemia, severe intravascular haemolysis, 
renal dysfunction, bone marrow failure and frequently, 
life threatening thrombosis. Presentation in primary 
care may include more generalised and early symptoms 
such as fatigue, shortness of breath, haemoglobinuria and 
impotence in men.

While the United Kingdom (UK) is uniquely posi-
tioned to diagnose and treat PNH patients within the 
PNH National Service [2], and treatment is available 
[3, 4], access primarily depends on the recognition of 
symptoms in primary or secondary care settings. This 
can be challenging for a number of reasons; (1) lack of 
knowledge and understanding of this ultra rare disease, 
(2) symptom overlap with other conditions that may be 
more common or well known, and (3) heterogeneity in 
individual symptom profiles making it more difficult for 
even knowledgeable practitioners to recognise [5]. All of 
these factors combined contribute to a diagnostic delay 
where roughly 35% of PNH patients experience symp-
toms for 12 months or longer before receiving a correct 
diagnosis [4]. Furthermore, around 13% of PNH patients 
have received an incorrect diagnosis and in some cases 
inappropriate treatment programmes before receiving 
the correct diagnosis of PNH [4].

Primary care data in the UK has been increasingly 
recorded electronically over the past several decades, 
containing both structured (codes such as Read V2 and 
V3/CTV3 or SNOMED-CT) and unstructured data (note 
taking, discharge letters) [6]. The structured data alone 
are an extremely rich source of information containing 
information on GP visits, symptoms, diagnoses, refer-
rals and test results. In recent years, some structured 
data has become available for research and development 
purposes [7]. This provides a unique opportunity to learn 
about the medical history of patients and to build tools 
which may aid in “case-finding”. “Case-finding” refers to 
flagging patients who meet criteria to be tested for a spe-
cific disease, but do not have the diagnosis coded in their 
electronic health record, thus indicating a potentially 
undiagnosed case.

Case-finding algorithms can be developed using vari-
ous approaches. A simple approach might involve iden-
tifying signs, symptoms, and diagnostic criteria from the 
literature and then searching electronic health records 

for matching profiles. However, the challenge with PNH 
lies in its wide range of symptoms, often overlapping 
with other conditions, and the existence of diverse clini-
cal phenotypes [8]. Such complexities necessitate a more 
sophisticated approach. Machine learning algorithms 
offer a solution by "training" on real-world PNH patient 
profiles. This allows the model to learn subtle patterns 
and combinations of features that may not be detected 
with simpler rules-based approaches. By testing the algo-
rithm’s learnings on unseen patient data, we can evaluate 
its ability to accurately identify potential PNH patients.

This study aimed to evaluate the feasibility of devel-
oping a machine learning model to identify potentially 
undiagnosed PNH patients using data from the Opti-
mum Patient Care Research Database [7]. We built and 
evaluated a novel algorithm on two groups of patients: a 
PNH group with a PNH diagnosis coded in their record 
and a control group without a PNH diagnosis coded. 
This evaluation sought to assess to what extent the algo-
rithm could identify the PNH group vs the group with-
out a PNH diagnosis. The future objective of this work is 
to translate this research-based algorithm into a clinical 
case-finding tool that can be applied to real-world, live 
health data to identify undiagnosed PNH patients, poten-
tially leading to earlier diagnosis and treatment.

Methods
Data source
This study used the Optimum Patient Care Research 
Database (OPCRD) [7], which at the time of develop-
ment consisted of 23 million de-identified patient records 
from patients registered at GP practices across the UK. 
The data fields available in OPCRD include demograph-
ics, clinical events including diagnoses and symptoms 
and measurements such as blood test results, (coded 
using SNOMED and CTV3/Read codes) [9], referrals and 
prescriptions.

Data sets
A study data set was constructed consisting of a 
PNH group and a control group (non-PNH patients). 
Patients were determined by the presence of a diagnos-
tic SNOMED-CT code (’1963002’) for PNH in the elec-
tronic health record while controls were determined by 
the absence of a diagnosis code for PNH. Out of the total 
dataset, there were 186 unique patient IDs that included 
a code for PNH, and all were selected to be included in 
the PNH group. Of all the patients in OPCRD with no 
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diagnosis code for PNH present, 700,000 were randomly 
selected as controls in this study.

Data cleaning and preprocessing
Data extraction was carried out using Structured Query 
Language (SQL) to retrieve essential patient details 
(patient ID, practice ID, year of birth, sex) and encom-
passed clinical events spanning the entire patient record.

Prior to any transformative or statistical analyses, 
cleaning and preprocessing procedures were imple-
mented on the dataset. In instances where a SNOMED-
CT code was absent but a Clinical Terms Version 3 
(CTV3) read code was present, a mapping process was 
undertaken. The CTV3 read code was associated with 
the relevant SNOMED-CT code, which was then used to 
fill in missing fields. In specific cases, the SNOMED-CT 
code column contained Description ID values. To ensure 
the accurate identification of relevant SNOMED-CT 
codes, these Description IDs were substituted with their 
corresponding mapped SNOMED-CT codes.

Mapping files for CTV3 read codes, Description IDs, 
and SNOMED codes were generated from SNOMED CT 
UK Edition reference files obtained from National Health 
Service Technology Reference Update Distribution (NHS 
TRUD) [9].

Events were identified as duplicated within the same 
subject if the patient ID, event date, CTV3 read code, 
SNOMED-CT code, and practice ID were identical. In 
such instances, only the initial occurrence was retained, 
or in cases involving numeric values (fields: ’numeric_1’ 
and ’numeric_2’), the instance containing numeric values 
was preserved.

Given the availability of only birth year in OPCRD, 
a standardised birth date (July 1st + year) was used for 
age calculations. This standardisation was essential for 
computing the patient’s age at the time of each recorded 
event, with a potential age deviation of no more than 
six months. Records lacking any recorded events or 
birth year information were excluded from subsequent 
analyses.

Partial and full duplicated records is an ongoing issue 
in OPCRD. For example, if a patient has moved practice 
multiple times, parts of their electronic health record 
may have been recorded multiple times under a different 
patient ID. This is problematic for statistical and machine 
learning analysis, as (a) partial records reduce the power 
in the data if some relevant clinical features are not 
recorded for the correct patient ID, and (b) duplicated 
records (i.e. the same patient with a different patient ID) 
could end up in both the PNH group and control data-
sets if the PNH diagnosis has not been recorded in one 
of those instances. This makes it more challenging to 
learn about specific and relevant features to the disease. 

In some instances it was possible to use birth year, PNH 
diagnosis date and the events recorded to merge and 
deduplicate patients.

In the PNH group, all clinical events up to the date 
of the diagnosis code were analysed for the study; if the 
date of diagnosis was missing the record was excluded 
from further analysis. For controls, a random index 
date was assigned, from any date between the first and 
last recorded events, to better match the partial records 
of PNH patients caused by the pre-diagnosis cut-off; 
all clinical events up to that point were analysed. PNH 
patients and controls were not matched based on any fea-
tures in the model and thus the results are indicative of 
performance in the general population.

Feature and code selection
In machine learning, a feature is a measurable character-
istic or piece of information used by the model to make 
decisions. Features can be quantified and serve as inputs 
for the model to learn patterns and relationships within 
the data. Features included in the model fall into three 
categories: (1) clinical features which included symp-
toms and conditions associated with PNH (e.g. throm-
bosis), (2) healthcare utilisation (e.g. urology referrals, 
number of blood tests), (3) exclusionary symptoms and 
procedures that make it highly unlikely that PNH is pre-
sent (e.g. bone marrow transplant). The features were 
selected based on the literature [3–5, 7, 10, 11], in con-
sultation with a leading Consultant Haematologist at the 
Leeds National PNH centre and a review of case reports 
and case electronic health records (see Supplementary 
Table  1 for features and basis of selection). Review of 
case reports involved scanning through “Real Stories” 
published online [12], to identify additional features 
that may increase the power in the primary care data for 
classification purposes. Review of the PNH patient elec-
tronic health records was conducted after data cleaning 
and involved scanning the clinical events to identify fea-
tures that commonly occur in PNH patients but may not 
be considered clinically indicative of PNH, such as skin 
infections.

In rare disease research, sparsity of primary care 
data can present significant challenges with algorith-
mic approaches. This sparsity occurs for several reasons 
including, (1) extensive SNOMED-CT code lists for 
the same or very similar conditions (e.g. several codes 
exist for abdominal pain) such that if all codes are not 
included, all instances of abdominal pain are unlikely 
to be identified in the data, (2) different coding working 
practices, both across different healthcare practices/GPs 
and over time (electronic health coding increases from 
the year 2002 onwards), and (3) heterogeneity in clini-
cal presentation of the disease. A SNOMED-CT code list 
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was created for each feature. Code lists were designed to 
be inclusive and to capture the nuances of SNOMED-CT 
coding to reduce code related sparsity. For example, we 
included one clinical feature named “kidney dysfunction” 
which combined codes related to chronic kidney disease, 
renal insufficiency and acute kidney injury.

Data transformation
Using the SNOMED-CT code lists defined for each fea-
ture, the cleaned clinical events table was searched for 
the relevant codes and transformed into a quantitative 
dataset. Features were in two categories: (1) the normal-
ised count of occurrences (number of occurrences across 
the record, divided by the length of the electronic health 
record) and (2) the age of onset (age the patient was when 
the feature first appeared).

Final sample and feature selection
Descriptive analysis was conducted on the quantitative 
dataset to assess suitability as input to a machine learn-
ing model. Features that did not appear in this group of 
PNH patients were dropped from further analysis, as the 
model would not learn anything useful, these features 
included: oesophageal spasms, high lactate dehydroge-
nase and leukopenia (Fig. 1). Furthermore, patients in the 
PNH group that did not have a single relevant feature in 
their electronic health record were excluded from further 
analysis (N = 31).

Statistical analysis
Chi-Square Test of Proportions was used to test for sig-
nificant differences in the proportion of each group with 
each feature. Mann–Whitney U test was used to test for 
significant differences in the age of onset of each feature 
between the PNH and control groups.

Machine learning modelling
An XGBoost classification algorithm was developed; this 
is a powerful approach which creates an ensemble of 
decision trees built successively to minimise errors made 
by previous trees [13]. This classifier is particularly pow-
erful over other classification models such as Random 
Forest due to its ability to handle incomplete data (e.g. 
no age of onset data is available where the feature is not 
present in a record), better performance, flexibility and 
speed.

To train and test the model, a fivefold nested cross-
validation approach was used with stratified bootstrap-
ping applied to each of the 5 outer folds (1000 iterations 
in total). The benefit of this approach is that it enables: 
(1) testing of different model parameters to achieve opti-
mal performance for each split, (2) minimising the risk of 
overfitting the model (learning a lot about seen data but 
not generalising well to unseen data), (3) computation 
of confidence intervals to indicate how well the model 
may perform in different samples, and (4) making use 
of all PNH patient data for training, which is important 
for a dataset of electronic health records in a rare disease 
cohort, where the sample size is modest and features are 

Fig. 1 Flowchart demonstrating process for final feature inclusion
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heterogeneous. Feature importance was approximated 
using XGBoost’s built-in feature importance method.

Final algorithm and performance evaluation
To ensure our final algorithm best serves PNH patients 
and expert clinicians, we took a clinically driven approach 
both before and after the data-driven machine learn-
ing component of algorithm development. With expert 
guidance, we identified exclusions and flags that could 
be applied after modelling but before final performance 
was evaluated (see Figs. 1 and 2). This included exclud-
ing patients who had a relevant code which indicated 
that development of PNH would be highly unlikely and 
includes: a history of bone marrow transplant, high plate-
let count, thrombocytosis and thrombocythemia. While 
these features were used as input into the model for 
tree-based learning, they were not in the top features of 
importance and thus it was necessary to also apply these 
exclusions outside of the model. Finally, the presence 
of Budd-Chiari syndrome indicates high risk of PNH 
and clinical guidelines state that anyone with confirmed 
Budd-Chiari syndrome should be tested for PNH [14], 
therefore our model includes an additional step which 
flags any record with Budd-Chiari syndrome, even where 
the rest of the electronic health record may be sparse or 
features may not be strong indicators of PNH risk and 
therefore may not have been considered a positive case 
by the XGBoost model itself.

Performance of our algorithm was assessed using posi-
tive predictive value (PPV) and recall (also known as 
sensitivity), which are all ideally suited to imbalanced 
datasets. PPV is understood as “out of the cases that the 
model classified as positive for the disease, how many 
had an existing/coded diagnosis for the disease”. Recall 
is understood as “out of the cases with a coded diagno-
sis for the disease, how many did the model correctly 
classify as positive”. In addition, adjusted PPV was cal-
culated. Adjusted PPV recognises that the study data set 
was enriched with patients with a PNH diagnosis coded 
in their record and does not represent the true popula-
tion prevalence. It is important, in this setting, to adjust 
PPV by prevalence to understand what the PPV could 
be in the general population. Specificity was also calcu-
lated and can be understood as “out of the controls in the 
study, how many did we correctly classify as controls”. 
High specificity can be achieved by a model that correctly 
classifies controls, but poorly classifies cases, as such we 
consider this a secondary metric and was calculated for 
reporting purposes only.

Results
Sample breakdown
186 patients with PNH were identified across OPCRD. 
Of those 24 were excluded after combining their records 
with other patient IDs that were deemed to be duplicate 
records (see Fig. 3). A further 31 were found to have no 
relevant features in their records and were therefore 

Fig. 2 Illustration of how additional exclusion and inclusion criteria could impact final algorithm
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excluded from further analysis. 700,000 random patient 
IDs were initially extracted from the whole OPCRD data-
base. Of those, 106,157 were excluded during the clean-
ing process.

The final sample for modelling consisted of 131 patients 
in the PNH group and 593,838 controls, yielding a ratio 
of approximately 1:4533 PNH cases and controls.

131 patients in the PNH group in the OPCRD sample 
represents a coded prevalence of 5.7 per million. This is 
lower than the accepted prevalence of PNH in the UK, 
which is 38.1 per million [1]. This discrepancy could be 
due to: (1) people with PNH in the OPCRD cohort being 
underdiagnosed or having their diagnoses unrecorded 
at the GP level, and (2) the common observation in rare 
diseases of widely varying prevalence estimates, often 
caused by methodological differences, sample variations, 
and the challenges of small patient numbers.

Sample demographics
At the time of data extract, the whole of the OPCRD 
sample was made up of 48% males with a mean age of 
36.82. The PNH sample was made up of 50% males with 
a mean diagnosis age of 47.83. The control sample was 
made up of 48.27% males with a mean index age of 36.82 
(see Table 1).

Clinical characteristics
The clinical characteristics of the cohort can be found 
in Table  2. In summary, the patients in the PNH group 
had a significantly higher prevalence of aplastic anae-
mia, myelodysplastic syndrome, anaemia, haemolytic 
anaemia, pancytopenia, thrombocytopenia, Budd-Chiari 
syndrome, other thromboses, embolism, haemoglobi-
nuria, haemolysis, haematuria, abdominal pain, dys-
phagia, lethargy, backache, urinary tract infections, skin 
infections, renal dysfunction, shortness of breath, blood 
transfusions, bone marrow tests, hospitalisations, hap-
toglobin tests, blood tests and referrals to haematology, 
gastroenterology, and urology, as compared to the con-
trol patients.

Algorithm performance
A fivefold cross-validation approach was used, a limita-
tion of this approach is that it does not enable reporting 
of exact numbers of patients flagged or not flagged. How-
ever, it does allow for percentages to be averaged across 
all 5 cross-validation folds, which offers a better repre-
sentation of performance across different subsets of the 
dataset; the performance metrics reported here are aver-
ages from across all 5 cross-validation folds. Of all the 
patients in the PNH group, 27% (CI 15–39%) were classi-
fied as positive (recall) (see Fig. 4). Out of all the patients 
classified as positive, 60.4% (CI 33–82%) had an exist-
ing diagnosis of PNH coded in their record (PPV). After 
adjusting for the known rarity of PNH (estimated at 3.81 
cases per 100,000 individuals [1]) 19.59% (7.63–41.81) 
flagged by the algorithm may warrant further investiga-
tion for PNH. Out of all the patients in the control group 
99.99% were classified as negative (specificity).

The five clinical features of most importance in the 
model were aplastic anaemia, pancytopenia, haemolytic 
anaemia, myelodysplastic syndrome and Budd-Chiari 
syndrome (see Fig. 5). Other features which are detected 
in patients in the PNH group and contribute as top fea-
tures in the model are haematology referrals, urology 
referrals and haptoglobin tests. This means that patients 
presenting with one or more of these features are most 
likely to be flagged by the model, as their electronic 
health records are similar to patients who have already 
received a diagnosis of PNH.

Discussion
Tackling long diagnostic delays is a key challenge for all 
rare diseases, particularly for those where treatments 
which can reduce morbidity and mortality are available, 
such as Paroxysmal Nocturnal Haemoglobinuria (PNH). 
Thirty-five percent of PNH patients in the UK report 
symptoms at least twelve months before receiving a 

Fig. 3 Breakdown of sample after cleaning and preprocessing

Table 1 Basic demographics for the PNH and control groups 
included in the final XGBoost model

PNH (N = 131) Non-PNH (N = 593,838)

Mean index age (std) 47.83 (19.70) 36.82 (24.93)

N Male (%) 79 (50) 285,646 (48.27)
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diagnosis and 13% receive at least one misdiagnosis [4]. 
In the present data, roughly 80% of PNH patients have 
relevant features coded in the structured primary care 
electronic health record before their diagnosis and could 
potentially be diagnosed earlier. This was a retrospec-
tive study, exploring whether a model could be built to 
identify undiagnosed PNH patients (using features that 

occurred prior to the diagnosis) from their electronic 
health records. We found that 60.4% of patients flagged 
by the algorithm had an existing diagnosis of PNH coded 
in their electronic health record and of all the patients 
included in the model with a PNH diagnosis coded, 27% 
were flagged. After adjustment for the real-world preva-
lence of PNH, approximately 1 in 5 patients flagged by 

Table 2 Clinical characteristics of the PNH and control groups included in the final XGBoost model

Presence of feature
N patients (% sample)

Age of onset of feature
Median (min, max)

Feature PNH Controls p-value PNH Controls p-value

Aplastic anaemia 38 (29.006) 33 (0.006)  < 0.0001 32 (8, 82) 25 (2, 89) 0.319

Myelodysplastic syndrome 13 (9.924) 142 (0.024)  < 0.0001 61 (24, 79) 74 (5, 98) 0.005

Anaemia 47 (35.878) 14,950 (2.518)  < 0.0001 46 (14, 82) 46 (0, 100) 0.977

Haemolytic anaemia 12 (9.160) 181 (0.030)  < 0.0001 44.5 (14, 80) 34 (0, 94) 0.12

Pancytopenia 27 (20.611) 148 (0.025)  < 0.0001 53 (14, 79) 60 (1, 93) 0.698

Neutropenia 7 (0.162) 964 (5.344) 0.0084 37 (18, 79) 42 (0, 96) 0.677

Thrombocytopenia 7 (5.344) 432 (0.073)  < 0.0001 50 (23, 79) 46 (0, 93) 0.564

Budd‑Chiari syndrome 2 (1.527) 5 (0.001)  < 0.0001 29.5 (27, 32) 31 (25, 76) 1

Thromboses (excluding Budd‑
Chiari syndrome)

13 (9.924) 11,348 (1.911)  < 0.0001 43 (21, 71) 48 (0, 99) 0.321

Myocardial infarction 2 (1.527) 9107 (1.534) 0.9949 66.5 (64, 69) 62 (0, 99) 0.563

Embolism 7 (5.344) 6933 (1.68)  < 0.0001 57 (21, 83) 67 (0, 100) 0.171

Stroke 4 (3.053) 8643 (1.455) 0.1268 63.5 (48, 83) 69 (0, 100) 0.696

Haemoglobinuria 2 (1.527) 16 (0.003)  < 0.0001 25.5 (25, 26) 48.5 (5, 75) 0.182

Haemolysis 4 (3.053) 2482 (0.418)  < 0.0001 26.5 (16, 43) 51 (0, 98) 0.025

Haematuria 27 (20.611) 12,117 (2.041)  < 0.0001 47 (16, 82) 54 (0, 99) 0.969

Abdominal pain 25 (19.084) 68,004 (11.452) 0.0061 37 (2, 82) 31 (0, 100) 0.208

Dysphagia 3 (2.290) 4171 (0.702) 0.03 74 (48, 78) 59 (0, 99) 0.383

Lethargy, asthenia, fatigue 18 (13.741) 36,873 (6.209) 0.0004 48.5 (21, 79) 40 (0, 100) 0.095

Impotence 5 (3.817) 12,936 (2.178) 0.199 67 (33, 75) 56 (0, 93) 0.21

Backache 42 (32.061) 98,909 (16.656)  < 0.0001 43 (15, 78) 41 (0, 100) 0.289

Proteinuria 1 (0.763) 2369 (0.399) 0.5083 52 (52, 52) 58 (0, 96) 0.773

Urinary related 44 (33.588) 77,260 (13.010)  < 0.0001 43 (11, 82) 39 (0, 100) 0.1

Skin infection 24 (18.321) 50,024 (8.424) 0.0001 47.5 (0, 68) 38 (0, 100) 0.357

Respiratory tract infection 36 (27.481) 127,064 (21.397) 0.0896 46.5 (0, 82) 29 (0, 100) 0.0004

Renal dysfunction 16 (12.214) 25,985 (4.376)  < 0.0001 58 (38, 85) 67 (0, 100) 0.114

Shortness of breath 14 (10.687) 26,035 (4.384) 0.0004 68 (36, 81) 55 (0, 100) 0.032

Blood transfusion 20 (15.267) 1535 (0.259)  < 0.0001 44 (16, 82) 45 (0, 98) 0.92

Bone marrow 6 (4.580) 74 (0.013)  < 0.0001 48 (6, 79) 59.5 (1, 88) 0.476

Hospitalisation 39 (29.771) 46,216 (7.783)  < 0.0001 38 (1, 86) 39 (0, 100) 0.346

Haptoglobin test 4 (3.053) 119 (0.020)  < 0.0001 35.5 (20, 62) 54 (0, 91) 0.35

Blood test 101 (77.099) 300,822 (50.657)  < 0.0001 39 (2, 78) 41 (0, 100) 0.656

Oncology referral 2 (1.527) 3100 (0.522) 0.1107 48.5 (34, 63) 60 (1, 98) 0.416

Haematology referral 37 (28.244) 4146 (0.698)  < 0.0001 51 (18, 84) 54 (0, 98) 0.993

Gastroenterology referral 18 (13.741) 21,423 (3.608)  < 0.0001 49.5 (20, 72) 53 (0, 98) 0.249

Urology referral 16 (12.214) 20,348 (3.427)  < 0.0001 64 (23, 82) 54 (0, 100) 0.066

Bone Marrow transplant 0 (0.000) 63 (0.011) 0.9062 – 29 (0, 80) –

High platelet count, thrombocy‑
tosis, thrombocythaemia

4 (3.053) 7104 (1.196) 0.0506 33 (18, 75) 51 (0, 98) 0.401
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Fig. 4 A visual representation of average performance of the algorithm across the 5‑folds of cross‑validation, including sensitivity, recall, positive 
predictive value (PPV) and adjusted PPV

Fig. 5 10 features of most importance in the XGBoost model, using XGBoost’s inbuilt feature importance method
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the algorithm could have PNH. This indicates that such 
a tool, if deployed in the real world, may help in reducing 
diagnostic delays for these patients.

The study has a number of strengths. The first is the 
combination of a clinically led and data-driven approach. 
The initial feature list was developed in consultation with 
a leading Consultant Haematologist at the Leeds National 
PNH centre, one of the two PNH centres in the UK. Fur-
thermore, as the machine learning model was developed, 
patient records were reviewed with this specialist and 
features refined to achieve optimal performance. By com-
bining an additional rules-based approach, in addition to 
the machine learning model, we reduce false positives by 
excluding those with low risk (bone marrow transplant 
in record). We also maximise the number of appropriate 
patients that are flagged for the disease by including addi-
tional flags for Budd-Chiari syndrome.

This study demonstrates the potential for improving 
PNH diagnosis through an algorithm utilising structured 
primary care electronic health record data. Despite the 
inherent limitations of structured data – sparsity, cod-
ing errors, and lack of granularity – we found that 27% 
of patients with PNH diagnosis coded in their electronic 
health record could be flagged based on clinical features 
predating the diagnostic code. While this may seem mod-
est, it is a promising result given the ultra-rare nature of 
PNH. Given the need to reduce diagnostic waiting times, 
misdiagnosis and number of referrals, further investiga-
tion into the validity and clinical utility of this algorithm 
is warranted. If successfully validated and implemented, 
this algorithm could improve outcomes for patients with 
PNH.

The study has several limitations. Firstly, an assumption 
has been made that the presence or absence of a diagno-
sis code for PNH indicates the true status of the patient. 
This may not always be the case, for example, a diagno-
sis may have been made by a specialist and this may not 
have been recorded in the primary care electronic health 
record. It is also possible that where codes for PNH do 
exist, they may be inaccurate and actually reflect a fam-
ily history, suspicion of the disease or a coding error. We 
accept and in fact assume, given the real-world nature of 
the data, that there may be PNH patients in the control 
sample we have trained the algorithm on and this limits 
the predictive power of the algorithm and impacts the 
confidence we have in performance metrics. With future 
access to ground truth data on PNH diagnosis status, we 
may see improvements in algorithm performance.

Other factors that impact real-world electronic health 
data include tracking patients records as they move prac-
tices, for example, some patient’s records may become 
split between two different practices and assigned differ-
ent unique IDs. This may result in partial records, where 

PNH patients seem to have fewer or no relevant clini-
cal features, while a patient who appears to be a control 
(with no coded diagnosis for PNH in the electronic health 
record) may have many relevant features. Furthermore, 
the algorithm has been trained on a sample of patients 
with a diagnostic SNOMED-CT code for PNH and that 
have at least one relevant feature coded in primary care 
electronic health record. As a result, cases where relevant 
symptoms have appeared in the individual, but have not 
been recorded in the electronic health record, will not be 
flagged by the algorithm. Finally, high lactate dehydroge-
nase is considered clinically to be a very good marker of 
untreated PNH, however it is not well coded in primary 
care electronic health records and thus was not included 
in the model. This highlights the importance of primary 
care electronic health coding systems being utilised regu-
larly and for test results conducted in specialist settings 
to be passed on to GP’s, to enable tools such as this to 
facilitate practitioners and end the diagnostic odyssey for 
rare disease patients.

Future directions for this research include validating 
the model in an independent dataset to assess its gener-
alizability and real-world performance. While the cross-
validation approach used in this study provides valuable 
insights, external validation is important for confirming 
the model’s ability to accurately identify potential PNH 
patients in different populations and healthcare settings. 
Furthermore, a follow-up investigation of the patients in 
the control group flagged by our model could help deter-
mine if any truly represent undiagnosed or, diagnosed 
but not coded, PNH cases, further validating the tool’s 
effectiveness in identifying potential patients. Addition-
ally, incorporating unstructured data from electronic 
health records, such as clinical notes and discharge let-
ters, could enhance the model’s performance by captur-
ing more nuanced medical details. Finally, an assessment 
of the impact of our tool on reducing the diagnostic delay 
for PNH patients would be beneficial. This could involve 
quantifying the time difference between initial symptom 
presentation and diagnosis for patients identified through 
this method compared to conventional pathways.

Conclusion
In conclusion, we demonstrate that structured data cap-
tured in UK primary care electronic health records can 
be leveraged to develop a case-finding algorithm for 
PNH. In this retrospective study, we combined clinical 
understanding of the presentation of PNH with machine 
learning to evaluate how well an algorithm could iden-
tify PNH whose health data is consistent with patterns 
observed in diagnosed PNH cases. Our results show 
that for every five cases flagged by the algorithm, one 
case could be a PNH patient. Further work is needed to 
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validate and assess performance in independent samples, 
with the ultimate goal being real-world deployment. If 
successful, this tool has the potential to reduce diagnostic 
delays for PNH patients.
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