
Ahmadi et al. 
Orphanet Journal of Rare Diseases          (2024) 19:298  
https://doi.org/10.1186/s13023-024-03312-9

RESEARCH

How to customize common data 
models for rare diseases: an OMOP-based 
implementation and lessons learned
Najia Ahmadi1*  , Michele Zoch1, Oya Guengoeze2, Carlo Facchinello2, Antonia Mondorf2, 
Katharina Stratmann2, Khader Musleh2, Hans‑Peter Erasmus2, Jana Tchertov1, Richard Gebler1, Jannik Schaaf3, 
Lena S. Frischen4, Azadeh Nasirian7, Jiabin Dai1, Elisa Henke1, Douglas Tremblay5, Andrew Srisuwananukorn6, 
Martin Bornhäuser8, Christoph Röllig8, Jan‑Niklas Eckardt8,9, Jan Moritz Middeke8,9, Markus Wolfien1,10 and 
Martin Sedlmayr1 

Abstract 

Background Given the geographical sparsity of Rare Diseases (RDs), assembling a cohort is often a challenging 
task. Common data models (CDM) can harmonize disparate sources of data that can be the basis of decision support 
systems and artificial intelligence‑based studies, leading to new insights in the field. This work is sought to support 
the design of large‑scale multi‑center studies for rare diseases.

Methods In an interdisciplinary group, we derived a list of elements of RDs in three medical domains (endocrinol‑
ogy, gastroenterology, and pneumonology) according to specialist knowledge and clinical guidelines in an iterative 
process. We then defined a RDs data structure that matched all our data elements and built Extract, Transform, Load 
(ETL) processes to transfer the structure to a joint CDM. To ensure interoperability of our developed CDM and its 
subsequent usage for further RDs domains, we ultimately mapped it to Observational Medical Outcomes Partnership 
(OMOP) CDM. We then included a fourth domain, hematology, as a proof‑of‑concept and mapped an acute myeloid 
leukemia (AML) dataset to the developed CDM.

Results We have developed an OMOP‑based rare diseases common data model (RD‑CDM) using data elements 
from the three domains (endocrinology, gastroenterology, and pneumonology) and tested the CDM using data 
from the hematology domain. The total study cohort included 61,697 patients. After aligning our modules with those 
of Medical Informatics Initiative (MII) Core Dataset (CDS) modules, we leveraged its ETL process. This facilitated 
the seamless transfer of demographic information, diagnoses, procedures, laboratory results, and medication modules 
from our RD‑CDM to the OMOP. For the phenotypes and genotypes, we developed a second ETL process. We finally 
derived lessons learned for customizing our RD‑CDM for different RDs.

Discussion This work can serve as a blueprint for other domains as its modularized structure could be extended 
towards novel data types. An interdisciplinary group of stakeholders that are actively supporting the project’s progress 
is necessary to reach a comprehensive CDM.
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Background
Rare diseases (RD) can be seen as an intricate puzzle in 
medical research, compelling us to decipher their com-
plex phenotypes and genetic origins to unlock the poten-
tial for personalized therapeutic interventions. In the 
US, a disease is considered rare, if it affects fewer than 
200,000 people [1], while in Europe, it is 5 per 10,000 
people [2]. About 7,000 RD are known to affect 3.5–5.9% 
of the world’s population [2, 3]. About 80% of RD have a 
genetic basis [2–6], resulting from mutations in an indi-
vidual’s genome that can be inherited through parental 
chromosomes [6].

Timely and accurate identification of RD is oftentimes 
dependent on multiple factors, such as the amount and 
variety of individual patient information and compara-
ble data, as well as knowledge about the specific RD itself 
[7]. The large variety and infrequent, highly individual 
nature of RD patients that physicians encounter create a 
major challenge in diagnosis and treatment [8]. Moreo-
ver, assembling a sufficiently large study cohort to inves-
tigate and characterize specific RD bears an additional 
challenge [9]. Here, one key aspect is the availability of 
disease-specific data, including genotype and phenotype 
information that can be used for the in-depth characteri-
zation and accurate identification of RD. Since diagnosis 
of RD, especially those with a genetic background, based 
solely on non-genetic clinical features is often misleading, 
or inaccurate [10], a genetic underpinning of the diagno-
sis is inevitable to allow identification of a more precise 
molecular cause that may explain the clinical phenotype 
[5]. However, due to genotype and phenotype variabil-
ity, lack of knowledge about individual gene variations 
and their interplay, as well as an individual patient jour-
ney, the investigation of RD requires a more customized 
approach. This is also reflected in the defination of per-
sonalised medicine by the Horizon 2020 Advisory Group 
as “a medical model using the characterization of indi-
viduals’ phenotypes and genotypes (e.g., molecular profil-
ing, medical imaging, lifestyle data) for tailoring the right 
therapeutic strategy for the right person at the right time, 
and/or to determine the predisposition to disease and/or 
to deliver timely and targeted prevention.” [11].

To allow for such an improved and extended investiga-
tion of RD, multi-center studies are an inevitable asset to 
cover a reasonably large patient cohort. However, these 

also increase the computational complexity. Here, novel 
computational concepts that satisfy FAIR (Findable, 
Accessible, Interoperable, and Reusable) Data Principles 
[12, 13] are necessary to obtain more transparent and 
sustainable diagnostic processes at a large scale [13, 14]. 
In addition, data from various study sites need to be in 
the same format, which can be attributed to the different 
layers of interoperability [15, 16]. Consequently, the syn-
tactic and semantic interoperability of the source data of 
the study sites has to be ensured. Syntactic interoperabil-
ity refers to the harmonization and definition of data for-
mats, as well as information models for the specification 
of information units and their interface whereas seman-
tic interoperability focuses on the enablement of shared 
understanding of message content between systems and/
or users [17].

During the last decade, efforts have been made to 
reach syntactic and semantic interoperability in the 
medical domain. Communications standards, such as 
Fast Healthcare Interoperability Resources (FHIR) [18], 
are often used to ease communication between differ-
ent computational infrastructures. A recent example is 
the FHIR-based German Medical Informatics Initiative 
Core Dataset (MII-CDS), which is specifically designed 
for German university hospital patient data, to enhance 
its usability in joint research endeavors [19]. In addi-
tion, Common Data Elements (CDEs) for RD registra-
tion have been introduced [20] e.g., via the European 
Platform for Rare Disease Registration (ERDRI) [21], 
the French National Plan for Rare Diseases, [3, 22], the 
effort for a minimum dataset for rare diseases [23], and 
more recently domain-specific CDEs for RDs registries 
[24]. Exemplarily, Mullin et  al. [25] describe the devel-
opment and application of standardized data structures 
for rare diseases, specifically focusing on Duchenne mus-
cular dystrophy (DMD) and Huntington’s disease (HD), 
using Clinical Data Interchange Standards Consortium 
(CDISC) therapeutic area user guides. These guides sup-
port the mapping process for diverse clinical data into 
standardized formats, ensuring consistency and ena-
bling comprehensive data analysis across studies. The 
model emphasizes the creation of formalized structures 
for clinical data, which include predefined measurements 
and controlled terminology. This model aids in stream-
lining the regulatory approval process by providing 

Conclusion The customized data structure related to our RD‑CDM can be used to perform multi‑center studies 
to test data‑driven hypotheses on a larger scale and take advantage of the analytical tools offered by the OHDSI 
community.

Keywords Common data model, Rare disease, Interoperability, Data standardization, OMOP, OHDSI, Genotypes and 
phenotypes, Multi‑center studies, Artificial intelligence
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standardized data that can be more easily reviewed and 
analysed by authorities like the Food and Drugs Admin-
istration (FDA).

Kaliyaperumal et  al. [20] discuss the development of 
semantically grounded models for RD data, aimed at 
enhancing interoperability among disparate RD regis-
tries in Europe. The project is part of the European Joint 
Programme on Rare Diseases (EJP RD), which aligns 
with the European Platform on Rare Disease Registration 
(EU RD Platform). The researchers developed semantic 
models for Common Data Elements (CDEs) using the 
Semantic Science Integrated Ontology (SIO) as the core 
framework. These models map the data elements and 
their possible values into established domain ontologies, 
such as the Orphanet Rare Disease Ontology and Human 
Phenotype Ontology.

The work of Kim et al. [26] focuses on a comprehensive 
model for improving semantic interoperability in health-
care by extending the capabilities of CDEs. The model 
outlines significant enhancements, including the intro-
duction of new semantic types and constraints for CDEs 
to address limitations in existing standards for manag-
ing complex clinical data. They introduce hybrid atomic, 
repeated, and dictionary composite CDEs to support 
complex data structures and relationships within clini-
cal documentation. The authors have tried to implement 
constraints, such as ’ordered’, ’operated’, ’required’, and 
’dependent’ to enhance data integrity and semantic eval-
uation. Assessment of the model is done using clinical 
documents from five teaching Korean hospitals and data 
from FHIR resources and the Medical Information Mart 
for Intensive Care (MIMIC-III) database, demonstrating 
improved data reuse and semantic interoperability.

In the RD field however, data standardization still poses 
a major limitation [14], data harmonization concepts 
like common data models (CDM), are being more widely 
employed to address the issue of data harmonization 
with an increased emphasis on genomic and phenotypic 
data. In general, a CDM can harmonize data from dis-
parate sources, by utilizing communication (e.g., FHIR) 
and semantic (e.g., ICD-10, SNOMED) standards, ena-
bling operations and analyses solely based on standard 
methods [27]. One very promising approach in addition 
to the aforementioned ones is the Observational Medical 
Outcomes Partnership (OMOP) CDM from the Obser-
vational Health Data Sciences and Informatics (OHDSI) 
community, which comes with FAIR compliance, an 
international community, and ready-to-use tools for data 
integration and analysis [28–30]. Compared to other 
CDMs like Informatics for Integrating Biology & the 
Bedside (i2b2), OMOP CDM offers broader terminol-
ogy coverage, enabling data harmonization from different 
sources with minimal loss of data [28, 31, 32].

The adaptation of OMOP terminology for RD has 
already been shown to be essential for improved patient 
care [33]. Importantly, OMOP CDM also supports 
genomic data representations [28, 34, 35], and works are 
underway to integrate Human Phenotype Ontologies 
(HPO) [36] and Orpha Codes [37], further enriching the 
terminology coverage of OMOP CDM and thus creating 
an increased interest in the domain of RD [33, 38, 39]. In 
summary, all necessary tools and approaches are on the 
way for dedicated use and, if conducted correctly, a large-
scale investigation of RD can be designed and conducted 
via OMOP CDM.

Our study is taking up these developments and dem-
onstrates how customized CDMs and underlying data 
structures can be designed to facilitate and acceler-
ate the understanding of RDs. In particular, we provide 
insights into current computational methods used for 
modulating standardized concepts, such as laboratory 
findings and medication, but also more specific data, 
such as genotypes to investigate different clinical pheno-
types. We conducted this study as a practical continua-
tion and application of the derived results made by our 
recently published scoping review on development meth-
ods of CDMs in Healthcare [40] in a larger project enti-
tled SATURN (“Smart physician portal for patients with 
unclear disease”) [41] dealing with RDs in the fields of 
endocrinology, gastroenterology, and pneumonology. In 
addition, our evaluation use case domain of hematology 
(acute myeloid leukemia) data was transformed to the 
CDM for external validation of the model.

Contribution of this study
Our primary objective is to outline a customization pro-
cess aimed at identifying and systematically modeling 
pertinent data from patients with RD. The outcome cus-
tomized CDMs, will be serving as a foundational source 
for transferring observational data into the OMOP CDM. 
This intermediate step is instrumental in establishing 
a shared knowledge base between medical experts and 
data scientists, ensuring simultaneous enhancement of 
semantic and syntactic interoperability.

Methods
Clinical use cases and their underlying data
Based on our available clinical resources and datasets, 
we have exemplarily chosen four RD domains, to begin 
with, namely endocrinology, gastroenterology, pneu-
monology for general CDM customization and devel-
opment, and hematology as a proof-of-concept domain 
in particular for genotype information. The study char-
acteristics including the inclusion criteria, and Interna-
tional Statistical Classification of Diseases and Related 
Health Problems, 10th revision, German Modification 
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(ICD-10-GM) codes are shown in Table 1, respectively. 
As a study of this nature relies on the availability of 
data, which is typically scarce when it concerns RDs, 
our selected list of diseases encompasses a mixture of 
both rare and more common conditions. Additionally, 
the SATURN project does not only focus on RDs, but 
also unclear diseases. We have therefore decided to 
focus on a list of phenotypes that can be caused by rare 
and non-rare diseases. In endocrinology, this resulted 
in the symptom complex hyper- and hypothyroid-
ism with various diseases, some of which are rare (e.g. 
TSH-oma, thyroid receptor resistance), while others 
are common (autoimmune thyroiditis).

Customized RD‑CDM
Given the wide range of existing information models, 
legislative regulations for data exchange and terminology 
standards in the medical domain, it is crucial to know 
and leverage their features and combine them effectively, 
especially when dealing with RD. Therefore, we utilized 
semantic standards, such as ICD-10-GM, which is the 
German modified version of the World Health Organiza-
tion’s ICD-10, to define the inclusion criteria in the study.

Moreover, to ensure the reproducibility of the antici-
pated CDM workflow of a novel study, it is essen-
tial to choose a widely adopted and commonly used 
data standard, which ensures semantic and syntactic 

Table 1 Study characteristics including study population, inclusion criteria, and number of patients in each one of our cohorts

Study population Inclusion criteria Number of patients period 2015–2022 
from two German university hospitals

Full or partial inpatient cases of adult patients Patients are older than 18 years at the time of (visit) 
admission

–

Cases of patients in the period from 2015–2022 The admission and discharge dates of the patients 
are in the period from 01/01/2015 to 12/31/2022

–

Cases of patients of the selected endocrinological 
diseases

Patients diagnosed with one of the following condi‑
tions:
Clinical hyperthyroidism (E05.‑), incl.:
Latent hyperthyroidism
Manifest hyperthyroidism
Central hyperthyroidism
Graves’ disease
Iatrogenic (therapy‑induced) hyperthyroidism
Autonomy of the thyroid gland
Amiodarone‑induced hyperthyroidism
Pituitary thyroid receptor resistance
TSH‑oma
Thyroiditis de Quervain (E06.1)
Hypothyroidism incl.:
Aplasia of the thyroid gland (E03.1)
Iatrogenic (therapy‑related) drug‑induced (E03.2)
Iatrogenic hypothyroidism/condition after surgery 
(E89.0)
Autoimmune thyroiditis (E06.3)
Secondary & tertiary hypothyroidism (E23.0)
Sarcoidosis (D86.‑)

41,559

Cases of patients of the selected gastroenterological 
diseases

Patients diagnosed with one of the following condi‑
tions:
Acute viral hepatitis A (B15.‑)
Acute viral hepatitis B (B16.‑)
Other acute viral hepatitis (B17.‑)
Chronic viral hepatitis (B18.‑)
Wilson’s disease (E83.0)
Hemochromatosis (E83.1)
Alpha‑1 antitrypsin deficiency in adults (E88.0)

1324

Cases of patients of the selected pneumonological 
diseases

Patients diagnosed with one of the following condi‑
tions:
Bronchial carcinoma (C34.‑)
Tuberculosis (A15.‑)
Sarcoidosis (D86.‑)
Influenza (J10.‑)

17,141

Cases of patients of the selected hematological 
diseases

Patients diagnosed with acute myeloid leukemia 
(C92.0)

1673

Sum 61,697



Page 5 of 17Ahmadi et al. Orphanet Journal of Rare Diseases          (2024) 19:298  

interoperability. Therefore, we have utilized the FHIR for-
mat in its German University Hospital-centric MII-CDS 
as a central point for our data transfer [19]. The MII-CDS 
basic modules include “Person”, “Case”, “Diagnosis”, “Pro-
cedure”, “Laboratory findings”, and “Medications” [19]. 
The MII-CDS profiles are comparable to FHIR because 
they are built using FHIR profiles.

Finally, to facilitate an international usage of the data in 
large scale, multi-center studies, we have utilized OMOP, 
which in addition to standardized semantics and syn-
tax on an international level, also motivates the usage of 
standard vocabularies (e.g., SNOMED CT).

CDM development
Our recently published scoping review [40], describes 
an analysis of 1309 articles spanning the last 20 years 
(2000–2022) on CDM development for the health 
domain and an extensive metadata extraction of 59 arti-
cles. The extraction step was specifically focused on 
stakeholder involvement, the methods employed for their 
engagement, and the detailed description of the devel-
opment process of the respective CDMs. As a result, we 
have delineated the process of customizing a CDM for 
RD into three distinct phases: conception, collection of 
users’ needs, and implementation, as illustrated in Fig. 1. 
We followed these three phases in our current study to 
obtain a list of elements for our focused RD domains and 
structured all elements into a customizable CDM.

Customization need
Building on the insights from our scoping review [40], 
we recognized the importance of involving stake-
holders early on in our study. Thus, we conducted 
consensus meetings and teleconferences with an interdis-
ciplinary team of researchers, medical experts, and data 
scientists to develop and evaluate the customized CDM. 

Throughout the process, we ensured that at least one 
clinician for each domain was involved in the upcoming 
stages i)–iv).

1. Conception: To accommodate the unique goals of 
individual projects, creating a project-specific CDM 
is crucial for supporting diverse clinical investiga-
tions. Importantly, the development of such a cus-
tomized CDM opens the possibility for its utilization 
across multiple projects, emphasizing efficiency and 
fostering a shared knowledge base through collabo-
rative efforts of medical experts and data scientists 
in identifying and systematically modeling relevant 
data. Thus, a list of diseases with similar phenotypes 
and clinical procedures, which could cause confusion 
while diagnosing, was compiled by medical experts. 
We aimed to develop a customized CDM to serve as 
source data for the OMOP CDM. Ensuring accurate 
transfer, the adapted CDMs closely align with the 
data and information model of the OMOP CDM.

2. Users’ needs collection: Based on medical literature, 
clinical guidelines, and medical domain expertise, we 
created a list of required clinical phenotypic and gen-
otypic elements, laboratory findings, medications, 
and procedures for diagnosis and therapy of each 
disease. The expert knowledge was formalized by 
the medical data scientist in the form of pre-defined 
list of elements modules using an entity-relationship 
model. An entity-relationship model defines an inter-
related set of elements and the relationship that can 
exist among them [42].

3. Implementation: This stage involves formalizing the 
data model, aligning it with OMOP, and integrating 
data through ETL. The predefined modules from 
individual use cases are transformed into MII-CDS 
modules. We assessed the feasibility of mapping 

Stakeholder 
involvement

ImplementationConception

Informatic Professionals 
and Clinicians through 

teleconferences and 
consensus meetings

Use Cases
Evaluation Evaluation

Users’ needs collection

Early stages Intermediate stages Late stages
Finalized

CDM

Validation

Evaluation

Fig. 1 Steps taken in the development of our CDM for rare diseases. The three phases (early: idea, use case definition, and stakeholder 
identification, intermediate: conception and users’ need collection, and late: implementation, stages) include one or multiple iterative steps. 
The four use cases were defined first based on available resources and stakeholders were then identified accordingly. We decided on the means 
of stakeholder involvement in the process as well. The conceptualization step was part of the intermediate phase in an evaluative process 
before the necessary information was then gathered from medical experts, clinical guidelines, and literature. We then finalized our CDM 
by mapping the elements to standardized concepts and formalizing them into separate modules
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formalized information into both FHIR and OMOP 
CDM. The MII-CDS serves as the foundation for the 
FHIR-to-OMOP [43] ETL process, eliminating the 
need for manual mapping, as the existing ETL pro-
cess seamlessly transfers data from FHIR to OMOP, 
ensuring semantic and syntactic mapping. However, 
manual mapping was required for genotype and 
phenotype elements, as they are not covered in the 
FHIR-to-OMOP ETL. An additional ETL process 
(Genotype/Phenotype-to-OMOP) was developed 
for their manual mapping to unique concept IDs in 
OMOP. This ETL was tested using our proof-of-con-
cept domain hematology data to our OMOP based 
RD-CDM.

4. Evaluation: The modules were then assessed by the 
medical experts in an iterative process equally involv-
ing medical experts and data scientists. The experts’ 
comments and input were integrated into the mod-
ules by the data scientist until a final consensus 
model was reached and agreed upon by all stake-
holders. Once the modules were finalized, a second 
independent medical expert reviewed and evaluated 
the completeness and correctness of the included ele-
ments.

CDM data integration for development domains 
and the validation domain
To achieve syntactic and semantic interoperability, 
we opted to transition our developed CDM to OMOP 
to facilitate streamlined data analysis using existing 
Machine Learning tools (e.g., PLP, HADES) [44, 45] to 
enable larger multi-center studies. Our utilized FHIR-
based MII CDS basic modules have already been mapped 
to OMOP CDM in recently published works (FHIR-to-
OMOP) [43]. However, the phenotypic and genotypic 
entities are not part of the MII CDS basic modules. 
Therefore, we directly mapped those elements to OMOP 
CDM concept ids. Thus, we developed the Genotype/
Phenotype-to-OMOP ETL [46] processes using Pentaho 
Data Integration [47] to transfer elements not included in 
MII CDS basic modules to OMOP CDM. MII CDS basic 
modules to OMOP ETL should be executed before the 
Genotype/Phenotype-to-OMOP ETL processes to guar-
antee referential integrity between the patient ID and 
visit IDs. As HPO is not currently offered as an OMOP-
compliant vocabulary, the required HPO terms are 
loaded into the SOURCE_TO_CONCEPT_MAP as indi-
vidual source codes by the ETL process. The three ETL 
processes are used together to transfer the information 
for endocrinology, gastroenterology and pneumonology 
to the customized CDM from two university hospitals 
(Dresden and Frankfurt) and hematology dataset from 
the university hospital Dresden to OMOP CDM. The 
process is also highlighted in Fig. 2.

Fig. 2 Data integration steps from the customizable RD‑CDM to OMOP CDM: the developed RD‑CDM was mapped to the FHIR communications 
standard (MII‑CDS). In the next step, using the two ETL routes the integrated modules were then transformed to OMOP. The “Person”, “Case”, 
“Diagnosis”, “Procedure”, “Laboratory findings”, and “Medications” are part of the MII‑CDS, which was also transformed using the ETL process 
from FHIR to OMOP. The Phenotype and Genotype information are transformed using a direct ETL process from RD‑CDM to OMOP CDM
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Derived blue‑print and lessons learned
Drawing insights from the development and implementa-
tion phases, and collaboration with various stakeholders 
and interdisciplinary experts involved, we have compiled 
a list of crucial steps that will facilitate the customization 
of our CDM beyond the presented RD. Additionally, we 
have included key lessons learned that emerged through-
out the entire process.

Results
Use case‑specific data models
Our study encompasses nine disease groups from the 
endocrinology domain, two from gastroenterology, four 

from pneumonology, and one from the hematology 
domain. Table  2 presents the list of diseases along with 
their respective ICD-10-GM and Orpha codes [48]. In 
total 61,697 patients were included in this study.

Entity relationship model to aggregate a list of relevant 
elements
Figure  3A illustrates an entity-relationship model that 
shows a consolidated list of elements from the diseases 
used to develop the customizable RD-CDM structure. 
Figure 3B illustrates a list of attributes and their formal-
ization on the CDM modules. Each bar in the figure is 
labeled with a number indicating the quantity of elements 

Table 2 List of diseases in three development domains (endocrinology, pneumonology, and gastroenterology) of rare diseases and 
the validation domain (hematology)

Domain Disease Groups Diseases ICD‑10‑GM ORPHAcode

Endocrinology Hyperthyroidism Clinical hyperthyroidism E05.9 ORPHA:181,399

Latent hyperthyroidism E05.9

Manifest hyperthyroidism E05.9

Graves’ disease E05.0 ORPHA:525,731

Iatrogenic (therapy induced) E05.8 ORPHA:576,379

Unifocal iatrogenic (therapy‑induced) E05.8

Autonomy of the thyroid gland: multifocal autonomy 
of the thyroid gland

E05.8 ORPHA:3143

Autonomy of the thyroid gland: disseminated auton‑
omy of the thyroid gland

E05.8 –

Thyroiditis de Quervain E06.1 –

Amiodarone‑induced hyperthyroidism type I E05.8 –

Amiodarone‑induced hyperthyroidism type II E05.8 –

Pituitary thyroid receptor resistance E05.8 –

TSH‑oma D35.2 ORPHA:424

Hypothyroidism Clinical hypothyroidism E03.‑ –

Aplasia of the thyroid gland E03.1 –

Iatrogenic (therapy‑related) drug‑induced E03.2 –

Iatrogenic hypothyroidism/condition after surgery E89.0 –

Autoimmune thyroiditis E06.3 –

Secondary & tertiary hypothyroidism E23.0 –

Sarcoidosis D86.‑ –

Gastroenterology Viral Hepatitis Hepatitis A B15.0 –

Acute hepatitis B B16.0 –

Acute hepatitis C B17.1 –

Acute hepatitis E B17.2 –

Hereditary liver diseases Hemochromatosis E83.1 –

Wilson’s disease E83.0 –

Alpha‑1 antitrypsin deficiency in adults E88.0 –

Pneumonology Solid malignancy Solid malignancy (Bronchial carcinoma) C34.‑ –

Tuberculosis Tuberculosis A15.‑ –

Sarcoidosis Sarcoidosis D86.‑ –

Viral infections Influenza J10.0 –

Hematology Cancer Acute myeloid leukemia (AML) C92.0 ORPHA:319,465



Page 8 of 17Ahmadi et al. Orphanet Journal of Rare Diseases          (2024) 19:298 

for each category in our domain specific data models. 
The complete list of these elements can be viewed in our 
CDM model as Additional file 1 and on our GitHub page 
[46].

Joint symptoms within domains
Table  3 illustrates the overlapping symptoms and their 
corresponding HPO codes across the diseases within 
each domain. Our hematology domain, which features 
Acute Myeloid Leukemia (AML) and includes fever as 
the primary symptom, is not presented in this table due 
to its limited scope.

Fever is the only symptom that appears across all four 
domains we studied, including hematology. Furthermore, 
symptoms such as diarrhea, fatigue, and myalgia are 
shared among the endocrinology, gastroenterology, and 
pneumonology domains. Table  3 also highlights symp-
toms that overlap between just two domains, as depicted 
in Fig. 4.

Mappings and ETL processes to streamline RD‑CDM 
applicability
Given our use of the FHIR MII-CDS as an intermedi-
ary step, we mapped our data entities to corresponding 
modules within MII-CDS. Except for phenotypes and 
genotypes, we successfully aligned all other entities to 

MII-CDS modules. Due to the availability of existing ETL 
and FHIR-to-OMOP mapping processes, there was no 
need for manual mapping for these entities.

For the mapping of phenotypic and genotypic data, we 
manually aligned our model’s entities to OMOP concept 
IDs utilizing the terminology search engine, Athena [49]. 
As detailed in Table 4 the demographic information can 
be aligned to OMOP using Gender Concepts. The diag-
nosis can be mapped using ICD-10-GM and SNOMED 
concepts. For procedures, Operation and procedure 
codes (OPS) [50] and SNOMED concepts are available. 
The laboratory findings are mapped using Logical Obser-
vation Identifiers Names and Codes (LOINC) [51] con-
cepts and the unit codes are documented using Unified 
Code for Units of Measure (UCUM). Medication can be 
integrated using RxNorm [52] and Anatomical Thera-
peutic Chemical (ATC) [53] concepts. Additionally, most 
of the genotype elements can be mapped using OMOP 
Genomic terminology released from OHDSI [34].

Hematology as a validation use case
The Genotype-to-OMOP ETL process designed to han-
dle a hematology dataset comprising 1,674 patients and 
124 clinical and gene mutation data features, was rigor-
ously tested and is available for download and modifica-
tion from GitHub [46]. We predominantly used OMOP 
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Fig. 3 A Developed CDM modular structure. It includes seven tables to store all the clinical, demographic, and genetic information. The (0…n) 
shows the relationship between the tables. E.g., for each unique patient id in the person table there can be zero or multiple (0 to n) entries 
in the other tables. B Shows the included use case specific sets of elements included in the CDM. The numbers on the bars are equal to the number 
of elements in each of these sets. e.g., we have included four demographic info (gender, date of birth, age at diagnosis, and postal code) 
for endocrinology, gastroenterology, and pneumonology. For hematology, we added race and ethnicity information additionally as it was available 
as part of the provided data. (PK = primary key)
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Table 3 Overlapping symptoms within the domain. In the Diseases column, all diseases that include the corresponding symptoms 
are listed

Group Symptoms HPO Code Diseases

Gastroenterology Icterus or Jaundice HP:0000952 Viral hepatitis (A, B, C, D, E), alpha‑1 antitrypsin deficiency, De 
Quervain’s thyroiditis, amiodarone‑induced hyperthyroiditis

Skin rash HP:0000988 Viral hepatitis (A, B, D and E)

Ascites HP:0001541 Viral hepatitis B, C, hemochromatosis, Wilson’s disease, 
and alpha‑1 antitrypsinGastrointestinal bleeding HP:0002239

Fever HP:0001945 Viral hepatitis, A, B, C, D and E

Vomiting HP:0002013 Viral hepatitis A, C, and E

Diarrhea HP:0002014

Nausea HP:0002018

Hepatic encephalopathy HP:0002480 Viral hepatitis B, C, hemochromatosis, Wilson’s disease, 
and alpha‑1 antitrypsin deficiency in adults

Arthralgia HP:0002829 Viral hepatitis B, C, D, and hemochromatosis

Myalgia HP:0003326 Viral hepatitis B, C, D,

Poor appetite HP:0004396 Viral hepatitis B, D

Fatigue HP:0012378 Viral hepatitis B, D, Wilson’s disease, and alpha‑1 antitrypsin 
deficiency

General (health) Condition Reduction HP:0033666 Viral hepatitis (A, B, C, D and E)

Upper abdominal pain HP:0410019

Pneumonology Dyspnea HP:0002094 Solid malignancy, sarcoidosis general, sarcoidosis acute form

Chest pain HP:0100749

Weight loss HP:0001824 Solid malignancy, tuberculosis, and sarcoidosis both form 
acute and chronic

Fever HP:0001945 Solid malignancy, tuberculosis, sarcoidosis both forms acute 
and chronic, influenzaFatigue HP:0012378

Cough HP:0012735 Solid malignancy, tuberculosis, sarcoidosis general, sar‑
coidosis acute form, viral infection e.g., influenza, sarcoidosis 
chronic form

Leukocytosis HP:0001974 Tuberculosis, sarcoidosis general, viral infection e.g. influenza

Headache HP:0002315 Solid malignancy, influenza

Poor appetite HP:0004396 Tuberculosis, solid malignancy, sarcoidosis acute form

Abnormal blood sodium concentration HP:0010931 Solid malignancy

Night sweats HP:0030166 Solid malignancy, tuberculosis

Endocrinology: Hyperthyroidism Palpitations HP:0001962 Clinical hyperthyroidism, latent hyperthyroidism, manifest 
hyperthyroidism, Graves’ disease, iatrogenic (therapy‑related), 
unifocal autonomy of the thyroid gland, multifocal autonomy, 
disseminated autonomy, De Quervain’s thyroiditis, amiodar‑
one‑induced hypothyroidism type 1 and 2, Pituitary thyroid 
receptor resistance, TSH‑oma

Anxiety HP:0000739

Hyperhidrosis HP:0000975

Hand tremor HP:0002378

Restlessness HP:0000711

Irritability HP:0000737

Diarrhea HP:0002014

Weight loss HP:0001824

Abnormal eating behavior HP:0100738

Heat intolerance HP:0002046

Sleep disturbance HP:0002360
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Genomics terminology to map our gene mutation ele-
ments to OMOP concept ids. Additionally, SNOMED, 
LOINC, the Diagnosis-related group (DRG) [54], and 
UCUM were employed for this dataset. We were able 
to map and integrate our data entities with 100% suc-
cess from a CSV file to our previously developed OMOP 
instance. However, in certain instances, it was necessary 
to map multiple gene mutation details to a single OMOP 
concept id. An example is the “35,948,202—CEBPA 
(CCAAT enhancer binding protein alpha) gene vari-
ant measurement, that we used to transform, “CEBPA.
bZIP”, “CEBPA.bZIP.inframe”, “CEBPA.TAD”, and “CEB-
PASTAT” information of the patients to OMOP. The 
complete mapping table is also available on GitHub [46].

Comparison of RD‑CDM against the minimum dataset 
for Rare Diseases
In comparison to our model, the minimum dataset for 
rare diseases [23] includes ten groups of elements. They 
include Eligibility, Identification, Diagnosis, Treatment, 
Medical Consultation, Comorbidity, Outcome, and oth-
ers. Some of the elements of the Identification group in 
the minimum dataset, such as Ethnic background, is not 
part of the data collected in German hospitals. Some 
others, such as the patient id or the address of residence 
could only be included in our data model in a pseu-
donymized format considering patient privacy. Further-
more, the minimum dataset for RD included eligibility 

and identification elements that are important to identify 
patients on the registry level. On the contrary, the RD-
CDM is the basis of a diagnostic support system devel-
oped in the SATURN project [41], which is why most of 
our included elements are actually focused on diagnos-
tics. The overlapping elements between the RD-CDM 
and the minimum dataset for RD are shown in Fig. 5.

Customize your RD‑CDM‑based study in six brief steps
Here, we provide a brief description to demonstrate how 
the RD-CDM can be reused on other data and medical 
domains for RD.

1. Definition of the use case(s).

 • Definition of modules that are needed or are of 
interest to investigate the research hypothesis at 
hand.

• Identification of all relevant elements within the 
modules that contribute to answering the research 
question.

2. Definition of the stakeholders’ circle based on the use 
case(s).

 • After the definition of the required modules and 
elements, they should be communicated and iter-
ated with other medical experts to check for their 

Table 3 (continued)

Group Symptoms HPO Code Diseases

Endocrinology: Hypothyroidism Abnormality of the menstrual cycle HP:0000140 Hypothyroidism in general, secondary hypothyroidism: origi‑
nating from the anterior pituitary lobe, tertiary hypothyroid‑
ism: originating from the hypothalamusDepression HP:0000716

Gynecomastia HP:0000771

Dry skin HP:0000958

Hyporeflexia HP:0001265

Bradycardia HP:0001662

Pericardial effusion HP:0001698

Constipation HP:0002019

Hypotension HP:0002615

Increased body weight HP:0004324

Hyperlipoproteinemia HP:0010980

Fatigue HP:0012378

Diminished ability to concentrate HP:0031987

Coldness HP:0033850

Pretibial myxedema HP:0200028 Hypothyroidism in general, secondary hypothyroidism: origi‑
nating from the anterior pituitary lobe
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availability at each and every participating study 
site.

• It is essential to take into account the perspec-
tive of the data providers. In the described study, 
it becomes crucial for each participating site to 
reach out to the respective data integration center. 

This step is necessary to verify the feasibility of 
automatically retrieving the requested data, poten-
tially in standard formats such as FHIR or with 
associated terminologies like SNOMED.

• Given the sensitive nature of medical data, it is 
imperative to adhere to ethical standards, prior-

Fig. 4 Joint symptoms between groups. Shared between all groups are: fever, diarrhea, fatigue, and myalgia. Between pneumonology 
and gastroenterology fatigue, poor appetite, fever, jaundice, myalgia, diarrhea, nausea, and vomiting are shared. The pneumonology 
and endocrinology symptoms that overlap are fatigue, fever, malaise, myalgia, and diarrhea. The overlapping symptoms between gastroenterology 
and endocrinology however are, fever, fatigue, myalgia, and diarrhea

Table 4 Mappings between the RD‑CDM, FHIR modules, and OMOP tables as well as the terminology used for semantic mapping

RD‑CDM FHIR (MII‑CDS) OMOP tables Vocabulary

Person Person Person SNOMED; Gender

Diagnosis Diagnosis Condition_occurrence, 
procedure_occurrence, measurement, or observation

SNOMED; ICD‑10‑GM; OrphaCode

Procedure Procedure Drug_exposure, procedure_occurrence, measurement 
or observation

SNOMED; OPS

Laboratory Findings Laboratory test results Observation, measurement or procedure_occurrence LOINC; UCUM

Medication Medication Drug_exposure or observation RxNorm; ATC 

Genotype – Observation; measurement OMOP Genomic

Phenotypes – Observation; measurement HPO; SNOMED; LOINC
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itize data security, and safeguard privacy. In light 
of these considerations, the responsible organi-
zational entity must initiate contact with legal 
authorities to ensure a comprehensive and legally 
sound approach to managing and addressing the 
data’s sensitivity.

3. A list of diagnostic entities may be created together 
with the stakeholders for the targeted use case(s).

 • Once an iteration between all stakeholders and 
the initial set of modules and elements has been 
done, one may continue with the full or restricted 
list of data elements for the study.

4. The use of use case-specific entities may be mapped 
to the modules of RD-CDM.

 • Individual data elements from the specific data 
source should be directed towards the unified CDM 
structure (common target data structure, jointly 
used by all involved study sites).

5. ETL processes, such as our FHIR-to-OMOP ETL 
process, should be used for transferring data to 
OMOP in the CDM dedicated “Person”, “Diagnosis”, 
“Laboratory findings”, “Procedure”, and “Medications” 
modules to unify the data elements among all partici-
pating study sites.

6. The “Genotype” and “Phenotype” modules could use 
direct ETL processes from CSV to OMOP CDM to 
transfer the data into OMOP.

 • An example of such an individual ETL process 
can be obtained from our GitHub instance (Geno-
type/Phenotype-to-OMOP) [46].

Discussion
Despite efforts to standardize infrastructure and integrate 
large-scale data in clinical research, challenges remain in 
personalized medicine [55, 56], particularly for the docu-
mentation of genotypes, phenotypes, and clinical data for 
RD [14, 55, 57]. Comprehensive documentation is cru-
cial for patient recruitment, standard care monitoring, 
natural history assessment, genotype–phenotype correla-
tion analyses, and disease burden evaluation, ultimately 
enhancing our understanding of RD [33]. Nevertheless, 
the planning, design, maintenance, and sustainability of 
such large-scale medical studies need to be improved and 
streamlined [14].

In this study, we illuminated the impactful role of cus-
tomized CDMs, particularly in the context of forming a 
collaborative foundation between medical experts and 
data scientists within domain-specific projects. By mod-
eling and utilizing these tailored CDMs, we achieved two 
critical objectives: (a) establishing a shared knowledge 
base that enhances communication and understand-
ing between medical experts and data scientists, and 
(b) streamlining the harmonization of source data. This 
harmonization, in turn, facilitates a seamless transfer to 
the internationally recognized research database, OMOP 
CDM, underscoring the versatility and effectiveness of 
our approach in advancing multi-center data-driven 
studies.

In particular, we developed a customized RD-CDM 
based on the OMOP information model and utilizing 
the FHIR communication standard. The combination of 
both enabled us to efficiently utilize the already existing 

Fig. 5 This figure shows a comparison of elements in the minimum dataset for Rare Diseases (RD) and the OMOP based Rare Diseases common 
data model (RD‑CDM). The left circle shows the categories of the Minimum Data for RD and the right circle shows the RD‑CDM modules 
before being mapped to OMOP CDM. The overlapping elements from different modules of RD‑CDM to the minimum Dataset for RD Categories are 
shown in the middle



Page 13 of 17Ahmadi et al. Orphanet Journal of Rare Diseases          (2024) 19:298  

ETL processes [43] for the mappings to OMOP. The 
final CDM consists of several modules, including “Per-
son”, “Diagnosis”, “Procedure”, “Laboratory findings”, and 
“Medications”. These modules are also part of the FHIR 
MII CDS. Moreover, two additional modules, “Genotype” 
and “Phenotypes”, were added to the customizable CDM 
structure to better capture the unique characteristics of 
RD.

Use case‑specific application examples
Some diseases from disease groups, such as hyperthy-
roidism and its distinct etiologies can present with very 
close similarities and thus be challenging to differentiate 
solely based on clinical data. Our customizable RD-CDM 
can improve this, which will be further evaluated during 
the SATURN project, which seeks to assist the diagnos-
tic process. Additionally, the RD-CDM-based data will 
be used in analytical studies to answer clinical questions. 
Here, the inclusion of the Genotype and Phenotypes 
modules into the CDM structure allows for the capture 
of more detailed and specific information related to RD 
that may not be available in other standard CDMs.

The CDM has additional advantages applicable to all 
RD groups. These encompass the formulation of specific 
clinical questions for international and multi-center stud-
ies, including the prospective integration of genotype 
data, particularly concerning the potential incorporation 
of Human Genome Variation Society (HGVS) nomencla-
ture [58] with a focus on exploring genotype–phenotype 
correlations.

Moreover, the CDM incorporates information about 
certain procedures by using OPS. This enhances research 
by facilitating the establishment of connections between 
imaging results with genotype information. Use case-
specific applications would include the matching of geno-
type with liver imaging data in hemochromatosis or with 
sonography and scintigraphy data in diseases that affect 
the thyroid gland.

Furthermore, the CDM could be helpful for the clus-
tering of subgroups for certain RD based on phenotype 
or genotype. Within the field of endocrinology, it allows 
for differentiation based on laboratory parameters, ena-
bling the distinction between latent and manifest forms 
of hypothyroidism or autoimmune forms, depending 
on the presence of specific antibodies. Tuberculosis can 
affect various organs, leading to different phenotypic 
expressions. Using a suitable CDM, patients with diverse 
manifestations could be categorized based on their phe-
notypic profiles. In the context of hemochromatosis, 
it allows subgroup formation based on genetic factors. 
When genetic information is unknown or inconspicuous, 
the CDM can facilitate the creation of subgroups based 
on symptoms only.

These benefits also encompass the collection of 
patients with similar Variants of Uncertain Significance 
(VUS) and the comparative analysis of symptoms and 
phenotypes, facilitating their categorization into sub-
groups for research purposes or potential reclassification. 
Additionally, the potential exists for investigating the co-
occurrence of specific RD and assessing whether certain 
mutations may render individuals more vulnerable to 
other conditions, such as heightened infection risk for 
hepatitis.

In cases of incomplete penetrance of certain mutations, 
e.g. in hemochromatosis, the CDM is valuable for aggre-
gating asymptomatic or minimally symptomatic patients 
based on their genotype for long-term risk assessment. It 
also supports the categorization of asymptomatic family 
members who have been subsequently examined as a dis-
tinct group.

Moreover, the flexibility of tailoring therapy studies 
according to the specific genotype for gene therapy is a 
valuable prospect. A coherent mapping of clinical infor-
mation and underlying disease biology as genotype–
phenotype maps may not only aid in identifying disease 
categories with different clinical presentations but also 
tailor personalized treatment approaches to patient biol-
ogy. Especially in high-stakes environments, such as 
AML treatment, where fast and accurate diagnosis, as 
well as rapid treatment initiation according to molecular 
subtypes, is crucial [59], a better understanding of geno-
type–phenotype associations in multi-center data-driven 
studies holds the promise of improved treatment out-
comes with targeted therapies, while avoiding resistance 
and relapse.

The benefits of RD-CDM are therefore evident for all 
use cases. Overall, the CDM significantly enhances our 
ability to comprehensively study and understand the 
complexities of RDs regardless of the focus domain.

General benefits of using CDMs
Integration of heterogeneous data is a ubiquitous topic 
in modern medicine. This arising large variety of data 
has the potential to be used for deriving insights about 
the different aspects of care and lead to improvements 
in health care. Yet, challenges, such as identifying and 
accessing relevant data, the association between differ-
ent data sources, and ensuring the data quality given the 
structural variations amongst data sources are posing a 
barrier [60, 61]. That is why data is still sparse, especially 
more patient-specific data, such as genotypes and phe-
notypes, which are especially important for RDs. There-
fore, the development of a comprehensive CDM tailored 
to the unique domains of RD is of importance. Our RD-
CDM, built on the foundation of OMOP, serves as a 
framework for standardizing additional data components 
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across multiple domains. It is suitable for usage in ana-
lytic processes involving machine learning and statistical 
models. In addition, because OMOP is well established 
as a research data model, our CDM facilitates collabora-
tion with different research groups at different sites on an 
international level, effectively addressing the challenge of 
data scarcity, which is particularly critical in the field of 
rare diseases.

While Composite CDEs and OMOP CDM both aim 
to standardize healthcare data, they serve different pur-
poses and contexts. Composite CDEs are more focused 
on detailed and standardized data collection within spe-
cific studies or trials, ensuring consistency and compre-
hensiveness for particular clinical concepts. In contrast, 
OMOP CDM offers a flexible, scalable framework for 
integrating and analyzing diverse healthcare data across 
multiple settings, supporting large-scale observational 
research and real-world evidence generation. The ben-
efits of OMOP include its scalability, flexibility, interop-
erability, support for advanced analytics, and the strong 
backing of a global, collaborative community.

Similarly, CDISC focuses on standardizing data for 
clinical trials to ensure regulatory compliance and facili-
tate submissions to authorities like the FDA and EMA. 
It is primarily utilized by pharmaceutical companies and 
clinical research organizations, using detailed models, 
such as SDTM and ADaM. In contrast, OMOP, devel-
oped by the OHDSI community, aims to harmonize 
observational healthcare data from sources like electronic 
health records and claims data, supporting large-scale 
observational research and real-world evidence studies. 
While CDISC is essential for pre-market approval pro-
cesses, OMOP can also be used in post-market surveil-
lance and comparative effectiveness research, providing 
a flexible and scalable framework for integrating diverse 
healthcare data.

Limitations of our model
The RD-CDM model is a prototype model developed 
using the data elements of four domains of RDs; endo-
crinology, gastroenterology, pneumonology, and hema-
tology. Therefore, the RD-CDM tables are limited to the 
focus domains. Although the RD-CDM modules cover 
most of the medical data, to be able to use it for other 
domains, a customization step might be necessary. Addi-
tionally, the genomic terminologies used in the RD-CDM 
are limited to the mutations and clinical elements that are 
part of data entities in our included cohorts. Although 
the genomic elements were mapped with a 100% success 
rate, we often faced two or more to one mappings [34]. 
Moreover, we used HPO terminologies for mapping the 
symptoms to OMOP, but the HPO terminology is still 
not integrated into the Athena terminology management 

tool for OMOP. Our implemented ETL only provides a 
quick and temporary solution. Further work is necessary 
to integrate HPO into OMOP terminology and introduce 
specific concept IDs for them.

Lessons learned for the six individual customization steps
Bridging the gap between clinical experts and techni-
cal implementation is important for the design of such a 
model, which is why we consider the inclusion of experts 
from both domains and interdisciplinary collaboration as 
essential. Regular communication with the stakeholders 
helps to keep everyone aligned and informed about the 
progress and possible feedback. An iterative design pro-
cess is essential to incorporate evolving requirements and 
insights.

1. A clear definition of the use case(s) must be provided.

 a. This is of particular significance for 
interdisciplinary use cases, in which multiple 
domains are included (e.g., clinical, computa-
tional, organizational).

2. An interdisciplinary team of stakeholders should be 
defined based on the use case(s) as early as possible.

3. A list of diagnostic entities should be created together 
with the stakeholders for the targeted use case(s). A 
large group of medical experts is necessary for the 
definition and evaluation of data elements to ensure 
that the list of included elements in the final model is 
comprehensive. A consensus method for final models 
should be defined beforehand to objectively quantify 
the time period.

4. The use of use case-specific entities should be 
mapped to the modules of customizable RD-CDM.

5. For the Person, Diagnosis, Laboratory Findings, 
Procedure, and Medication, the FHIR-to-OMOP 
ETL process should be used to transfer the data into 
OMOP. Testing of the ETL processes using smaller 
synthetic data that has the same attributes as the 
real-world data is recommended to become accus-
tomed to the logs and outcomes of the ETL process, 
especially if the real-world data is not directly avail-
able. For Genotypes, the direct ETL processes from 
CSV to OMOP CDM should be used to transfer the 
data into OMOP. The standard genomic vocabulary 
in OMOP has been used to map the mutations to 
OMOP. By writing the study-specific HPO concepts 
to the SOURCE_TO_CONCEPT_MAP table, a tem-
porary solution has been provided for the integration 
of phenotype information into OMOP.

6. A robust ETL process is essential for the accurate 
transfer of data into the OMOP framework. This 
requires careful planning, thorough testing, and vali-
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dation to process multiple data sources and maintain 
data integrity. Familiarity with the data and ETL tools 
is also key to effective implementation and problem 
solving.

Outlook
This RD-CDM is the basis for the development of a deci-
sion support system, namely the SATURN platform, to 
be used at the point of care by the family practitioners. 
The platform will be equipped with different rule-based, 
case-based reasoning, and machine learning algorithms 
that aim to combine the available medical knowledge and 
clinical guidelines in the field with retrospective patient 
outcomes to support the diagnosis process of upcoming 
patients. General practitioners are often challenged with 
patients with symptoms that they do not have experi-
ence with. Therefore, this platform could support them in 
reaching a diagnosis in a shorter time.

A forward-looking usage for the platform could be 
integrating patient engagement features, such as a mobile 
app for tracking symptoms and facilitating communica-
tion with healthcare providers. This enhancement has the 
potential to empower patients significantly and enhance 
the management of their conditions. These additions 
could substantially boost the platform’s effectiveness and 
reinforce its patient-centric orientation.

Impact to RD
The complexity attached to RDs is due to their hetero-
geneity and geographical dispersion limiting available 
knowledge [2]. Patients are scattered in different coun-
tries and continents, and comprehensive data assembly 
is complicated not only by organizational, logistical, and 
communicative reasons but also by a lack of data collec-
tion standards and common frameworks. We provide a 
framework to easily integrate genetic information in large 
scale, multi-center studies, which in turn could reduce 
the amount of time spent on the characterization of 
phenotypes.

The customized RD-CDM based on OMOP can facili-
tate collaborations and investigations on an international 
level and in the long run improve patients’ quality of life 
through a faster diagnostic process.

Conclusion
We refined our initially developed process for customized 
RD-CDM based on a prominent common data model 
in healthcare, OMOP CDM, using the data exchange 
standard FHIR [18]. The OMOP-based customized RD-
CDM can enhance the harmonization of patient data in a 
standardized format that ensures international syntactic 
and semantic interoperability. That, in turn, enables—in 

addition to use the RD-CDM for decision support sys-
tems—retrospective studies including patient-level pre-
dictions possible using the tools offered by the OHDSI 
community and any other AI-based methods. Addi-
tionally, it allows attendance in international studies to 
deepen the findings by performing longitudinal studies 
on multi-center datasets.
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