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Abstract 

Background Globally, researchers are working on projects aiming to enhance the availability of data for rare disease 
research. While data sharing remains critical, developing suitable methods is challenging due to the specific sensitiv‑
ity and uniqueness of rare disease data. This creates a dilemma, as there is a lack of both methods and necessary data 
to create appropriate approaches initially. This work contributes to bridging this gap by providing synthetic datasets 
that can form the foundation for such developments.

Methods Using a hierarchical data generation approach parameterised with publicly available statistics, we gener‑
ated datasets reflecting a random sample of rare disease patients from the United States (US) population. General 
demographics were obtained from the US Census Bureau, while information on disease prevalence, initial diagnosis, 
survival rates as well as race and sex ratios were obtained from the information provided by the US Centers for Disease 
Control and Prevention as well as the scientific literature. The software, which we have named SynthMD, was imple‑
mented in Python as open source using libraries such as Faker for generating individual data points.

Results We generated three datasets focusing on three specific rare diseases with broad impact on US citizens, 
as well as differences in affected genders and racial groups: Sickle Cell Disease, Cystic Fibrosis, and Duchenne Mus‑
cular Dystrophy. We present the statistics used to generate the datasets and study the statistical properties of output 
data. The datasets, as well as the code used to generate them, are available as Open Data and Open Source Software.

Conclusion The results of our work can serve as a starting point for researchers and developers working on meth‑
ods and platforms that aim to improve the availability of rare disease data. Potential applications include using 
the datasets for testing purposes during the implementation of information systems or tailored privacy‑enhancing 
technologies.
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Background
Despite their individual rarity (e.g. defined as 1 in 1,700 
in the United States (US) [1] and 1 in 2,000 in Europe 
[2]), rare diseases collectively affect a large population 

and often manifest as chronic and life-threatening condi-
tions [3].

The availability of large enough datasets on affected 
patients is important for developing new diagnostics and 
therapy options and for applying modern data science 
and artificial intelligence techniques. Given the rarity of 
such diseases, scientific collaboration and data sharing 
are important to achieve this [4].

However, sharing rare disease data raises questions 
related to patient privacy, as its disclosure may lead to 
societal stigma, discrimination, or harassment [5]. More-
over, the privacy of rare disease patients is particularly 
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challenging to protect, because their diseases affect 
only a small demographic, increasing the risk of privacy 
breaches. This calls for specialized privacy-enhanc-
ing technologies tailored to the needs of rare disease 
research. This need results in a dilemma. New and tai-
lored privacy protection methods must be developed, 
but as the data on which they are being developed must 
stay confidential, open science practices, external evalua-
tions, and transparent method development are severely 
limited.

Recently, machine-learning (ML)-based synthetic data 
generation methods have been promoted as a versatile 
tool for sharing data while preserving privacy. The gen-
eral idea is to use ML models trained on sensitive data to 
generate data that mirrors important statistical proper-
ties while not containing any real-world personal infor-
mation [6–8]. However, the generation of synthetic data 
requires trading off the degree to which statistical prop-
erties are preserved with the degree of privacy protection 
achieved [9], they struggle with longitudinal data [10] and 
there is yet no generally accepted technique that could be 
applied to rare diseases datasets.

In the work described in this article, we took a step 
back and generated synthetic rare disease datasets from 
publicly available statistical information. While these 
datasets are not suitable for generating new insights into 
rare diseases, they can be utilized for the development 
and evaluation of software for rare disease research.

For example, the datasets could be used to develop 
tailored synthesis or anonymisation mechanisms and to 
publish them along with open data on their evaluation. 
Moreover, the datasets could serve as test datasets in the 
development of information systems, such as rare disease 
biobank information systems and registries [11], that 
reflect the expected statistical properties.

Methods
Tool selection
As already mentioned, the wide range of ML-based syn-
thetisation methods and libraries available are not suited 
for the type of synthetisation process which we aimed 
to perform. Before implementing the method described 
in the remainder of this section, we therefore screened 
the landscape of available modelling-based data genera-
tion tools. Faker is a popular Python package for creat-
ing synthetic data for software development and testing 
purposes, but it has not been designed to use models 
of dependencies between variables or complex statis-
tical properties of real-world data [12]. The Synthetic 
Data Vault is a comprehensive tool for data generation 
based on information learned from a given database 
[13], which does not suit our application scenario. Syn-
ner [14] is an interesting tool supporting data generation 

processes that are very close to what we planned to do, 
but it focuses on interactions through a comprehensive 
user interface, while we were interested in a scripted 
approach. The synthpop package for the R statistical 
computing environment follows a modelling approach 
rather than a machine learning approach, but it has been 
designed to generate synthetic data from an individual-
level input dataset from which the models are extracted 
[15]. Synthea is probably the most well-known tool for 
generating synthetic patient trajectories out of statistical 
information [16]. However, Synthea is complex to con-
figure and it has not been specifically engineered to pro-
duce data for a single disease across various regions but 
is more focused on generating diverse patient population. 
Moreover, the simulation-based approach of Synthea 
makes it relatively slow (generation of approximately 
1000 patient records per minute in test performed). We 
hence decided to implement SynthMD, a small and light-
weight library tailored to generating datasets following 
the statistical distributions and properties outlined in the 
following sections.

Statistics collection
We decided to generate synthetic data modelling the 
US population, as a lot of statistical information is avail-
able for US citizens and the population is quite diverse. 
We hence collected general population demographics 
as well as disease-specific statistics. Population statistics 
in regards to gender, race, and age from each US state, 
Washington DC is included, were collected from the US 
Census Bureau using their official Application Program-
ming Interface (API). The data collected also included 
age statistics from ages 0 to 84 years, with all ages from 
85 years and onwards being grouped together. An over-
view is provided in Fig. 1.

We focused on three specific rare diseases due to their 
broad impact on US residents, as well as their differences 
concerning gender and racial groups: Sickle Cell Disease 
(SCD; ORPHA code: 232), Cystic Fibrosis (CF; ORPHA 
code: 586), and Duchenne Muscular Dystrophy (DMD; 
ORPHA code: 98896). Disease statistics, such as preva-
lence, survival rates for various age groups, race and sex 
ratios, and clinical parameters, were collected from both 
academic literature and official resources. An overview is 
provided in Tables 1, 2 and 3.

Table 1 shows the statistics collected about SCD, which 
is one of the most common rare diseases, affecting at least 
3 million people worldwide, with 100,000 patients in the 
US alone. The general prevalence of the disease is about 
1 in 3300 individuals [17, 18]. Diagnosis of SCD typically 
includes a complete blood count (CBC), because indi-
viduals with SCD usually have fewer red blood cells than 
normal. Sickle-shaped red blood cells do not circulate as 



Page 3 of 8Al‑Dhamari et al. Orphanet Journal of Rare Diseases          (2024) 19:265  

long as normal ones, leading to lower hemoglobin levels 
between 6 to 11 g/dL. The count of reticulocytes cells 
(RC), immature red blood cells formed in the bone mar-
row, tends to be higher in individuals with SCD, often 2 
to 3 percent or more [19]. Treatment options are limited, 
encompassing infection prophylaxis, hydroxyurea, blood 
transfusion, analgesia, and haematopoietic stem cell 
transplantation. Newer treatments like gene therapy also 
exist [17]. In the US, SCD affects roughly 1 out of every 
365 Black or African-American births [18, 20].

Table 2 shows that statistics collected about CF, which 
is a progressive disease that primarily affects the body’s 
mucus glands, impacting primarily the respiratory and 

digestive systems in children and young adults [21]. 
Previously considered the most common life-threaten-
ing inherited rare disease in Caucasian children, with 
a prevalence of 1 in 2500, advances in treatments and 
disease management have changed the CF population’s 
characteristics [21, 22]. Disease diagnosis often begins 
with newborn screening 2 to 3 days after birth, followed 
by confirmatory tests in the following weeks or months. 
Common diagnostic tests for CF include the sweat test, 
which measures sodium and chloride levels, and the 
Immuno-Reactive Trypsinogen test, analysing trypsino-
gen, a specific protein found in blood drawn 2 to 3 days 
after birth [21]. Treatments for CF address both the 

Fig. 1 Charts illustrating the basic demographic data collected about the US population (year: 2020): a Population per state, b Population per age 
is categorized by different age groups for simplicity
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underlying genetic causes and the symptoms of the dis-
ease to improve quality of life [21].

Statistics collected about DMD are illustrated in 
Table  3. DMD is a rare disease with a prevalence of 
approximately 1 in 5000 male live births [23]. It is 
caused by single or multiple exonic deletions or duplica-
tions in the dystrophin gene in 80% of cases. The disease 
gradually weakens and degenerates muscles, particu-
larly skeletal and cardiac muscles. Patients typically 
become wheelchair dependent around the age of 13, 
with a mean survival age of 29 years, limited primarily 

by cardiorespiratory complications [24]. DMD is usually 
diagnosed within 1-3 years after birth. Creatine kinase is 
typically elevated in individuals with DMD due to mus-
cle damage and a blood test is often used as an initial 
diagnostic tool [25]. The majority of patients are male 
with males constituting 99.99% of diagnosed cases.

Data preprocessing
The collected statistics underwent preprocessing to gen-
erate comparable statistics for all three diseases. We cat-
egorised all age values into seven distinct groups: under 

Table 1 Harmonized collected statistics about sickle cell disease

Category Variable Value Distribution

General Prevalence – 1/3300

Demographics Race African‑American 73.10%

European‑American 3.00%

Others 23.90%

Demographics Sex Male 50.00%

Female 50.00%

Clinical course Initial diagnosis Months after birth 5 ‑ 6, µ = 5.5± 0.5

Clinical course Death rate per 100,000 <5 years old 0.47

5‑14 years old 0.30

15‑19 years old 0.70

20‑24 years old 1.35

25‑39 years old 2.75

40‑60 years old 2.85

>60 years old 1.99

Clinical course Complete blood count – 6 ‑ 11 g/dL, µ = 8.5± 2.5

Reticulocyte count 2.0 ‑ 3.0%, µ = 2.5± 0.5

Table 2 Harmonized collected statistics about cystic fibrosis

Category Variable Value Distribution

General Prevalence – 1/10311

Demographics Race African‑American 3.50%

European‑American 91.40%

Others 5.10%

Demographics Sex Male 51.70%

Female 49.30%

Clinical course Initial diagnosis Days after birth 2 ‑ 3, µ = 2.5± 0.5

Clinical course Death rate per 100,000 <5 years old 6.23

5‑14 years old 12.46

15‑19 years old 40.50

20‑24 years old 71.65

25‑39 years old 280.37

40‑60 years old 190.03

>60 years old 121.50

Clinical course Chloride level – 30.0 ‑ 118.6 mmol/L

µ = 74.3± 44.3
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5, 5-14, 15-19, 20-24, 25-39, 40-60, and over 60 years old. 
Another example of such preprocessing is converting all 
survival rates into the form provided in the tables.

Data generation
An overview of our approach is provided in Fig.  2. The 
statistical information described in the previous sec-
tion was encoded in JSON files that were then loaded by 
a Python script executing the data generation process. 
Here, we employ a hierarchical approach, characterised 
by nested loops as shown in Algorithm 1.

In the hierarchical data generation process, the datasets 
are created on a record-by-record basis. First, the distri-
bution for each variable is obtained. Following this, dis-
tributions at subsequent levels are computed, taking into 
account the values drawn at the preceding levels, leading 
to the creation of one or multiple records at the terminal 
level. This approach ensures that interdependencies spec-
ified among attributes are captured. A prime example of 
such a hierarchical relationship is the alignment of city 
or ZIP code, which is guided by the corresponding state 
variable drawn at the previous level.

Table 3 Harmonized collected statistics about duchenne muscular dystrophy

Category Variable Value Distribution

General Prevalence – 1/6000

Demographics Race African‑American 29.00%

European‑American 43.00%

Others 28.00%

Demographics Sex Male 99.99%

Female 0.01%

Clinical parameters Initial diagnosis Years after birth 1 ‑ 3, µ = 2± 1

Clinical parameters Death rate per 100,000 <5 years old 200

5‑14 years old 200

15‑19 years old 200

20‑24 years old 40,500

25‑39 years old 73,900

40‑60 years old 86,700

>60 years old 99,990

Clinical parameters Creatine kinase level (CK) – 350 ‑ 23,200 units/L

µ = 11775± 6475

Fig. 2 Overview of the synthetic data generation process and the statistics used
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Algorithm 1 Data generation algorithm

At the root, the algorithm generates a geographic dis-
tribution by iterating through the US states. The ZIP 
code is randomly selected from the set of all ZIP codes 
associated with the current state. Patient sex is then 
drawn considering the sex distribution of the age group 
and within the current state. This distribution takes into 
account data from both the US census age-sex population 
statistics and the gender ratio of rare diseases, favouring 
the latter. The patient’s age is determined through ran-
dom selection from a drawn age range.

Patient race is selected taking into account both the US 
Census statistics for the current state and the rare disease 
race distribution, favouring the latter. Clinical parameters 
are randomly selected from a normal distribution with 
the specified parameters.

Finally, the patient’s date of birth is computed from 
their age, depending on their vital status. For living 
patients, a random date representative of their age as of 
01/01/2023 is generated. The patient’s vital status (dead/
alive) is assigned, depending on the patient’s age and the 
mortality distribution for each age group and state. For 
deceased patients, their age at the time of death is con-
sidered, and a suitable date of birth is generated. The date 
of diagnosis is generated as specified in the statistics.

Results
We generated three datasets for the three diseases using 
SynthMD, capturing all synthetic cases across the US 
population (about 331 million citizens). Each of the 
three datasets contains a set of patient records with age 
(as of 01-01-2023), US state and ZIP code of residence, 
sex, race, date of birth, date of initial diagnosis as well as 
potentially a death date. In addition, the files contain one 
or two clinical parameters.

Table  4 provides an overview of the three generated 
datasets. It displays the number of male and female 
patients, the total number of patients, the relative preva-
lence of the disease within respective populations, and 
the number of deceased patients. As can be seen, the 
dataset for SCD contains 100,402 patients, the dataset 
for CF 32,092 patients and the dataset for DMD 55,218 
patients.

Table 5 compares the actual statistics of the generated 
datasets to the expected statistics presented in the previ-
ous section. As can be seen, there are no significant dif-
ferences between these parameters.

Table  6 presents an example of how age-dependent 
statistics are captured in the output data. It lists the 
size of the underlying population groups, the number 
of patients as well as the number of deceased patients 
for CF. As can be seen, the age-related death rates 
match the ones presented in the previous section. The 
code and synthetic datasets are publicly available on 
GitHub1.

Table 4 Summary of the three generated datasets

Disease Male Female Total Prevalence Deceased

SCD 50,275 50,127 100,402 0.0021 0

CF 16,796 15,296 32,092 0.0007 187

DMD 54,911 307 55,218 0.0012 29,724 1 https:// github. com/ iaBIH/ synth- md

https://github.com/iaBIH/synth-md
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Discussion
We have generated three synthetic datasets on three dif-
ferent rare diseases using an approach based on publicly 
available information. The datasets model the complete 
US population of patients with the respective diseases 
and samples or subsets can be extracted if smaller data-
sets or datasets from a specific geographical region are 
needed. The basic information contained in our synthetic 
datasets can also be supplemented with further variables, 
if more comprehensive datasets are required.

A limitation of our tool is that it focuses on tabular data 
only and cannot be used to generate other critical data 
types, such as genetic or imaging data. Limitations of our 
datasets include the fact that their scope is relatively nar-
row, basically capturing demographics, simple informa-
tion on disease course and selected diagnosis-relevant 
clinical parameters only. Moreover, we were not able to 
retrieve all required statistics from the scientific literature 
and hence some statistics have been taken from online 
sources that lack peer review [19]. We also assumed an 
equal death rate for SCD, despite recent evidence sug-
gesting differences [20]. Finally, we did not consider all 
potential relationships between the statistics used, such 
as between race and state of residence.

A noteworthy related work has been presented in [26]. 
The approach proposed in this paper leverages data aug-
mentation and epidemiological profiles to generate syn-
thetic data for Uveitis, a rare ophthalmological disease. 

The synthetic data underwent both qualitative evalua-
tion by ophthalmology specialists and quantitative test-
ing using machine learning methods, yielding promising 
outcomes in regards to data validity.

Conclusion
In this work, we have presented a simple approach to 
generating synthetic rare disease datasets for develop-
ment and evaluation purposes out of publicly available 
statistics, implemented as a tool called SynthMD. The 
developments were also driven by our own need for 
development and evaluation datasets for our research 
on rare disease-specific anonymisation technologies. By 
publishing these datasets for other researchers to use 
in their projects2 we hope to contribute to resolving the 
dilemma around data availability and the need to develop 
specific privacy-enhancing technologies for sharing rare 
disease data.
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