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Abstract
Background  Cartilage-hair hypoplasia (CHH) is a rare syndromic immunodeficiency with metaphyseal 
chondrodysplasia and increased risk of malignancy. In this cross-sectional observational study, we examined HPV 
status and oral microbiome in individuals with CHH. Oral brush samples were collected from 20 individuals with CHH 
(aged 5–59 years) and 41 controls (1–69 years). Alpha HPVs (43 types) were tested by nested PCR followed by bead-
based probe hybridization. Separately, beta-, gamma-, mu- and nu- HPV types were investigated, and a genome-
based bacterial microbiome sequencing was performed.

Results  We found a similar alpha HPV prevalence in individuals with CHH (45%) and controls (36%). The HPV types 
of individuals with CHH were HPV-16 (25%), 27, 28, and 78, and of controls HPV-3, 16 (21%), 27, and 61. Beta HPV 
positivity and combined beta/gamma/mu/nu prevalence was detected in 11% and 11% of individuals with CHH and 
in 5% and 3% of the controls, respectively. Individuals with CHH differed from the controls in bacterial microbiota 
diversity, richness, and in microbial composition. Individuals with CHH had lower abundance of species Mitsuokella 
sp000469545, Parascardovia denticolens, Propionibacterium acidifaciens, UMGS1907 sp004151455, Salinicola halophilus, 
Haemophilus_A paraphrohaemolyticus, Fusobacterium massiliense, and Veillonella parvula, and higher abundance of 
Slackia exigua.

Conclusions  Individuals with CHH exhibit similar prevalence of HPV DNA but different bacterial microbiota on their 
oral mucosa compared to healthy controls. This may partly explain the previously observed high prevalence of oral 
diseases in CHH, and regular oral examination is warranted.
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Background
Cartilage-hair hypoplasia (CHH) is a rare autosomal 
recessive syndromic immunodeficiency with skeletal dys-
plasia [1]. CHH is caused by variants in the RMRP gene, 
encoding the untranslated RNA molecule of the mito-
chondrial RNA-processing endoribonuclease [2], and 
clinically characterized by short stature, sparse hair, and 
variable degree of immune dysfunction [1, 3]. CHH is 
exceptionally prevalent in the Amish and Finnish popula-
tions with respective incidence of 1 in 1340 and 1 in 23 
000 births [3, 4]. Owing to the immunodeficiency, indi-
viduals with CHH are at increased risk of autoimmune 
diseases, malignancies and lung disease [5, 6]. The risk 
of cancer is sevenfold, predominantly expressed as non-
Hodgkin’s lymphoma and basal cell carcinoma [7]. Also, 
single cases of fatal lip squamous cell carcinoma and 
vocal cord carcinoma have been described [8].

Oral cavity is part of the mucosal immune system, and 
as such incorporates both local oral fluid-mediated secre-
tory and systemic immunity [9]. The etiopathogenesis of 
oral diseases may be linked to local, systemic, innate or 
adaptive immunity, to local or systemic diseases, as well 
as to cellular or secretory factors [10]. Oral microbiome 
is defined as the collective genome of microorganisms 
that reside in oral cavity [11]. Oral microbiome consists 
of a common core microbiome and a variable unique 
microbiome, that reflects individual’s lifestyle and dis-
tinctive physiology [11]. The risk for pathogenic bacterial 
infection, such as dental decay and periodontal disease, 
is increased in immunocompromised individuals [12, 13], 
and the association between oral diseases and systemic 
health is bidirectional [14].

Human papilloma virus (HPV) infection is a risk fac-
tor for carcinoma in the oropharyngeal, genital, and anal 
regions [15, 16]. Especially the high-risk (hr) HPV alpha 
types HPV-16 and − 18 are commonly encountered in 
mucosal carcinomas [17]. High prevalence of gynecologic 
HPV infections has been detected in females with CHH 
[18]. The immunological dysregulation and vulnerabil-
ity to infections may predispose individuals with CHH 
to prolonged HPV infections [18]. Such persistence may 
increase their risk for carcinoma development also in the 
head and neck region [19]. Epidemiological studies have 
also revealed a close relationship between oral microbi-
ome and tumor occurrence [20]. Oral microbial imbal-
ance, caused by either external alterations or damaged 
immune function, is a potential underlying mechanism 
for tumorigenesis [20]. No previous study has investi-
gated oral HPV status and bacterial microbiome in indi-
viduals with CHH. This cross-sectional observational 
study tested the hypothesis that individuals with CHH 
have higher prevalence of oral HPV and altered oral 
microbiota compared with the general population.

Material and methods
The study protocol was approved by the Research Ethics 
Committee of the Hospital District of Helsinki and Uusi-
maa (HUS836/2018). Informed consent was obtained 
from all the participants and/or their legal guardians 
prior to study onset. The study conformed to STROBE 
Guidelines [21].

Study participants
All the 112 members of the Finnish Chondrodysplasia 
Registry were invited to participate in this study. The 
study coincided with the COVID-pandemic, which pre-
vented participation of all the willing candidates due to 
hospital research visit policies. Eventually, 20 individu-
als with CHH were willing and able to attend an oral 
examination and brush sampling between March 2020 
and May 2021. Figure 1 outlines the participant selection. 
None of the study participants presented with COVID-
19 symptoms.

The control group consisted of a random sample of 41 
volunteer patients and staff members of Espoo Munici-
pality Dental Clinic undergoing an identical examina-
tion. A targeted ratio was two controls to one case. The 
HPV samples of two control individuals were lost during 
sample transportation and the eventual control group 
consisted of HPV samples of 39 individuals and oral 
microbiota samples of 41 individuals (Table 1).

The oral examination included full-mouth registra-
tion of the number of active caries lesions and probing 
pocket depth of six sites per tooth. Pocket depth was 
used as an indicator of periodontal disease [22]. Clini-
cal oral findings, smoking status, and the presence of 
lymphopenia and/or neutropenia of the individuals with 
CHH included in this study have been presented in our 
previous reports [1, 23]. The complete blood count was 
determined before the onset of the COVID-pandemic. 
Two oral brush samples were obtained from the buccal 
mucosa of both cheeks and the superior and inferior ves-
tibular areas. The brush sample for microbiota analysis 
was taken with Puritan DNA/RNA collection tube Shield 
with Swab (Zymo Research, USA) according to manu-
facturer’s instructions. For HPV analysis, a Cytobrush 
(MedScand, Sweden) was taken and placed into 70% eth-
anol and frozen at − 70 °C until analyzed.

HPV analysis
DNA extraction from Cytobrush samples was performed 
with high salt method [24]. The DNA extraction method 
has been previously used in Finnish HPV family stud-
ies, and therefore makes our findings comparable to the 
previous ones [25]. HPV genotypes of genus alpha were 
analyzed by nested PCR. The samples with positive 
band in gel electrophoresis were further analyzed using 
a bead-based Luminex system detecting the following 
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CHH Alpha HPV Beta HPV Gamma, nu, my HPV
1 HPV28 Neg Pos
2 Neg Neg Pos
3 Neg Neg Neg
4 Positive, not typeable Neg Pos
5 HPV78 Neg Pos
6 Neg Neg Pos
7 Neg Neg Pos
8 HPV16 Neg Pos
9 Neg Neg Neg
10 Neg Neg Neg
11 HPV16 Neg Pos
12 Neg Neg Neg
13 Neg Pos Pos
14 Neg Neg Neg
15 Neg Pos Pos
16 HPV16 Neg Pos
17 HPV16 Neg Neg
18 HPV16 Neg Pos
19 HPV27 Neg Pos
20 Neg Neg Neg
Controls
21 Neg Neg Pos
22 Neg Neg Neg
23 HPV16 Neg Pos
24 HPV16 Neg Pos
25 Neg Neg Pos
26 Neg Neg Neg
27 HPV16 Neg Neg
28 HPV3 Neg Pos
29 Neg Neg Pos
30 Pos, not typeable Neg Pos
31 Neg Neg Pos
32 Neg Neg Neg
33 Neg Neg Neg
34 Neg Neg Neg
35 Neg Neg Pos
36 Neg Neg Neg
37 Neg Neg Neg
38 HPV16 Neg Neg
39 HPV16 Neg Neg
40 HPV16 Neg Neg
41 HPV16 Neg Pos
42 Neg Neg Neg
43 Neg Neg Neg
44 HPV27 Neg Pos
45 HPV27 Neg Neg
46 Neg Pos Pos
47 Neg Neg Pos
48 Neg Neg Pos
49 Neg Neg Neg
50 Neg Neg Neg
51 HPV16 Neg Neg

Table 1  Human papilloma virus (HPV) distribution in 20 individuals with Cartilage-hair hypoplasia (CHH) and 39 controls detected 
with Luminex-hybridization. Positive findings are shaded
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43 HPV types as described before [26]; hrHPV types: 16, 
18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, probable/pos-
sible (p) hrHPV types: 26, 30, 53, 66, 69, 70, 73, 82, 85, 
97, non-classified or low risk (lr) HPV types: 6, 11, 27, 
34, 40, 42, 43, 44, 54, 55, 57, 61, 67, 71, 72, 81, 83, 84, 89, 
177. HPV DNA amplification by a general primer PCR 
(GP5+/6+) and the subsequent detection of the prod-
ucts with type-specific oligonucleotide probes couples to 
fluorescence-labeled polystyrene bead (Luminex suspen-
stion array technology) (GP5+ (5’TTT GTT ACT GTG 
GTA GAT ACT AC-3’) (5’-biotinylated GP6+: 5’-GAA 
AAA TAA ACT GTA AAT CAT ATT C-3’). Any A6/
A8 PCR sample that tested positive in agarose gel elec-
trophoresis, but did not hybridize in the Luminex assay, 
was Sanger-sequenced. Six samples did not hybridize to 
one of the given probes and therefore, were sequenced 
using a Sanger-based technology and typed by using 
the NCBI Blast database (https://blast.ncbi.nlm.nih.
gov/Blast.cgi). If the sequencing data was not readable, 
the sample was considered HPV-positive with undeter-
mined type. All HPV16-positive samples were quanti-
fied by quantitative real-time PCR. HPV16 viral load 
measurement was performed using HPV16-type-specific 
real-time PCR on a light-cycler 480 II (Roche) [27]. This 
assay detects at least 50 International Units (IU) / 5 µl of 
HPV16 DNA. However, the nested A6/A8 HPV genotyp-
ing assay seems to be even more sensitive, as we had an 
HPV16-positive result but could not quantify HPV16-
DNA using real-time PCR. Nested PCR protocol for the 
detection of genus beta HPV (EV = Epidermodysplasia 
verruciformis-associated HPV) was performed, but not 
further analyzed, as usually more than one beta-HPV 
type is present and sequencing does not give a clear 
result [28, 29]. Finally, the „FAP“ PCR was performed, 
detecting HPV of the genera Beta, Gamma, Mu and Nu 
as previously described [30]. To account for an elevated 
risk of contamination using nested PCR, HPV-negative 
cells (processing control) as well as reagent controls were 
included in every run. All controls were HPV-negative in 
every run.

Microbiota analysis
Samples for the microbiome analysis were divided into 
aliquots and frozen in − 80  °C. Bacterial DNA isolation 
was performed with Hain GXT NA Extraction Kit using 
GenoXtract (Hain Lifescience GmbH, Germany) from 
500  µl of sample solution. The shotgun sequencing was 
performed on an Illumina Novaseq 6000 instrument 
using 150  bp paired-end sequencing. The sequencing 
libraries were prepared with Nextera XT Library prepa-
ration kit. The sequencing run included ZymoBIOMICS 
Microbial Community DNA Standard (Zymo Research 
Corporation, USA) as a positive sequencing control and a 
negative control from DNA isolation.

The sequence data was processed with CLC Micro-
bial Genomics Module (CLC Genomics Workbench 
22.0.2, Qiagen, Denmark). Workflows “Data QC and 
Taxonomic Profiling” and “Merge and Estimate Alpha 
and Beta Diversities” were used in bioinformatics analy-
ses. These include quality, ambiguous, and automatic 
adapter read-through trimming. Subsequently, sequences 
were mapped using Qiagen’s curated QMI-PTDB data-
base (version 2, 2022-01) containing 60 445 reference 
sequences. Host genome was filtered using Genome Ref-
erence Consortium Human Build GRCh38.p13 (updated 
2022-04, assembly ID: GCA_000001405.28). Alpha 
diversity was calculated using “Estimate Alpha and Beta 
Diversities” workflow with maximum depth of 400 000 
and 50 sampling points in rarefaction analysis. Rarefac-
tion value of 24 491 was used. Shannon entropy, and 
Chao1 diversity indices were selected to represent alpha 
diversity. Beta diversity calculation was performed with 
Bray-Curtis dissimilarity index and visualized with Prin-
cipal Coordinate Analysis (PCoA). Package “ggplot2” [31] 
was used in visualization of principal coordinates with 
default settings and 0.95 as confidence limit.

Statistical analysis
As a reference for evaluation of the power of the study, 
we used the reported average oral HPV point prevalence 
of 19.5% in Finnish adult population [32]. With 80% 
power (alpha 0.05) the achieved study sample size would 

CHH Alpha HPV Beta HPV Gamma, nu, my HPV
52 Neg Neg Pos
53 Neg Neg Neg
54 Neg Neg Pos
55 Neg Neg Pos
56 Neg Neg Neg
57 HPV61 Pos Pos
58 Neg Neg Neg
59 HPV3 Neg Neg
Published in conference poster at EUROGIN 2023

Table 1  (continued) 
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be able to reliably detect an HPV incidence of 62% or 
higher in the patient group.

All cases with available data were utilized. The missing 
HPV samples of two control individuals were assumed 
to be completely at random. Chi-Square test was applied 
to analyze the association between HPV status (dichot-
omous) and individuals age (categorical), smoking or 
periodontal status (dichotomous), as well as presence/
absence of CHH or lymphopenia (in individuals with 
CHH). Nonparametric Mann-Whitney U test and PER-
MANOVA test were used to assess microbial structure 
alterations for alpha and beta diversities respectively. 
OTU tables were used to perform differential abun-
dance analysis with Wald test at strain and species level. 
FDR- corrected p-values were used in differential abun-
dance analysis. Significance was considered for p < 0.05 
(2-sided).

Results
Mean age of individuals with CHH was 36 years with a 
range of 5–59 years (40% males), and that of controls was 
33 years, range 1–67 years (32% males). The difference 
in age was statistically insignificant between the groups 
(U = 451, p = 0.321). Of the participants with CHH, three 
were children aged between 5 and 11 years, and 17 were 
adults (aged ≥ 18 years) (Fig. 1). Of the controls, five were 
children aged between 1 and 12 years, and 36 were adults.

Study participants with CHH had asymptomatic or 
mild clinical immunodeficiency [6]. Five participants 
with CHH had recurrent respiratory infections, including 

otitis media, sinusitis, and pneumonia. Upper (n = 2) and 
lower (n = 4) gastrointestinal complaints were reported 
by six participants with CHH, and two of them had 
duodenal villous atrophy of unknown etiology. Seven 
participants with CHH had reported a history of skin 
warts, four of them required multiple treatment courses. 
Five out of these seven individuals were positive for oral 
HPV in the current analysis. Basal cell carcinoma (mul-
tiple episodes) had previously been diagnosed in a single 
participant with CHH, who tested positive for oral HPV. 
None of the controls had a known immunodeficiency 
disease.

HPV status
The prevalence of HPV in patients with CHH was similar 
to the controls. HPV was detected in oral mucosa of 70% 
of individuals with CHH and in 64% of controls (Table 2) 
(χ2(1, n = 59) = 1.00, p = 0.946). Alpha HPV was positive 
in 9/20 (45%) of individuals with CHH and 14/39 (36%) 
of the controls (c2 (1, n = 59) = 0.461, p = 0.578). The HPV 
types detected in individuals with CHH were HPV-16 
(n = 5) and 27, 28, 78 in one sample each. In controls, the 
HPV types detected were 16 (n = 8), 3 (n = 2), 27 (n = 2), 
and 61 (n = 1). The sequencing data was not readable and 
thus no HPV-type was determined in two samples. Three 
samples carried HPV-16 below the limit of detection of 
the assay. No infection with multiple types occurred. 
Beta HPVs positivity was detected in 2/20 (10%) of indi-
viduals with CHH and in 2/39 (5%) of the controls. A 
combined presence of beta/gamma/mu/nu HPV types 

Fig. 1  Flow chart of study subjects
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was found in 13/20 (65%) of individuals with CHH and 
in 18/39 (46%) of the controls. In total, 15% of individuals 
with CHH and 32% of the controls were HPV-negative. 
In the CHH group, no association was found between 
HPV and individual’s age, smoking or periodontal sta-
tus, or presence/absence of lymphopenia (χ2 (19,20 = 27, 
p = 0.107), (1,20 = 0.205, p = 0.651), (1,20 = 2.95, p = 0.399), 
(1,20 = 1.29, p = 0.256) respectively. None of the CHH 
patients or controls exhibited an oral mucosal HPV-
related lesion.

Oral microbiome
The samples of patients and controls were dominated 
by the phyla Firmicutes, Proteobacteria, Actinobacte-
riota, Bacteroidota and Firmicutes_C (Table  1). The 
most abundant genera were Streptococcus, F0040, Acti-
nomyces, Haemophilus_D and Haemophilus whilst the 
most abundant species were Streptococcus pneumonia, 
F0040 sp900095835, Actinomyces viscosus, Steptococ-
cus gwangjuense and Haemophilus_D parainfluenzae_A. 
The most abundant strains were Actinomyces viscosus, 
Prevotellaceae bacterium Marseille-P2826, Streptococcus 
pneumoniae, Streptococcus gwangjuense, Haemophilus 
parainfluenzae T3T1 (Table 1). No significant difference 
was detected at species or strain level. Read count abun-
dances were adjusted. Out of all the sequences, 69.7% 
corresponded to host reads, while 1.1% were reference 
database matches. The reference database detected at 
least 558 species and 375 genera, including representa-
tion from bacteria and archaea. Average number of reads 
before trimming was 91998249,11 (median 87,263,078) 
and after trimming 91952668,38 (median 87,236,649).

The alpha and beta diversity metrics at species level 
are shown in Fig. 2. Both alpha diversity indices showed 
statistically significant difference between the groups, 
with individuals with CHH having higher alpha diversity 
(p = 0.03 with Chao 1, p = 0.02 with Shannon entropy). 
Microbial communities differed between individuals with 
CHH and control groups, as defined by Bray-Curtis beta 
diversity index (p = 0.01). Strain level metrics followed the 
same trend as species level (Additional file, Figure S1).

Differential abundance analysis showed significantly 
different bacterial species between the two groups, 
when corrected for active caries and periodontal disease 
(Fig. 3 and Additional file, Table S1). Species Mitsuokella 
sp000469545, Parascardovia denticolens, Propionibac-
terium acidifaciens, UMGS1907 sp004151455, Salini-
cola halophilus, Haemophilus_A paraphrohaemolyticus, 
Fusobacterium massiliense, and Veillonella parvula were 
lower in abundance among individuals with CHH, whilst 
Slackia exigua was higher (Fig.  3, Additional File, Fig-
ure S2 and Table S2).

Discussion
To our knowledge, this is the first report on oral HPV 
DNA prevalence as well as oral microbiome analysis in 
individuals with CHH. We found that individuals with 
CHH exhibit similar prevalence of HPV DNA but differ-
ent bacterial microbiota on their oral mucosa, compared 
to healthy controls.

Oral cavity hosts bacteria, viruses, and fungi that con-
tribute to physiological and immunological functions 
[11]. Colonization begins at or shortly after birth, and 
eruption of teeth produces more surfaces for coloniza-
tion [11]. Most unvaccinated individuals acquire HPV at 

Table 2  Five most abundant phyla, genera and species among 20 individuals with Cartilage-hair hypoplasia (CHH) and 41 healthy 
controls. The table shows the number of the taxa present in cases, controls and all samples, as well as their median strain counts. 
Median count signifies median taxon count

Individuals with CHH Controls All
Taxon n n % Median count n n % Median count n n % Median count

Phylum Firmicutes 20 100 78,828 41 100 194,809 61 100 169,190
Proteobacteria 20 100 32,777 41 100 106,890 61 100 77,414
Actinobacteriota 20 100 47,677 41 100 65,260 61 100 59,906
Bacteroidota 20 100 9971 41 100 17,215 61 100 16,267
Firmicutes_C 20 100 7309 41 100 43,385 61 100 24,056

Genus Streptococcus 20 100 65833.5 41 100 160,991 61 100 158,785
F0040 20 100 634 37 90.2 2007 57 93.4 1135
Actinomyces 20 100 5864 41 100 23,664 61 100 16,802
Haemophilus_D 19 95 3185.5 41 100 8611 60 98.4 6366
Haemophilus 19 95 2315 41 100 7559 60 98.4 4828

Species Streptococcus pneumoniae 20 100 48452.5 41 100 117,580 61 100 105,648
Actinomyces viscosus 20 100 5101 41 100 22,918 61 100 15,391
F0040 sp900095835 15 75 77 31 75.6 1655 38 62.3 633
Streptococcus gwangjuense 20 100 14774.5 41 100 40,680 61 100 32,877
Haemophilus_D parainfluenzae_A 19 95 3038 41 100 8268 60 98.4 5944
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least once in their lifetime [33]. Oral mucosa is a com-
mon site for the first exposure to HPV [34]. Despite oral 
HPV transmission commonly occurring through sexual 
contact [33], half of healthy adults demonstrate HPV-
specific cell-mediated immunity, irrespective of their sex-
ual status [35]. The infection can be acquired vertically 
or horizontally from the mother at an early age, resolve 
spontaneously, or remain latent for years [33]. In a previ-
ous Finnish HPV study on families, the parents’ incidence 
rate of oral mucosal HPV ranged from 8 to 34% and that 
of children from 9 to 23% [25, 35]. In the United States, 
peak prevalence of HPV infection is, in adults, at ages 30 
to 34 and 60 to 64 years (7.3% and 11.4% respectively) 
due to incident infection, reinfection, or reactivation [36]. 
In our cohort, the prevalence of oral HPV was higher in 
the control group (64%), consisting of both children and 
adults, and notably higher in individuals with CHH (70%) 
compared with the previous Finnish HPV study.

HPV infection can be asymptomatic or display a vari-
ety of clinical manifestations [34]. The low-risk mucosal 
genotypes, such as HPV-6 and HPV-11, cause benign 
papilloma/condyloma, whereas the high-risk mucosal 

HPVs, such as HPV-16 and HPV-18, can cause squa-
mous cell carcinoma in the head and neck region, espe-
cially in the oropharynx [34]. Malignant transformation 
requires persistent HPV infection [34]. Persistent and 
extensive HPV infection can result from an inadequate 
immune response [37]. Primary immunodeficiency, such 
as is associated with EVER1, EVER2, GATA2, CXCR4, 
and DOCK8 mutations, as well as combined immunode-
ficiency, such as in bare lymphocyte syndrome, is asso-
ciated with extensive HPV infection [38, 39]. Similarly, 
immunosuppression following organ transplantation 
or HIV infection increases the risk for HPV infection 
[40, 41]. In the general population, 27% of oral epithelial 
dysplasias harbor HPV DNA [42]. Smoking, poor oral 
hygiene, and old age are among factors speculated to 
module oral HPV persistence [33]. Previous investiga-
tions among Finnish females have shown that HPV-6 and 
HPV-16 are the most common genotypes in oral HPV-
infections and most likely to persist [32, 35]. Our study 
found a higher prevalence of HPV in oral cavity of indi-
viduals with CHH than of healthy controls, although the 
difference did not reach statistical significance. However, 

Fig. 2  Alpha and beta diversity indices of individuals with Cartilage-hair hypoplasia and healthy controls with (A) Chao 1 bias-corrected (p = 0.03), (B) 
Shannon entropy (p = 0.02) metrics at species-level, and (C) Bray-Curtis (p = 0.01) metrics at species-level
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as we have previously reported, there was no clinical 
findings suggesting HPV-related lesions on either groups 
[23]. From the detected HPV genotypes, high-risk HPV-
16 was the most prevalent in HPV-positive individu-
als with CHH (56%) and controls (57%). No association 
between lymphopenia and oral HPV was detected in 
our sample possibly due to small sample size. Possible 
reservoirs for HPV in oral cavity include inflamed gin-
gival pocket epithelium, ductal epithelium of the sali-
vary glands, cryptal epithelium of the tonsils, border of 
oral cavity, and oropharynx [34]. A positive association 
between oral HPV infection and severe periodontitis 
has been suggested by previous studies [43], but was not 
detected in ours.

Previous studies have noted that the core oral microbi-
ome of healthy individuals includes genera Streptococcus, 
Actinomyces, Neisseria, Veillonella, and Haemophilus 
[44, 45]. Our findings among the healthy controls are 
consistent with these previous observations. An altered 
microbial diversity has been found in oral fluids of 
individuals with common variable immunodeficiency, 
Wiskott-Aldrich syndrome related immunodeficiency, 
or immunocompromised HIV-positivity [46–48]. Peri-
odontal manifestations are a common oral finding [49], 

and in individuals with Wiskott-Aldrich syndrome, spe-
cies associated with periodontitis are more prevalent 
[48]. Similarly, we found, that oral microbial communi-
ties differ between individuals with CHH and the con-
trols. The microbiome of individuals with CHH showed 
less species Mitsuokella sp000469545, which is identi-
fied as a periodontal pathogen, as well as Parascardovia 
denticolens, Propionibacterium acidifaciens, UMGS1907 
sp004151455, and Veillonella parvula, that are all associ-
ated with plaque and dental decay. This may reflect the 
multifactorial nature of oral diseases with wide range of 
possible pathogenic bacteria since individuals with CHH 
have more frequently deep gingival pockets and decay 
[23]. Slackia exigua was highly abundant in individuals 
with CHH. Slackia exigua is an anaerobic gram-positive 
rod of human oral microbiota with pathogenic potential 
for oral and systemic infection [50–52]. Putative disease-
driving pathobionts, such as Slackia exigua, are detected 
also in healthy individuals, and both genetic and environ-
mental factors contribute to disease development [50, 
53]. Thus, our finding supports the idea that immuno-
compromised individuals, such as CHH patients, could 
be at greater risk for increased pathogen colonization and 
translocation possibly leading to increased prevalence 

Fig. 3  Differential abundance analysis at species level between individuals with Cartilage-hair hypoplasia and healthy controls. The data is corrected for 
active caries and periodontal disease. The figure contains 9 most abundant and statistically significant (FDR<0.05) species. The color of the bar indicates 
the median abundance of the species. Fold change indicates direction and difference of the change. *=p-value <0.05, **=p-value <0.01, ***=p-value 
<0.001
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and severity of oral and extraoral infections. Simultane-
ously, it is important to note that bioinformatics analysis 
of microbiome data does not establish causality.

Some important limitations need to be considered 
when assessing our findings. The first is the possible 
selection bias of the patients and controls. The control 
group included 12 dental clinic staff members (26%) 
who would also be likely to maintain a good oral hygiene 
and mechanical plaque control thereby influencing oral 
microbiome, but not the HPV infection status. Due to 
the pandemic at the time of recruitment, CHH individu-
als with more severe immunodeficiency may have been 
more likely not to participate. Secondly, study partici-
pants could potentially have been carrying an asymp-
tomatic subclinical COVID-infection, that might have 
affected oral microbiome. However, previous investiga-
tions have reported alterations in abundances of Neisse-
ria as the main finding associated with COVID-19 [54]. 
No significant alterations in abundance of Neisseria were 
found in the present study across the groups. Thirdly, the 
sample size is small and thus expected to deliver results 
with more variance and more vulnerable to outliers. Our 
findings, however, provide insight for future studies, on 
larger cohorts, to explore the association between clinical 
and immunological findings.

Conclusions
The findings of this study can be used to develop screen-
ing aimed at improving oral health of individuals with 
CHH. Individuals with CHH and symptomatic immu-
nodeficiency typically suffer from recurrent respiratory 
tract infections [55, 56]. Lung disease and malignancies 
are the main cause of death among individuals with CHH 
[8, 57]. It has been estimated that over 12  million new 
cancer cases per year are caused by infectious agents, 
representing over 16% of all cancers [19]. Different 
microbiome of individuals with CHH may explain some 
of their risk for malignancies. Screening for potentially 
malignant epithelial lesions and atypical mouth ulcers is 
part of a regular comprehensive clinical oral examination 
and an aggressive diagnostic approach is recommended 
for individuals with CHH.
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