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Abstract
Background  Prader-Willi syndrome (PWS) is a genetic disorder characterized by abnormalities in the 15q11-q13 
region. Understanding the correlation between genotype and phenotype in PWS is crucial for improved genetic 
counseling and prognosis. In this study, we aimed to investigate the correlation between genotype and phenotype in 
45 PWS patients who previously underwent methylation-sensitive high-resolution melting (MS-HRM) for diagnosis.

Results  We employed methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and 
Sanger sequencing, along with collecting phenotypic data from the patients for comparison. Among the 45 patients, 
29 (64%) exhibited a deletion of 15q11-q13, while the remaining 16 (36%) had uniparental disomy. No statistically 
significant differences were found in the main signs and symptoms of PWS. However, three clinical features showed 
significant differences between the groups. Deletion patients had a higher prevalence of myopia than those with 
uniparental disomy, as well as obstructive sleep apnea and an unusual skill with puzzles.

Conclusions  The diagnostic tests (MS-HRM, MS-MLPA, and Sanger sequencing) yielded positive results, supporting 
their applicability in PWS diagnosis. The study’s findings indicate a general similarity in the genotype-phenotype 
correlation across genetic subtypes of PWS.

Keywords  Prader-Willi syndrome, Imprinting, Epigenetics, Methylation-specific multiplex ligation-dependent probe 
amplification, Genotype, Clinical manifestations
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Introduction
Described in 1956, Prader-Willi syndrome (PWS, OMIM 
#176,270) is an inherited disorder characterized by signs, 
symptoms, and genetic factors [1]. This genetic syndrome 
is characterized by a combination of signs, symptoms, 
and underlying genetic factors. It is mainly characterized 
by hypotonia, low stature, hyperphagia with subsequent 
obesity, neuropsychomotor development delay, endo-
crine deficiency, and behavioral and cognitive abnor-
malities [2, 3]. PWS affects all sexes and races, with an 
estimated incidence of 1:10,000 to 1:25,000 live births [4].

The cause of this neurodevelopmental disorder is the 
lack of expression of paternal copies of genes located in 
the 15q11-q13 region. PWS was the first human disease 
to be related to imprinting disorders [5]. This genetic dis-
order can be caused by three different molecular mecha-
nisms: (a) de novo deletions of the paternal copy of the 
15q11-q13 region (70%); (b) maternal uniparental disomy 
(UPD), where there is the inheritance of two maternal 
alleles of chromosome 15, in contrast to the normal one 
allele from each parent (25%); and (c) imprinting center 
defects (ICD), where we can find mutations or microde-
letions in this small chromosomal region (< 5%) [6–9].

Although knowledge of the molecular etiology is not 
necessary to establish the diagnosis, genetic causes influ-
ence recurrence risk and counseling for PWS. The risk of 
recurrence is low, 1% for deletion and UPD but 50% for 
ICD with microdeletion [10].

Comparisons of 15q11-q13 deletion versus UPD led 
to genotype-phenotype correlations. The PWS region is 
approximately 6 MB on chromosome 15 (Fig. 1). A type 
I (BP1/BP3) deletion is approximately 6  Mb, and a type 
II (BP2/BP3) deletion is approximately 5.3  Mb. Type I 
deletions cause severe problems, while type II deletions 
lead to less deviant behavior [11]. UPD is associated with 
a higher verbal intelligence quotient (IQ) and more psy-
chosis and autism [12].

The clinical diagnosis of PWS is based on the clini-
cal presentation and findings, which present difficulties 
during the neonatal and early childhood period. In this 
period, many of its signs and symptoms are nonspecific, 
and typical clinical features become apparent in later life 
stages. In parallel, the confirmation of the syndrome can 
only be given through laboratory diagnosis. There are 
many molecular strategies that evaluate the methylation 
status of the 15q11-q13 region, such as: Southern blot-
ting, methylation-specific polymerase chain reaction 
(MS-PCR), postrestriction PCR of bisulfite-treated DNA, 
and methylation-specific multiplex ligation-dependent 
probe amplification (MS-MLPA) [14]. However, all these 
listed techniques are laborious, expensive and time con-
suming to obtain a diagnosis. Consequently, high rates 
of diagnostic errors and delays in interventions lead to a 
poor prognosis for these patients. It is essential to detect 

individuals with PWS in the neonatal period to initiate 
early intervention. Early treatment includes growth hor-
mone (GH), which not only improves height and body 
composition (reduces body fat and increases muscle 
mass) but also decreases morbidity and mortality asso-
ciated with obesity-related complications. Furthermore, 
it is of fundamental importance to study the correlation 
of the clinical phenotypes and their association with the 
genotype [15, 16]. Knowing the genetic mechanism that 
leads to the syndrome allows better preparation for the 
phenotypic complications associated with it.

The objective of this study was to increase the knowl-
edge of genotype-phenotype correlations in PWS and 
thus contribute to the understanding of the wide clinical 
spectrum observed in PWS.

Results
Blood samples were collected from 166 individuals with 
clinical criteria for PWS and subsequently subjected to 
the Methylation-sensitive high-resolution melting (MS-
HRM) protocol for molecular confirmation. Of these 
166 individuals, 45 (40%) had confirmed PWS and were 
included in the study. The positive result for PWS in 
this protocol is due to a change in the methylation pat-
tern, represented by the presence of a single peak rela-
tive to the maternal allelic dissociation temperature and 
the absence of the peak related to the paternal allele. 
The amplicons were differentiated by the temperature 
required for double-stranded DNA dissociation (78  °C 
for paternal and 83  °C for maternal alleles), identify-
ing 121 (60%) of the 166 studied patients with a normal 
methylation profile due to the presence of two peaks 
related to maternal and paternal alleles (Fig. 2). The MS-
HRM reactions of the 45 individuals showed little varia-
tion in the amplification cycle threshold (Ct), remaining 
constant at 25 (Fig. 2).

MS-MLPA was performed in 33 (73%). Of these, 18 
(54%) were female and 15 (45%) were male. There were 
no discordant results between MS-HRM and MS-MLPA, 
with 45 patients diagnosed as having PWS and 121 non-
PWS controls. Therefore, the concordance rate was 100%, 
and Cohen’s kappa was 1.0, indicating perfect agreement.

Samples with a methylation status of approximately 
50% (range between 40 and 60%) for specific PWS probes 
were identified as normal controls (Fig.  3A). In con-
trast, if this same status presented values close to 100% 
(greater than 80%), they were identified as the PWS pat-
tern (Fig.  3B). In addition, the protocol allows differen-
tiation of the deletion subtypes found in patients with 
PWS using the copy number data. The individuals with 
a deletion ranging from NIPA1 to OCA2 were identified 
as having type 1 deletions (Fig. 4A), while patients with a 
deletion ranging from MKRN3 to OCA2 were identified 
as having type 2 deletions (Fig. 4B).
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Of the 33 individuals analyzed in our laboratory with 
MS-MLPA tests, 8 (24%) had type 1 deletions, 11 (33%) 
had type 2 deletions, and 14 (43%) did not have dele-
tions, indicating UPD of chromosome 15 or defects in 
the imprinting center (Fig.  3B). No individual in the 
study showed any atypical deletions or Robertsonian 
translocations.

Out of a total of 45 patients, it was possible to identify 
the presence of deletions in 29 of them (64%) using the 
methodologies used in the study. The MS-MLPA method 
does not differentiate between cases of UPD and defects 
in the imprinting center. To investigate the etiology of 

these patients, Sanger sequencing of the promoter region 
of exon 1 of the SNRPN-SNURF gene was performed to 
evaluate base-pairing mutations and the epigenetic pat-
tern of this region (Fig. 5).

It was not possible to identify differences between 
the reference sequence deposited in GenBank 
(NG_012958.1), indicating UPD in all 14 individuals who 
did not show deletions in the MS-MLPA tests. Figure 6 
summarizes the molecular mechanisms found in this 
cohort of patients.

We collaborated with the Luiz Capriglione State Insti-
tute of Diabetes and Endocrinology (IEDE/RJ) to obtain 

Fig. 1  Chromosome map of the 15q11.2-q13.1 region. Symbols: ovals, protein-coding genes; rectangles, RNA genes; BP1, breakpoint 1; BP2, breakpoint 
2; BP3, breakpoint 3; Type 1, BP1-BP3 deletion with ~ 6 Mb; Type 2, BP2-BP3 deletion with ~ 5.3 Mb; Cen, Centromere; Tel, Telomere; IC, Imprinting Center. 
Adapted from Costa et al. [13]
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some of the clinical results of individuals in the study. 
IEDE was responsible for the clinical investigation.

The results on clinical history, physical findings, and 
neurological abnormalities are organized in Table  1. In 
our study, no significant differences were found between 
the two groups for the following data: reduced fetal activ-
ity, neonatal hypotonia, food-related behavioral prob-
lems, dental caries, scoliosis, type 2 diabetes mellitus, 
thick and viscous saliva, cryptorchidism, and hypoplastic 
labia minora.

Behavioral problems, such as stubbornness, excoriation 
disorder, temperamental issues, and food-related prob-
lems, were found in approximately 58% of patients with 
deletions and 52% of patients with UPD. No significant 
difference was found between the two groups regard-
ing excessive daytime sleepiness and an increased risk of 
seizures.

Compared with normal individuals, patients with 
PWS have a delay in the development of motor coor-
dination; however, in our study, over 30% of patients in 
both groups had deficits in gross and fine motor coor-
dination. Global developmental delay was observed in 
24/29 (82.8%) patients with deletions and 11/16 (68.8%) 

patients with UPD, but there was no significant differ-
ence between the groups.

Clinical phenotypes related to the ocular system were 
also evaluated. In 15/29 (51.7%) patients with deletion 
and 4/16 (25%) patients with UPD, they presented stra-
bismus, but without a statistically significant difference 
between the two groups. Myopia was shown to be more 
frequent in patients with deletions than in patients with 
UPD (31% vs. 0%). In our study, only 1 patient in the dele-
tion group had hyperopia, while only 1 patient in the 
UPD group had nystagmus.

Sleep integrity was evaluated through the manifesta-
tion of central sleep apnea, which was not observed in 
any of the patients. However, obstructive sleep apnea 
showed significant differences between groups, with this 
disorder present in 15/29 (51.7%) of patients with dele-
tions and 3/16 (18.8%) of patients with UPD.

Regarding cognitive function, unusual puzzle-solving 
abilities that patients with PWS can present showed a 
significant difference between the groups, with a higher 
frequency in patients with deletions than in patients with 
UPD (48.3% vs. 6.3%).

Fig. 2  Allelic discrimination from the dissociation curve of amplified DNA from two individuals analyzed by MS-HRM. The left graph presents a normal 
control due to the presence of peaks related to the paternal and maternal alleles; the right graph shows PWS patient 01 with alteration in the methylation 
profile due to the presence exclusively of the maternal allele, characterizing PWS
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As previously mentioned, PWS has some clinical 
signs and symptoms that are very characteristic of these 
patients. In our study population, severe neonatal hypo-
tonia that improved with age was detected in all cases (45 
individuals). Feeding problems in childhood, hyperpha-
gia, hypogonadism, and mild dysmorphic signs, such as 
almond-shaped eyes, downturned corners of the mouth, 
thin upper lip, and small hands and feet, did not differ 
significantly in our study. The data are summarized below 
in Table 1.

Discussion
Common molecular categories such as deletions and 
UPDs exhibit significant differences in clinical features. 
Paternal absence is associated with significant nutritional 
problems, sleep disturbances, depigmentation, speech 
impairment, and other symptoms [17]. Conversely, cases 
of UPD are often associated with prolonged gestation, 
increased verbal IQ, psychosis, and autism [18]. How-
ever, a UPD patient is less likely to have her PWS facies 
and pigmentation. To date, no genetic mutation has 
been described as a contributor to the devolopment of 

Fig. 3  Graphic referring to the copy number analysis (upper panel) and methylation profile (lower panel) provided by Coffalyser.net software. The 
salmon-colored area comprises probes (represented by black dots) of interest for the 15q11-q13 region, including probes with sites for the Hha1 enzyme 
(represented by blue dots). (A) Normal control with a normal methylation status. (B) Nondeletion PWS.
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Fig. 5  Representative electropherogram of the 15q11.2-q13 region derived from sequencing of PWS 13 patient. The black-marked sequence region 
indicates the CpG island found in the region

 

Fig. 4  Graphic referring to the copy number analysis (upper panel) and methylation profile (lower panel) provided by Coffalyser.net software. The 
salmon-colored area comprises probes (represented by black dots) of interest for the 15q11-q13 region, including probes with sites for the Hha1 enzyme 
(represented by blue dots). (A) Type 1 deletion of PWS. (B) Type 2 deletion of PWS
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the syndrome. In a previous study, our group proposed 
an individualized analysis of genes and their role in the 
devolopment of clinical phenotypes. As has been demon-
strated in this paper, the extensive clinical spectrum and 
the absence of a genotype phenotype specific correlation 
suggest that the multiple genes associated with PWS have 
an additive deleterious effect when deficiently expressed. 
Nevertheless, the lack of expression of the SNORD116 
gene cluster appear to be the best explanation for most 
of the PWS phenotype, although there is a need to inves-
tigate more of its mechanisms of action [13]. After that, 
the next step was to analyze if there was a genotype–phe-
notype correlation of our patients.

Clinical data from 45 PWS patients, mostly aged 1–28 
years (mean 9 years), showed a frequency of 64.4% in 
deletion and 35.6% in UPD groups, slightly consistent 
with previous studies [7, 19]. Studies have also found an 
older maternal age within her UPD groups compared to 
deletions [4, 20, 21]. In particular, data on maternal age 
were not available in our study, however national sta-
tistics from DataSUS [22] show that between 2005 and 
2020, maternal age increased annually in Brazil, espe-
cially in the 30–34 and 35–39 age groups, with increases 
of 28% and 62.6%, respectively. The higher frequency of 
UPD patients found in our study may be attributed, in 
part, to current trend of later pregnancies among women, 
which is a risk factor to the occurrence of UPD. In our 
cohort, we also conducted an analysis of the age at diag-
nostics, which ranged from 5 months to 23 years, with a 
median age of 1 year and 4 months, highlighting the cru-
cial role of the reference laboratory in molecular diagnos-
tics of PWS.

Regarding the possible influence of sex on patients with 
PWS, previous studies have shown discrepant results. 
Sanjeeva et al. [23] highlighted a higher prevalence of 
diagnoses in boys than in girls, while Gunay-Aygun et 
al. [24] reported a similar gender ratio. In our study, the 
gender ratio among PWS patients was approximately 
1:1 (21 boys and 24 girls). Although our results do not 

manifest this difference between genders, certain specific 
signs, and symptoms of the syndrome, such as cryptor-
chidism, are more easily identifiable in boys. Establishing 
some level of complexity in the clinical diagnosis of these 
patients.

This study investigated the main clinical phenotypes in 
newborns with PWS, including severe neonatal hypoto-
nia that improves with age (100%), almond-shaped eyes 
(86.6%), failure to thrive in childhood (82.2%), reduced 
fetal activity (80%), cryptorchidism (77.2%), and weak 
crying (62.2%). The results of WANG et al. [25] presented 
rates of hypotonia and weak crying higher than 95%, 
which is consistent with our data on hypotonia; however, 
the difference in results regarding weak crying may be 
explained by the fact that this clinical sign is subjectively 
judged by physicians.

Hypothalamic dysfunction underlies the major symp-
toms of patients with PWS [26, 27]. Symptoms of genital 
maldevelopment vary by gender, affecting the genitalia 
in men and the clitoris or genitalia in women. Male signs 
are evident at birth, whereas unlike male signs, female 
signs during the neonatal period can be obscured by 
obesity [28, 29]. In our study, 90.5% of 21 men had such 
symptoms, whereas only 29.1% of 24 women had such 
symptoms. Clinical observation bias could impact the 
analysis outcomes.

In this study, all cases of hypopigmentation were 
observed in patients with a deletion. However, this find-
ing did not show a statistically significant difference 
in our analysis. We found a lower incidence of skin 
hypopigmentation (20.7%) in our study group compared 
to the 70–100% incidence of cutaneous hypopigmenta-
tion described in different studies [24, 30]. One possible 
explanation that should be investigated by us is the eth-
nic groups of the patients, as skin hypopigmentation is 
less easily identified among Caucasian individuals. The 
discrepancies can be attributed to (a) small sample sizes 
that are susceptible to selection bias or (b) the absence 
of a standardized clinical evaluation for skin hypopig-
mentation that is easily overlooked. Therefore, to deter-
mine if our results align with these studies, we need to 
increase the sample size, standardize the evaluation cri-
teria, and conduct further research. The analysis of 54 
cases of pediatric patients with PWS by Cassidy et al. [31] 
reported that the incidence rate of skin hypopigmenta-
tion in cases associated with deletion is much higher 
than that in UPD. Analyzing the structure of the genomic 
region of chromosome 15 associated with PWS, we 
observed the presence of the OCA2 gene associated with 
type 2 oculocutaneous albinism, tyrosinase-positive. This 
gene is within the different breakpoints that lead to the 
appearance of two different deletion sizes.

In the present study, it was not possible to identify 
patients with defects in the imprinting center. The use of 

Fig. 6  Distribution of molecular mechanisms in the 45 patients with PWS 
from this study
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Pacients with deletion (n=29) Pacients with UPD (n=16) P/a=0,05
percentage n percentage n

Reduced fetal activity 82,8% 24 75% 12 P(2)=0,700
Polyhydramnios 27,6% 8 18,8% 3 P(2)=0,720
Breech position 37,9% 11 31,3% 5 P(1)=0,752
Short stature 55,2% 16 37,5% 6 P(1)=0,353
Failure to thrive in childhood 89,7% 26 68,8% 11 P(2)=0,111
Central obesity 51,7% 15 43,8% 7 P(1)=0,758
Dolichocephaly 34,5% 10 12,5% 2 P(2)=0,164
Narrow bitemporal diameter 58,6% 17 37,5% 6 P(1)=0,221
Almond-shaped eyes 86,2% 25 87,5% 14 P(2)=1,000
Upslanting palpebral fissures 34,5% 10 31,3% 5 P(1)=1,000
Thin upper lip 41,4% 12 18,8% 3 P(1)=0,189
Small-appearing mouth 48,3% 14 62,5% 10 P(1)=0,533
Downturned corners of mouth 44,8 13 62,5% 10 P(1)=0,353
Thick, viscous (reduced) saliva 31% 9 18,8% 3 P(2)=0,491
Enamel hypoplasia 10,3% 3 6,3% 1 P(2)=1,000
Early dental caries 31% 9 25% 4 P(2)=0,743
Dental crowding and malocclusion 20,7% 6 12,5% 2 P(2)=0,691
Strabismus 51,7% 15 25% 4 P(1)=0,118
Nystagmus 0% 0 6,3% 1 P(2)=0,356
Retinal hypopigmentation 0% 0 0% 0 -------------
Foveal hypoplasia 0% 0 0% 0 -------------
Hyperopia 3,4% 1 0% 0 P(2)=1,000
Myopia 31% 9 0% 0 P(2)=0,017
Hypernasal speech 41,4% 12 37,5% 6 P(1)=1,000
Weak or squeaky cry in infancy 62,1% 18 62,5% 10 P(1)=1,000
Hypoventilation 3,4% 1 0% 0 P(2)=1,000
Obstructive sleep apnea 51,7% 15 18,8% 3 P(1)=0,055
Feeding problems in infancy 51,7% 15 31,3% 5 P(1)=0,224
Gastroesophageal reflux 17,2% 5 31,3% 5 P(2)=0,455
Decreased vomiting 24,1% 7 31,3% 5 P(2)=0,728
Small penis 37,5% 6 16,7% 1 P(2)=0,616
Scrotal hypoplasia 56,3% 9 33,3% 2 P(2)=0,635
Cryptorchidism 81,3% 13 66,7% 4 P(2)=0,585
Hypoplastic labia minora 38,5% 5 20% 2 P(2)=0,405
Hypoplastic clitoris 23,1% 3 10% 1 P(2)=0,604
Scoliosis 27,6% 8 12,5% 2 P(2)=0,292
Kyphosis 3,4% 1 6,3% 1 P(2)=1,000
Small hands and feet 75,9% 22 75% 12 P(2)=1,000
Narrow hands with straight ulnar border 20,7% 6 12,5% 2 P(2)=0,691
Clinodactyly 24,1% 7 18,8% 3 P(2)=1,000
Hypopigmentation 20,7% 6 0% 0 P(2)=0,075
Blonde to light-brown hair 41,4% 12 18,8% 3 P(1)=0,189
Frontal hair upsweep 31% 9 12,5% 2 P(2)=0,279
Hyperinsulinemia 3,4% 1 18,8% 3 P(2)=0,121
GH deficiency 69% 20 50% 8 P(1)=0,336
Hypogonadotropic hypogonadism 10,3% 3 12,5% 2 P(2)=1,000
Diabetes mellitus (type 2) 3,4% 1 12,5% 2 P(2)=0,285
Skin picking 62,1% 18 50% 8 P(1)=0,534
Rectal picking 6,9% 2 18,8% 3 P(2)=0,330
Food related behavioral problems 58,6% 17 43,8% 7 P(1)=0,369
Temper tantrums 58,6% 17 56,3% 9 P(1)=1,000
Dificulty with transitions 24,1% 7 31,3% 5 P(2)=0,728

Table 1  Clinical findings in patients with PWS divided by genetic subgroups
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MS-MLPA confirmed the diagnosis by MS-HRM and in 
some cases allowed the identification of some deletions 
in 58% of the patients. Due to a limitation of the tech-
nique, individuals where deletions were not identified 
(52%) were analyzed indirectly for UPD and directly for 
the imprinting center defect.

In summary, hypotonia, feeding difficulties, and under-
developed genital are general clinical features of PWS. 
Hypopigmentation of the skin, poor development of sex 
glands, specific facial characteristics, GH deficiency, and 
other characteristics described in Table  1 did not show 
significant differences between deletion and UPD.

Sinnema et al. [32] reported that patients with PWS 
have higher rates of maladaptive behaviors compared to 
other syndromes with intellectual disability. Webb et al. 
[33] suggested that UPD cases have milder maladaptive 
behaviors compared to deletion cases but have a higher 
risk of autism spectrum disorders and psychosis.

In our study, myopia showed a significant difference 
between the groups (p < 0.05). Myopia, following the 
diagnostic criteria established by Holm et al. [2], is con-
sidered a minor criterion and is associated with deletion. 
One possible molecular explanation is the loss of the 
HERC2 gene. This gene belongs to the HERC gene fam-
ily, which encodes a group of proteins that have various 
structural domains. All members have at least one copy 
of an N-terminal region showing homology to the cell 
cycle regulator RCC1, and a C-terminal HECT domain 

(homologous to the C-terminus of E6-AP) found in a 
series of ubiquitin protein ligase E3s. Genetic variations 
in this gene are associated with variability in skin, hair, 
and eye pigmentation. Several pseudogenes of this gene 
are located on chromosomes 15 and 16. This gene is also 
associated with the development of refractive abnormali-
ties characterized by the ability to see near objects, which 
is associated with the phenotype of myopia [13].

Hypothalamic dysfunction is associated with clinical 
phenotypes such as hyperphagia and obesity in PWS due 
to hypometabolism. GH deficiency is common because 
GH affects IGF-I synthesis [34]. Regarding obstruc-
tive sleep apnea, a significant difference was observed, 
with a higher frequency in deletion cases than in UPD 
cases (p < 0.05). This condition may be associated with 
hypothalamic endocrine dysfunction that affects ven-
tilatory control, leading to sleep-disordered breathing 
(SDB) [35]. From a molecular point of view, consultation 
with the Human Phenotype Ontology– HPO, using the 
key term obstructive sleep apnea, resulted in the asso-
ciation of genes and diseases present in the molecular 
region of PWS. For example, MAGEL2 deletion has been 
associated with Prader-Willi-like syndrome (ORPHA 
ID:398,069), including a UPD case (ORPHA ID:98,754) 
with a role for the SNRPN, OCA2, MAGEL2, and NDN 
genes. Deletion outcomes vary by type (ORPHA ID: 
98,793, ORPHA ID: 177,901), including type 2 genes 
such as SNORD116-1, SNRPN, SNORD115-1, OCA2, 

Pacients with deletion (n=29) Pacients with UPD (n=16) P/a=0,05
percentage n percentage n

Stubbornness 55,2% 16 62,5% 10 P(1)=0,757
Obsessive behaviors 34,5% 10 37,5% 6 P(1)=1,000
Perseverant speech 48,3% 14 43,8% 7 P(1)=1,000
Obsessive-compulsive disorder 34,5\% 10 18,8% 3 P(2)=0,322
Psychosis 3,4% 1 0% 0 P(2)=1,000
Elopement 13,8% 4 12,5% 2 P(2)=1,000
Excessive daytime sleepiness 13,8% 4 37,5% 6 P(2)=0,131
Early-morning waking 55,2% 16 37,5% 6 P(1)=0,353
Night-awakening for food-seeking 6,9% 2 6,1% 1 P(2)=1,000
Several neonatal hypotonia 100% 29 100% 16 -------------
Poor neonatal suck and swallow reflexes 96,6% 28 93,8% 15 P(2)=1,000
Poor gross motor coordination 31% 9 25% 4 P(2)=0,743
Poor fine motor coordination 37,9% 11 31,3% 5 P(1)=0,752
Mild-to-moderate mental retardation 69,0% 20 43,8% 7 P(1)=0,122
Learning disabilities 51,7% 15 37,5% 6 P(1)=0,533
Increased risk of seizures 20,7% 6 18,8% 3 P(2)=1,000
Global developmental delay 82,8% 24 68,8% 11 P(2)=0,455
Speech-articulation problems 55,2% 16 62,5% 10 P(1)=0,757
Hyperphagia 51,7% 15 25% 4 P(1)=0,118
Temperature instability 27,6% 8 18,8% 3 P(2)=0,720
High pain threshold 48,3% 14 37,5% 6 P(1)=0,544
Unusual skill with jigsaw puzzles 48,3% 14 6,3% 1 P(1)=0,007
P(1)= Pearson’s chi-square test; P(2)= Fisher’s exact test; a=0.05. Lines without values are variables that had their analysis constant

Table 1  (continued) 
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MAGEL2, NDN, and their role in the development of 
apnea. and the desired phenotype are revealed.

Despite research on PWS, little is known about its 
cognitive aspects. Patients with PWS often have mild to 
moderate intellectual disability, poor short-term mem-
ory, improved visual motor skills, and spatial awareness 
[18, 36]. People with PWS are known to have a special 
talent for putting puzzles together. Compared to other 
individuals with some form of intellectual disability 
reported, the parents of these patients had a greater plea-
sure their children had with puzzle assembly. Holm et al. 
[2], based on clinical impressions, included the unusual 
ability with puzzles as a supportive criterion for the clini-
cal diagnosis of PWS. This unusual ability with puzzles 
can be explained due to the visual-motor strengths that 
many of these patients present, as well as their obsessive-
compulsive tendencies, need for order, accuracy, and for 
things to be “just right” [37]. Dykens [18] was the first to 
examine clinical impressions that people with PWS have 
puzzle and word search abilities. In our study, this signifi-
cant difference was observed more frequently in deletion 
cases than in DUP cases (p < 0.05). Consistent with our 
results, Dykens showed that DUM patients performed 
worse than paternal deletion patients with puzzle assem-
bly abilities. Due to the lack of studies regarding this find-
ing, little is still known about how the lack of information 
derived from the paternal allele on chromosome 15 is 
associated with puzzle assembly abilities or why they 
vary among genetic subtypes.

HOLM and colleagues [2] developed a preclinical form 
for identifying individuals with suspected PWS, consid-
ering age, and creating a scoring system for diagnosis. 
Observing the results of these studies, we see that indi-
viduals present major within the criteria and that differ-
ences in favor of deletion, such as myopia and obstructive 
sleep apnea, were observed in minor characteristics. 
Additionally, in our population, we see these differences 
in supportive criteria, where in favor of deletion, the 
unusual ability with puzzles was a statistically significant 
finding. This makes sense since the molecular screening 
(MS-HRM) and clinical diagnoses were consistent.

The silencing of the MKRN3, NDN, and SNRPN-
SNURF genes present on maternal chromosome 15 is 
associated with specific CpG island methylation in the 
promoter region of these genes [38], while their copies on 
the paternal allele are unmethylated and expressed. Based 
on the different methylation statuses of SNRPN-SNURF, 
combining MS-HRM and MS-MLPA techniques yields 
good results in diagnosis and genetic counseling. With 
the increasing availability and use of molecular diag-
nostics in clinical applications, an increasing number of 
patients with PWS are diagnosed at an early stage. Cur-
rently, there are few studies of PWS in large samples of 
newborns with Brazilian genetic constitution. This pilot 

study included 45 cases of PWS in Brazilians and is able 
to delineate the major clinical phenotypes of PWS carri-
ers in Brazil.

Conclusion
The good performance of MS-HRM, MS-MLPA, and 
Sanger sequencing tests corroborates the applicability 
of a diagnostic strategy that can determine the genetic 
alterations present in individuals with PWS. Our find-
ings in this study on genotype-phenotype correlation 
demonstrate that the genetic subtypes of the syndrome 
are generally similar, but some differences exist between 
subtypes.

According to our tests and statistical analyses, signifi-
cant correlations were found between the genotype and 
phenotype of patients. Clinical signs such as myopia, 
obstructive sleep apnea, and unusual puzzle-solving abil-
ity were more frequent in patients with genetic deletions. 
Although the data are still limited for clear recommen-
dations, it seems to be very promising, and more studies 
should be done to analyze this hypothesis.

Methods
Patients and samples
Blood samples were collected from 166 individuals with 
clinical criteria for PWS and subsequently subjected to 
the MS-HRM protocol for molecular confirmation. Of 
these 166 individuals, 45 had confirmed PWS and were 
included in the study. Patients were enrolled at the Fer-
nandes Figueira National Institute of Women, Chil-
dren and Adolescent Health (IFF/FIOCRUZ) and Luiz 
Capriglione State Institute of Diabetes and Endocrinol-
ogy (IEDE/RJ). Blood samples from healthy individu-
als were collected as controls. This study was conducted 
in accordance with the Declaration of Helsinki and 
approved by the IRB of IFF (IRB approval number 
45767015.0.0000.5269).

DNA extraction was performed using the PureLink 
Genomic DNA Mini Kit (Thermo Fisher Scientific, USA) 
following the manufacturer’s instructions. DNA quality 
was evaluated using a NanoDrop spectrophotometer, and 
its purity was also evaluated by the 260/280 and 260/230 
wavelength ratios to avoid contaminants.

DNA bisulfite treatment
Genomic DNA input was 250 ng/µl and was modified 
with sodium bisulfite using the EZ DNA Methylation-
Lightning kit (ZymoResearch, USA). The modified DNA 
was quantified and evaluated with a NanoDrop spectro-
photometer (Thermo Fisher Scientific, USA).

Methylation-sensitive high-resolution melting (MS-HRM)
Using the bisulfite-treated DNA samples, we performed 
real-time PCRs as well as high-resolution melting (HRM) 
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curve analysis using the Melt Doctor kit (Thermo Fisher 
Scientific, USA) and the 7500 Fast Real-Time PCR Sys-
tem (Thermo Fisher Scientific, USA) to confirm sus-
picions related to PWS. Each sample was analyzed in 
triplicate for MS-HRM. The primers used were described 
by Ribeiro et al. (2019, 2020) [39, 40].

PCR was performed in 200  µl PCR tubes with a final 
volume of 10  µl, containing 200 nmol/l of each primer, 
5  µl of HRM-Master Mix (Thermo Fisher Scientific, 
USA), and 10 ng of bisulfite-treated DNA.

The initial denaturation (95  °C, 10  min) was followed 
by 40 cycles with a temperature of 95  °C for 30  s, fol-
lowed by 60  °C for 60  s. After qPCR amplification, the 
PCR products were completely denatured at 95  °C, and 
the intensity of their fluorescence was monitored from 
73 °C continuously to 85 °C with a thermal transition rate 
of 0.05  °C/s. Data analysis was performed in 7500 Fast 
Software v2.3 (Thermo Fisher Scientific, USA), with the 
derivative of fluorescence changes on the Y-axis and tem-
perature (°C) on the X-axis.

Methylation-specific multiplex ligation-dependent probe 
amplification (MS-MLPA)
Of the 45 patients, 33 were subjected to the MS-MLPA 
protocol using the SALSA MS-MLPA ME028 kit (MRC 
Holland, Netherlands). The 12 remaining patients were 
previously analyzed by MS-MLPA in another laboratory. 
The MS-MLPA experiment, and statistical analysis were 
performed according to the standard protocol previously 
described.

Sanger sequencing
For DNA sequencing, PCR products were used as a tem-
plate, with forward and reverse primers from the criti-
cal region of the PWS (Table  2) at a concentration of 
3.2 pmol and the BigDye 3.1 sequencing kit (Applied 
Biosystems, USA). The reactions were analyzed on the 
ABI3730XL 96-capillary sequencer at the DNA Sequenc-
ing Platform (RPT01) of the PDTIS/FIOCRUZ program.

Statistical analysis of the data
Absolute and percentage frequencies of the phenotypic 
data seen in THE COMMITTEE ON GENETICS, 2011 
[41] were compared by molecular subgroups of patients 
using 2 × 2 contingency tables. The relationship between 
molecular defects (paternal deletion or UPD) and phe-
notypic data was investigated using Pearson’s chi-square 
test (χ2) or Fisher’s exact test in cases where at least 
one expected frequency was less than 5. All statistical 

analyses were performed using SPSS software for Win-
dows (Version 22), and the adopted significance level was 
5%.

Analysis of medical records
Medical records, including diagnosis, chief complaints, 
laboratory results, and other clinical information, were 
reviewed. For PWS, Holm’s diagnostic criteria were cal-
culated [2].
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