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Abstract 

Background Gaucher disease (GD) is a rare autosomal recessive condition associated with clinical features such 
as splenomegaly, hepatomegaly, anemia, thrombocytopenia, and bone abnormalities. Three clinical forms of GD have 
been defined based on the absence (type 1, GD1) or presence (types 2 and 3) of neurological signs. Early diagnosis 
can reduce the likelihood of severe, often irreversible complications. The aim of this study was to validate the ability 
of factors from the Gaucher Earlier Diagnosis Consensus (GED‑C) scoring system to discriminate between patients 
with GD1 and controls using real‑world data from electronic patient medical records from Maccabi Healthcare Ser‑
vices, Israel’s second‑largest state‑mandated healthcare provider.

Methods We applied the GED‑C scoring system to 265 confirmed cases of GD and 3445 non‑GD controls matched 
for year of birth, sex, and socioeconomic status identified from 1998 to 2022. The analyses were based on two data‑
bases: (1) all available data and (2) all data except free‑text notes. Features from the GED‑C scoring system applicable 
to GD1 were extracted for each individual. Patients and controls were compared for the proportion of the specific 
features and overall GED‑C scores. Decision tree and random forest models were trained to identify the main features 
distinguishing GD from non‑GD controls.

Results The GED‑C scoring distinguished individuals with GD from controls using both databases. Decision tree 
models for the databases showed good accuracy (0.96 [95% CI 0.95–0.97] for Database 1; 0.95 [95% CI 0.94–0.96] 
for Database 2), high specificity (0.99 [95% CI 0.99–1]) for Database 1; 1.0 [95% CI 0.99–1] for Database 2), but relatively 
low sensitivity (0.53 [95% CI 0.46–0.59] for Database 1; 0.32 [95% CI 0.25–0.38]) for Database 2). The clinical features 
of splenomegaly, thrombocytopenia (< 50 ×  109/L), and hyperferritinemia (300–1000 ng/mL) were found to be 
the three most accurate classifiers of GD in both databases.

Conclusion In this analysis of real‑world patient data, certain individual features of the GED‑C score discriminate more 
successfully between patients with GD and controls than the overall score. An enhanced diagnostic model may lead 
to earlier, reliable diagnoses of Gaucher disease, aiming to minimize the severe complications associated with this disease.
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Background
Gaucher disease (GD) is a rare autosomal recessive con-
dition characterized by a deficiency of the lysosomal 
enzyme beta-glucocerebrosidase (GBA1). Accumula-
tion of glucosylceramide in macrophages throughout the 
body leads to the onset of multisystemic disease mani-
festations such as splenomegaly, hepatomegaly, anemia, 
thrombocytopenia, and bone abnormalities, hallmarks of 
type 1 GD [1]; neurological involvement is characteristic 
of the more severe type 2 and type 3 GD [2, 3]. The esti-
mated prevalence of all three GD types is 0.45–25.0 per 
100,000 live births, although type 1 GD is substantially 
more common among people with Ashkenazi Jewish her-
itage (estimated at 1 in 850 live births for type 1 GD) [4, 
5].

Timely initiation of appropriate GD-specific therapy 
(i.e., enzyme replacement therapy or substrate reduc-
tion therapy) early in the disease course [6–8] has been 
shown to improve patient outcomes, with significant 
effects on hematologic and visceral outcomes, and may 
prevent the onset of irreversible bone disease and severe 
growth retardation, and reduce the risk of bleeding [8]. 
However, delayed diagnosis or misdiagnosis is frequent, 
owing to the complex and non-specific clinical presen-
tation, together with a lack of awareness about this rare 
disease [1, 9–11]. Approximately one in six patients 
report remaining undiagnosed for 7 years or more after 
first consulting a doctor with symptoms [9]. Physicians 
and patients both report multiple referrals to a range of 
different specialties prior to GD diagnosis, with primary 
care, hematology/hematology-oncology, and pediatrics 
being the main specialties to which patients first present 
symptoms [9]. 

The Gaucher Earlier Diagnosis Consensus (GED-C) 
scoring system was developed by a panel of 22 expert 
physicians using Delphi methodology regarding the signs 
and covariables considered important for diagnosing 
type 1 and type 3 GD, to help clinicians identify poten-
tial individuals to test further, thereby reducing diagnos-
tic delay [12]. Preliminary validation of the GED-C was 
able to discriminate between patients with GD and those 
with overlapping manifestations from other disorders, in 
studies from the United Kingdom [13] and Finland [14]. 
We previously carried out a description of the GED-C 
scoring system in 265 confirmed patients with GD using 
real-world data from the Maccabi Healthcare Services 
(MHS), Israel’s second-largest state-mandated healthcare 
provider, representing 2.5  million members (25% of the 
Israeli population) [15]. The aim of the current study was 
to assess the ability of the GED-C score to discriminate 
between individuals with and without GD, and to iden-
tify the best discriminatory features using real-world data 

from electronic patient medical records from the MHS, 
with and without the use of free-text notes.

Methods
Data source and study design
Electronic patient medical records from the MHS were 
used as the data source for this study. In the MHS, clini-
cal records have been fully computerized for > 20  years, 
and are fully integrated with an automated central labo-
ratory, fully digitized imaging, and pharmacy purchase 
data. In addition, the MHS is associated with a biobank of 
samples collected from consenting sample donors among 
MHS participants. The study design was approved by the 
MHS Institutional Review Board (0013-21-ASMC). The 
requirement for patient consent was waived owing to the 
use of de-identified, anonymized data.

Population
All eligible individuals with a confirmed diagnosis of 
GD in the MHS database were included in the study, as 
described previously [15]. The records of patients identi-
fied with an MHS diagnosis code for GD were screened 
for evidence of GD-specific treatment authorization such 
as enzyme replacement therapy or substrate reduction 
therapy. In the absence of evidence of GD treatment, 
patient records were screened for any medical notes 
indicating GD (e.g., physicians’ notes and hospital dis-
charges). Thirteen randomly selected controls per case, 
matched for year of birth, sex, and socioeconomic status 
(per MHS data), were extracted from the MHS database 
for retrospective analysis.

Data extraction
Data for each of the GED-C items applicable to type 1 
GD were extracted for each individual, including demo-
graphics, diagnosis codes (International Classification of 
Diseases [ICD], Ninth Revision [ICD-9]), laboratory val-
ues, imaging reports, the MHS osteoporosis register, and 
weight and height measurements. Free-text notes were 
screened manually for the terms presented in Table 1 for 
all patients with GD and non-GD controls. For the non-
GD controls, free-text notes were screened manually in 
1 control from the 13 controls available for each patient 
with GD (chosen randomly). We assumed that the pro-
portion of the terms in the 12 matched controls was 
similar to the control that was checked manually.  Data 
were extracted from the first record available until 1 year 
after GD diagnosis. For controls, data were extracted up 
to 1 year after the GD diagnosis of the matched patient. 
The 1-year post-diagnosis cutoff was chosen to allow the 
maximum time for the capture of features on completion 
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of relevant confirmatory testing for GD. Items for GED-C 
scores were extracted as quantitative values where pos-
sible. GED-C scores were calculated for these features, 
as indicated in Table  2  for all available data, includ-
ing free text-notes from patient visits (database 1) and 
Table 3, data from free-text notes from patient visits were 
not included (database 2).

Assessing the GED‑C scoring system as a discrimination 
tool
Individuals with GD were compared with controls using 
features of the GED-C scoring system applicable to 
patients with type 1 GD [12, 15], and total points were 
determined for each group. Computation of the GED-C 
score was carried out as described previously [15]. 

Table 1 GED‑C score parameters extracted from free‑text notes from patient visits

GD Gaucher disease; GED-C Gaucher earlier diagnosis consensus, OR odds ratio
a Free‑text notes were screened manually in 1 control from the 13 controls available for each patient with GD (chosen randomly)

GED‑C parameters

Splenomegaly Hepatomegaly Gallstones Pain Bleeding Fatigue Growth retardation

Patients with GD, n (%) (n = 265) 128 (48.3) 48 (18.1) 19 (7.2) 133 (50.2) 58 (21.9) 75 (28.3) 12 (4.5)

Controls, n (%) (n = 265)a 2 (0.8) 6 (2.3) 4 (1.5) 58 (21.9) 24 (9.1) 21 (7.9) 1 (0.4)

OR (95% CI) 122.8 (30.0–504.0) 9.5 (4.0–22.7) 5 (1.7–15) 3.9 (2.7–5.7) 2.8 (1.7–4.7) 4.6 (2.7–7.7) 12.5 (1.6–97.0)

Table 2 Characteristics used to calculate GED‑C scores in patients with GD and control patients: database 1

ACE angiotensin‑converting enzyme, GD Gaucher disease, GED-C Gaucher early diagnosis consensus, Hb hemoglobin, HDL high‑density lipoprotein, Ig 
immunoglobulin, OR odds ratio, WBC white blood cell

GED‑C items not captured in this analysis: cognitive deficit, cardiovascular calcification, pulmonary infiltrates, death of relative due to fetal hydrops and/or with 
diagnosis of neonatal sepsis of uncertain etiology (0.5 points); disturbed motor function, myoclonus epilepsy, kyphosis, family history of GD (2 points); disturbed 
oculomotor function (3 points)
a Monoclonal or polyclonal
b Combined with mild‑moderate hepatomegaly scored as 1.5 points
c Including low body weight
d Combined with asthenia
e For controls, date of diagnosis was derived from the date of diagnosis of the matched patient

Weighting Characteristic Patients with GD, n (%)
n = 265

Controls, n (%)
n = 3445

OR (95% CI)

3 points Splenomegaly 135 (50.9) 44 (1.3) 80.3 (54.7–117.7)

2 points Thrombocytopenia (platelet count 50–150 ×  109/L) 107 (60.5) [177 samples] 175 (10.0) [1750 samples] 13.7 (9.8–19.3)

Bone issues 150 (56.6) 1564 (45.4) 1.6 (1.2–2.0)

Anemia (Hb 9.5–14.0 g/dL) 147 (83.0) [177 samples] 1362 (77.8) [1750 samples] 1.4 (0.9–2.1)

Hyperferritinemia (ferritin 300–1000 ng/mL) 45 (41.7) [108 samples] 20 (2.4) [829 samples] 28.9 (16.1–51.9)

Gammopathy (IgG, IgM, IgA, and IgE)a (> normal range) 29 (40.8) [71 samples] 56 (16.4) [342 samples] 3.5 (2.0–6.1)

Jewish ancestry 257 (98.1) [262 samples] 3140 (92.4) [3397 samples] 4.5 (1.8–11.0)

1.5 points Hepatomegalyb 52 (19.6) 90 (2.6) 9.1 (6.3–13.1)

1 point Thrombocytopenia (platelet count < 50 ×  109/L) 11 (6.2) [177 samples] 2 (0.11) [1750 samples] 57.9 (12.7–263.0)

Anemia (Hb < 9.5 g/dL) 16 (9.0) [177 samples] 50 (2.8) [1750 samples] 3.4 (1.9–6.0)

Hyperferritinemia (ferritin > 1000 ng/mL) 4 (3.8) [104 samples] 1 (0.1) [829 samples] 33.1 (3.7–299.0)

0.5 points Gallstones 28 (10.6) 119 (3.5) 3.3 (2.1–5.1)

Bleeding 69 (26.0) 563 (16.3) 1.8 (1.4–2.4)

Leukopenia (WBC < normal range) 26 (14.7) [177 samples] 82 (4.7) [1750 samples] 3.5 (2.2–5.6)

Low bone marrow density 64 (24.2) 242 (7.0) 3.5 (2.6–4.7)

Growth  retardationc 124 (46.8) 918 (26.6) 2.4 (1.9–3.1)

Fatigued 85 (32.0) 633 (18.4) 2.1 (1.6–2.7)

Dyslipidemia (HDL cholesterol < 35 mg/dL) 81 (61.4) [132 samples] 199 (15.2) [1308 samples] 8.9 (6.0–13.0)

Elevated ACE (> normal range) 12 (80.0) [15 samples] 3 (27.3) [11 samples] 10.7 (1.7–66.7)

Age at diagnosis < 18 years 50 (18.9) 685 (19.9)e –
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Table 3 Characteristics used to calculate GED‑C scores in patients with GD and control patients: database 2

ACE angiotensin‑converting enzyme, GD, Gaucher disease, GED-C Gaucher early diagnosis consensus, Hb hemoglobin, HDL high‑density lipoprotein, Ig 
immunoglobulin, OR odds ratio, PD Parkinson’s disease, WBC white blood cell

GED‑C items not captured in this analysis: cognitive deficit, cardiovascular calcification, pulmonary infiltrates, death of relative due to fetal hydrops and/or with 
diagnosis of neonatal sepsis of uncertain etiology (0.5 points); disturbed motor function, myoclonus epilepsy, kyphosis, family history of GD (2 points); disturbed 
oculomotor function (3 points)
a Monoclonal or polyclonal
b Combined with mild‑moderate hepatomegaly scored as 1.5 points
c Including low body weight
d Combined with asthenia
e For controls, date of diagnosis was derived from the date of diagnosis of the matched patient

Weighting Characteristic Patients with GD, n (%) (n = 265) Controls, n (%) (n = 3445) OR (95% CI)

3 points Splenomegaly 65 (24.5) 18 (0.52) 61.9 (36.0–106.3)

2 points Thrombocytopenia (platelet count 50–150 ×  109/L) 107 (60.5) [177 samples] 175 (10.0) [1750 samples] 13.7 (9.8–19.3)

Bone issues 95 (35.8) 1168 (33.9) 1.1 (0.8–1.4)

Anemia (Hb 9.5–14.0 g/dL) 147 (83.0) [177 samples] 1362 (77.8) [1750 samples] 1.4 (0.9–2.1)

Hyperferritinemia (ferritin 300–1000 ng/mL) 45 (41.7) [108 samples] 20 (2.4) [829 samples] 28.9 (16.1–51.9)

Gammopathy (IgG, IgM, IgA, and IgE)a (> normal 
range)

29 (40.8) [71 samples] 56 (16.4) [342 samples] 3.5 (2.0–6.1)

Jewish ancestry 257 (98) [262 samples] 3140 (92.4) [3397 samples] 4.5 (1.8–11.0)

1.5 points Hepatomegalyb 23 (8.7) 12 (0.35) 27.2 (13.4–55.3)

1 point Thrombocytopenia (platelet count < 50 ×  109/L) 11 (6.2) [177 samples] 2 (0.11) [1750 samples] 57.9 (12.7–263.0)

Anemia (Hb < 9.5 g/L) 16 (9.0) [177 samples] 50 (2.8) [1750 samples] 3.4 (1.9–6.0)

Hyperferritinemia (ferritin > 1000 ng/mL) 4 (3.8) [104 samples] 1 (0.1) [829 samples] 33.1 (3.7–299.0)

0.5 points Gallstones 18 (6.8) 75 (2.2) 3.3 (1.9–5.6)

Bleeding 27 (10.2) 308 (8.9) 1.2 (0.8–1.7)

Leukopenia (WBC < normal range) 26 (14.7) [177 samples] 82 (4.7) [1750 samples] 3.5 (2.2–5.6)

Low bone marrow density 24 (9.0) 93 (2.7) 3.6 (2.2–5.7)

Growth  retardationc 13 (4.9) 73 (2.1) 1.8 (0.9–3.2)

Fatigued 28 (10.6) 398 (11.6) 0.9 (0.6–1.4)

Dyslipidemia (HDL cholesterol < 35 mg/dL) 81 (61.4) [132 samples] 199 (15.2) [1308 samples] 8.9 (6.0–13.0)

Elevated ACE (> normal range) 12 (80.0) [15 samples] 3 (27.3) [11 samples] 10.7 (1.7–66.7)

Family history of PD 0 0 –

Age at diagnosis < 18 years 50 (18.9) 685 (19.9)e –
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Fig. 1 Boxplot of overall GED‑C summary scores. A Patients with GD versus controls for database 1 (Table 2). B Patients with GD versus controls 
for database 2 (Table 3)



Page 5 of 10Revel‑Vilk et al. Orphanet Journal of Rare Diseases           (2024) 19:71  

Briefly, the weight of each feature was set according to 
the published score [12]. For laboratory data, the maxi-
mum or minimum levels (as appropriate) were consid-
ered and defined abnormal as indicated in Tables 2 and 
3. Dichotomous variables were coded as “yes” or “no.” 
Evaluation of multiples of normal in spleen and liver size 
was not feasible; “splenomegaly” received a score of 3 
irrespective of size, and “hepatomegaly” was scored as 1.5 
points. Growth retardation (based on height, weight, and 
body mass index measures) was defined as equal to or 
less than the fifth percentile for age. Asthenia and fatigue 
were scored by one item because both descriptions use 
the same word in Hebrew. No ICD-9 code was available 
for family history of GD.

For constructing discrimination models, 16 available 
features were used as defined in the GED-C scoring sys-
tem [12]. These included age, anemia, bleeding, bone 
issues, dyslipidemia, fatigue, gallstones, gammopathy, 
growth retardation, hepatomegaly, hyperferritinemia, 
Jewish ancestry, low bone mineral density, leukopenia, 
splenomegaly, and thrombocytopenia.

Two models were constructed. In the first, all available 
data were used, including free-text notes from patient 
visits (database 1). For the second, data from free-text 
notes from patient visits were not included (database 2).

Statistical analyses
GED-C summary scores were reported using the median 
and interquartile range (IQR). Absolute and relative fre-
quencies were reported for nominal data, with the rela-
tionship between GD and controls expressed as odds 
ratio (OR) and 95% CI. A decision tree model using all 

16 available features (as detailed above) was constructed 
using “training data” (80%) and “test data” (20%), and a 
random forest model was selected and trained in order 
to identify the main features that can distinguish GD 
from non-GD controls. The model performance on the 
validation dataset was evaluated using receiver operating 
characteristic (ROC) curve and f1-score as a measure of 
accuracy. The area under the ROC curve (AUC) results 
are considered excellent for AUC values between 0.9 and 
1.0, good for AUC values between 0.8 and 0.9, fair for 
AUC values between 0.7 and 0.8, poor for AUC values 
between 0.6 and 0.7, and failed for AUC values between 
0.5 and 0.6 [16]. All statistical analyses were performed 
using R programming version 1.4.1103, packages dplyr, 
stringr, tidiverse, lubridate, caret, random forest, and 
ggplot2.

Results
Of 346 individuals with a GD diagnosis code identified 
from the MHS database, 265 were confirmed as patients 
with GD following the screening of patient records. A 
total of 3445 control individuals without GD (13 per GD 
case) were included in the study.

Manual screening of free-text notes for terms defined 
in the GED-C scoring system revealed a marked differ-
ence in the proportions of individuals with symptoms 
between GD and control groups, with ORs of approxi-
mately 10 or above for splenomegaly, growth retardation, 
and hepatomegaly (Table 1). 

Overall GED-C summary scores were calculated for 
each database (Fig. 1A, B). For database 1, which included 
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Fig. 2 ROC curves for total GED‑C scoring. A Patients with GD versus controls for database 1 (Table 2). B Patients with GD versus controls 
for database 2 (Table 3). FPR, false positive rate
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free-text notes from patient visits, median GED-C 
scores were 7.5 (range 0–17.5; IQR 6.5) for patients with 
GD (n = 265) and 4.0 (range 0–12.5; IQR 3.5) for con-
trols (n = 3445) (Fig.  1A). GED-C scoring distinguished 
patients with GD from controls with an AUC of 0.81 
(95% CI, 0.78–0.84) (Fig.  2A). For database 2, in which 
data from free-text notes from patient visits were not 
included, median GED-C scores were 6.5 (range 0–17.0; 
IQR 5.0) for patients with GD (n = 265) and 4.0 (range 
0–12.5; IQR 3.0) for controls (n = 3445) (Fig. 1B). GED-C 
scoring distinguished patients with GD from controls 
with an AUC of 0.74 (95% CI 0.71–0.78) (Fig. 2B).

The magnitude of difference in GED-C scoring 
between patients with GD and controls was greater for 
some features (e.g., splenomegaly [OR 80.3 in database 1 
and 61.9 in database 2], severe thrombocytopenia [plate-
let count < 50 ×  109/L; OR 57.9 in both databases], and 
hyperferritinemia [ferritin 300–1000 ng/mL; OR 28.9 in 
both databases]) (Tables 2 and 3).

Decision tree models were constructed for each data-
base (Fig.  3). The models showed good accuracy (0.96 
[95% CI 0.95–0.97] for database 1; 0.95 [95% CI 0.94–
0.96] for database 2), high specificity (0.99 [95% CI 0.99–
1] for database 1; 1.0 [95% CI 0.99–1] for database 2), 
but relatively low sensitivity (0.53 [95% CI 0.46–0.59] for 
database 1; 0.32 [95% CI 0.25–0.38] for database 2). The 
AUC was higher for database 1 (0.79 [95% CI 0.73–0.87]) 
compared with database 2 (0.69 [95% CI 0.60–0.73]). The 
f1-scores were 0.66 for database 1 and 0.46 for database 
2.

A random forest model was developed using the two 
databases to outline the 10 most important variables for 
distinguishing patients with GD from controls (Fig.  4). 
The clinical features of splenomegaly, thrombocytopenia 
(platelet count < 50 ×  109/L), and hyperferritinemia (fer-
ritin 300–1000  ng/mL) were found to be the top three 
most accurate classifiers of GD in both databases. 

Discussion
This retrospective observational analysis used real-
world data to assess the utility of the GED-C scor-
ing system for discriminating between patients with 
GD and controls. We found that the GED-C scoring 
system performance at distinguishing between GD 
and controls was ‘good’ when using a database that 
included free-text notes from patient visits and ‘fair’ 
when using a database that excluded free-text notes. 
Analysis of both databases consistently identified the 
most important GED-C features for discriminating GD 
from non-GD as splenomegaly, thrombocytopenia, and 
hyperferritinemia.

The three features, splenomegaly, thrombocytope-
nia and hyperferritinemia were also considered by GD 
experts to be important features in the diagnosis of GD 
[12]. There are still some differences that need to be dis-
cussed. First, the weight given by experts for these three 
features was significantly lower than the actual odds of 
exposure found among patients with GD compared with 
controls in this real-world dataset. Second, GD experts 
gave a greater weight (2 points) for mild thrombocytope-
nia (platelet count 50–150 ×  109/L) compared with severe 
thrombocytopenia (platelet count < 50 ×  109/L; 1 point), 
whereas the actual odds of exposure among patients 
with GD from this study was acutely higher for severe 
thrombocytopenia (with a wide CI owing to a lower 
number). For hyperferritinemia, GD experts gave a lower 
weight for ferritin levels > 1000 ng/mL (1 point), whereas 
the odds of exposure among patients in this study was 
approximately 30 for elevated ferritin levels, regardless 
of the exact levels. Based on our findings, we can expect 
that a supervised machine learning classifier, that will not 
use predefined weights or laboratory cutoffs, could per-
form better in distinguishing between patients with GD 
and controls.

Although the models developed in this study show high 
specificity, they were shown to have low sensitivity. Miss-
ing or incomplete data for many features may have been 
a contributing factor. The definitions used in the GED-
scoring may further impact the sensitivity of models to 
discriminate between patients with GD and controls. 
For example, the definition of anemia using a threshold 
of 14  g/L for hemoglobin concentration is relevant to 
adult males, but this may result in the misclassification of 
normal hemoglobin levels in patients whose hemoglobin 
would otherwise fall into the anemic range as specified 
by their age and gender. Modifying the scoring system 
may help correctly diagnose more patients with GD at an 
earlier time in the disease course.

As expected, the database that included data from 
free-text notes (database 1) showed better performance 
compared with database 2 because physicians fre-
quently documented GD-related features (such as sple-
nomegaly, hepatomegaly, fatigue, and bone pain) in the 
visit notes but then failed to code them. This is in line 
with a study of electronic records for splenomegaly in 
the Danish National Registry of Patients; the total num-
ber of patients coded for splenomegaly was lower than 
expected, leading the authors to conclude that spleno-
megaly as a clinical finding was probably under-coded 
in the ICD system [17]. Similarly, machine learning 
algorithms using ICD-9 codes did not perform well in 
identifying patients with systemic sclerosis; the high-
est-performing algorithms in this study incorporated 
clinical data with ICD, Tenth Revision (ICD-10), codes 
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[18]. Unfortunately, ICD-10 codes were not available 
in the MHS database. Under-coding could be related 
to the difficulty in translating signs and symptoms into 
a clear and unambiguous classification code, coupled 
with time pressures on physicians [19]. 

The ability of the GED-C to discriminate between indi-
viduals with and without GD was also shown by other 
groups. Mehta et  al. compared adults with GD (n = 25) 
to adults with liver disease, hematological malignancy 

or immune thrombocytopenia (n = 75) [13]. The data 
were derived from hospital records, with 80%-90% com-
pleteness of data. Analyses, based on 11 possible fac-
tors, showed good discrimination between those with 
GD and non-GD individuals, with AUC of 0.88 (95% CI 
0.78–0.97) being comparable to the result from database 
A in our study. Patients with liver disease and hemato-
logical malignancy were most likely to have manifesta-
tions overlapping with GD [13]. In a study from Finland, 
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clinical data from five patients with GD were compared 
to electronic health record data of ~ 170,000 adults from 
a biobank [14]. The score of patients with GD ranged 
between 6 and 18.5 (based on the available data on 28–29 
possible factors). Only 0.72% of adults from the biobank 
were assigned at least 6 points, but none had a point 
score as high as 18.5. A follow-up study using the same 
approach with another Finnish biobank, showed similar 
results [20]. The score of 8 patients with GD was 6–22.5 
points, while only 0.77% of controls had 10 points or 
higher. Data from patients with GD collected from hos-
pital electronic medical records being compared with 
control data collected from a biobank, may explain the 
significant difference found in the studies from Finland. 

The use of real-world data is both an advantage and a 
limitation of the study. The use of real-world data con-
firmed the significance of the majority of features in the 
GED-C scoring system. These features would need to be 
included in future machine-learning models. However, 
real-world data sets have their limitations. They may 
contain incomplete information or be prone to errors 
during data entry. In addition, because GD is a rare dis-
ease, the number of individuals with GD, even within 
this relatively large database of individuals, is restricted 
and there are inherent limitations to the development 
of an algorithm using such a small data set of patients. 
In our research, we employed a manual examination of 
unstructured text notes to identify features related to 

GD. The reason for resorting to manual screening was 
that the existing Hebrew resources for training natural 
language processing (NLP) are inadequate to accomplish 
this task using computer-based methods [21]. Manual 
screening was feasible when limited to 265 patients and 
265 controls but not for the entire control cohort. Simi-
larly, machine learning diagnostic algorithms will not be 
able to be based on manual screening of free-text notes. 
In addition, our study analyzed data from patients retro-
spectively, a prospective design would have been prefer-
able in terms of standardization of data collection and 
reducing potential sources of bias.

The current study was set up to extract patient data 
on parameters from the GED-C score, chosen as a set 
of readily available clinical data points established by 
expert clinician consensus to have diagnostic relevance 
for patients with GD, and also validated in different geo-
graphic patient cohorts [13, 14]. However, we acknowl-
edge that findings on the diagnostic utility of this set of 
variables are limited to the patient population studied 
and may not be applicable for populations with different 
ethnic backgrounds and disease severity. Other clinical 
manifestations of GD not included in the GED-C scoring 
system should be considered in future algorithms devel-
oped for GD diagnosis, for example co-morbidities that 
may be associated with GD such as neoplasms, endocrin-
ological disorders like insulin-like growth hormone defi-
ciency, as well as abnormalities in parathyroid hormone 
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levels, phospho-calcium metabolism, and vitamin D lev-
els [22–25]. 

In the era of digitized medical records, the opportu-
nity for comparing and combining electronic health data 
from a wide variety of patient populations is likely to 
result in better refinement of data-mining tools. As seen 
with other diseases, use of machine learning for analysis 
of large amounts of clinical data will assist the develop-
ment of algorithms for detecting undiagnosed patients 
with GD, as well as tools optimised for use in particular 
patient sub-sets [26, 27]. This, accompanied by large-
scale testing of biobank samples using alternative diag-
nostic techniques, is needed to address the challenges of 
GD diagnosis in the future.

This study forms part of the basis for the development 
of an artificial intelligence–based algorithm for the accu-
rate diagnosis of GD using machine learning, designed 
to shorten the diagnostic journey of patients with GD 
(Fig. 5). Machine learning technologies are being devel-
oped for a number of disorders that can potentially 
accelerate accurate diagnosis by calculating disease 
probabilities based on symptoms [28, 29]. Integration of 
machine learning models employing quantifiable varia-
bles that are readily discernible and autonomous of clini-
cal evaluations to facilitate screening for rare diseases, 
such as GD, are needed to improve early detection and 
treatment [30]. In the next phase of the research pro-
cess, the models evaluated in this study are to be fur-
ther refined, by incorporating additional parameters and 
using supervised machine-learning methods. The best-
performing model would then be applied to the MHS 
healthcare database population to identify those who 
may have unidentified GD. These data would then be 
used for further refinement of the machine learning clas-
sifiers for GD diagnosis.

Conclusion
The GED-C score, developed by Delphi expert consen-
sus, shows good discrimination between patients with 
GD and controls and could be the basis for future mod-
els. In our study, as expected, the database that included 
data from physician notes on frequently documented 
GD-related features showed the best performance at dis-
tinguishing GD patients from controls. The application 
of machine learning techniques to our cohort is expected 
to result in an improved diagnostic model with the best 
possible sensitivity that may be used for screening undi-
agnosed GD cases.
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