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Abstract 

Background  Recommendations for statistical methods in rare disease trials are scarce, especially for cross-over 
designs. As a result various state-of-the-art methodologies were compared as neutrally as possible using an illustra-
tive data set from epidermolysis bullosa research to build recommendations for count, binary, and ordinal outcome 
variables. For this purpose, parametric (model averaging), semiparametric (generalized estimating equations type 
[GEE-like]) and nonparametric (generalized pairwise comparisons [GPC] and a marginal model implemented in the R 
package nparLD) methods were chosen by an international consortium of statisticians.

Results  It was found that there is no uniformly best method for the aforementioned types of outcome vari-
ables, but in particular situations, there are methods that perform better than others. Especially if maximizing 
power is the primary goal, the prioritized unmatched GPC method was able to achieve particularly good results, 
besides being appropriate for prioritizing clinically relevant time points. Model averaging led to favorable results 
in some scenarios especially within the binary outcome setting and, like the GEE-like semiparametric method, 
also allows for considering period and carry-over effects properly. Inference based on the nonparametric marginal 
model was able to achieve high power, especially in the ordinal outcome scenario, despite small sample sizes 
due to separate testing of treatment periods, and is suitable when longitudinal and interaction effects have to be 
considered.

Conclusion  Overall, a balance has to be found between achieving high power, accounting for cross-over, period, 
or carry-over effects, and prioritizing clinically relevant time points.
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Introduction
In the European Union, a rare disease is defined as one 
that affects less than 1 in 2000 people. Despite the low 
prevalence of a particular rare disease, the fact that 
there are over 6,000 rare diseases known to date makes 
them a huge challenge for healthcare systems, research, 
and—most importantly—the affected patients and fam-
ilies [10, 27].

Just like in any other area of medical research, the 
key conclusions of scientific publications are frequently 
based on quantitative data. Therefore, using sound sta-
tistical methods for analyzing these data is crucial for 
ensuring the validity of the conclusions drawn regard-
ing diagnosis, prognosis, and treatment of patients. In 
research on rare diseases, there are some additional 
challenges that have to be adequately addressed, such 
as, for example, the heterogeneity of the disease, small 
sample sizes, limited data for study planning, difficul-
ties in defining appropriate outcome measures, and 
above all a considerable trial burden for the patients 
[30].

The main aim of the present paper is to provide rec-
ommendations and guidance on statistical methods for 
analyzing longitudinally collected data in a cross-over 
trial setting. Considering the fact that sample sizes are 
usually small in rare diseases trials, this is a quite natural 
design choice. The basis for our recommendations is con-
stituted by systematic empirical comparisons of existing 
methods that have been conducted in the context of the 
EBStatMax project (European Joint Programme on Rare 
Diseases, EU Horizon 2020 grant no. 825575). In this col-
laborative project, recently proposed methods for the 
statistical analysis of rare disease data have been exten-
sively evaluated, motivated by longitudinal cross-over 
data from a clinical trial on Epidermolysis bullosa (EB). 
In the present manuscript, the findings from these exten-
sive evaluations and related considerations are distilled 
into statistical guidance regarding design and analysis of 
such trials. It should be emphasized that the focus of this 
guidance is on rare disease trials featuring longitudinal 
and cross-over aspects. Some generally applicable lessons 
learnt from previous projects have partially informed the 
decision which data analysis methods should be consid-
ered. Yet, those further aspects of rare diseases method-
ology have been addressed in more detail elsewhere: In 
the ASTERIX [2], InSPiRe [20], and IDeAl [19] projects, 
a wide range of design and data analysis issues has been 
tackled, from surrogate endpoints (e.g., Elst et al. [8]) to 
adaptive designs (e.g., Graf et  al. [15]) and pharmaco-
metrics (e.g., Strömberg and Hooker [31]). In addition 
to numerous publications in statistical journals, the cor-
responding project consortia also released several sum-
maries and guidance documents (e.g., Hilgers et al. [17]).

In Sect.  “Motivation”, we briefly review the motivat-
ing example of Epidermolysis Bullosa (EB), which forms 
the basis for both this guidance paper and the EBStat-
Max project. Reference is also made to the outcomes 
analyzed. Indeed, for a rare disease trial, different types 
of outcomes (“objective”, “patient-centered”, etc.) have to 
be considered. Statistically, these are measured on differ-
ent scales, which is the key reason for presenting them 
separately in the sequel. After describing the simula-
tion setup and the primary performance measures in 
Sect. “Simulation design and performance measures”, the 
used state-of-the-art methods for rare disease cross-over 
trials will be theoretically presented in Sect.  “Methods”. 
More application-oriented readers may also skip this the-
oretical part, because it is not necessary to understand 
all technical details of the respective methods in order to 
comprehend the key results. Following this description 
of the methods, Sect.  “Results and recommendations” 
presents the results and recommendations for the three 
outcomes considered in separate subsections. Finally, 
Sect. “Discussion” contains a discussion of the key results 
and summarizes the main conclusions. This manuscript 
is primarily intended to provide recommendations for 
applied researchers. At the same time, since the recom-
mendations are based on systematic empirical compara-
tive evaluations of statistical methods, it might also be of 
interest for statisticians and methodologists. Moreover, 
other stakeholders in the field of rare diseases, such as 
regulators, pharmaceutical companies, and above all, the 
patients, might also find these recommendations useful, 
due to the fact that choosing valid statistical methods is a 
key step in providing trustworthy evidence of efficacy of 
(novel) treatments.

Scope of the guidance
Motivation
Because of the inherent rarity of the disease, small sam-
ple sizes are frequently encountered in rare disease trials. 
This also applies to the inherited skin disease Epider-
molysis Bullosa (EB), clinically characterized by fragil-
ity of epithelial-lined tissues and surfaces with recurrent 
mucocutaneous blistering. Treatment approaches try 
to ameliorate, among others, the blisters formation and 
their accompanying symptoms such as burdensome 
pain and pruritus. The starting point for these recom-
mendations within the EBStatMax project is a data set 
from this area of research. The data set derives from a 
study in which EB patients were treated with an immu-
nomodulatory topical diacerein cream. In a randomized, 
placebo-controlled, 2-period cross-over phase 2/3 trial, 
the impact of 1% diacerein cream vs. placebo in reduc-
ing the number of blisters in the simplex subtype of EB 
(EBS) was assessed. Furthermore, the severity of pain and 
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pruritus were assessed by a visual analogue scale (VAS). 
The VAS ranges from 0 (no pain/pruritus) to 10 (worst 
pain/pruritus imaginable). Fifteen patients were rand-
omized to either placebo or diacerein for a 4-week treat-
ment and a 3-month follow-up period. After a washout 
phase, patients were crossed over to the opposite treat-
ment for a second treatment period (see Fig. 1).

86% of the patients receiving diacerein, in period 1 
and 37.5% in episode 2 met the primary endpoint, i.e., 
a reduction of the number of blisters by more than 40% 
from baseline in predefined assessment areas after the 
4-week treatment (vs. 14% and 17% with placebo, respec-
tively). Additionally, the blister counts as well as the VAS 
scores for pain and pruritus were considered as second-
ary outcome variables (see [35] for more details). Since 
these outcomes are measured on different scales (binary 
for the primary outcome and metric/count as well as 
ordinal for the secondary outcomes), recommendations 
for these three types of outcomes will be derived from 
previously conducted simulation studies [14, 33]. Moreo-
ver, in each of these two methodological papers, a real life 
data example was also described, using the original study 
data of Wally et  al.[35]. It should be noted that other 
study designs for rare disease settings are both viable and 
common, but this guidance paper focuses on longitudinal 
studies and cross-over aspects.

Simulation design and performance measures
EBStatMax is a so-called demonstration project funded 
by the European Joint Programme on Rare Diseases 
(EJP-RD), aimed at bridging the gap between challenges 
arising from clinical practice and their potential statis-
tical solutions. To this end, at first, the members of the 
EBStatMax project consortium set up simulation studies, 
to compare different statistical methodologies. Subse-
quently, the project group addressed the key goal of the 
project, that is, to not only consider the methods theo-
retically but to also provide recommendations, software 
implementations, and educational materials. The aim of 
the simulations was to neutrally compare different statis-
tical hypothesis testing approaches and to recommend 
methods that maintain the nominal type-I error while 
demonstrating competitive statistical power compared to 
other methods. We will describe the simulation scenario 
for ordinal outcomes (VAS scores for pain and pruritus) 
in detail here. The simulation scenarios are similar for 
count and binary outcomes. For the count outcome the 

raw blister counts were used. Finally, the binary outcome 
was created based on an indicator for a 40% reduction 
compared to baseline (for details regarding the respec-
tive simulation setup, see Geroldinger et al. [14] and Ver-
beeck et al. [33]).

The EB trial data set was used as the basis for the simu-
lations. Recall from Sect. “Motivation”  that this is a lon-
gitudinal data set from a cross-over study with 4 time 
points per subject and study period. In the simulations, 
the outcome measurements were grouped into blocks 
of four time points rather than considering individual 
time point levels. For each simulation run, the blocks per 
subject and treatment period were randomly permuted 
across all subjects and treatment conditions (placebo and 
verum). Permuting full blocks ensured that data charac-
teristics (especially the longitudinal dependence struc-
ture within each block) was preserved. On average, over 
all simulated samples, the block permutation established 
a situation of no difference between the treatment condi-
tions and, hence, allows to evaluate the empirical type-
I error rates (for more details regarding the type-I error 
please see the Fig. 2 in Sect. “Discussion”).

For power simulations, additional steps were imple-
mented to simulate different treatment effect scenarios. 
These steps included generating random variables from 
different distributions and adding them to the obser-
vations from the placebo group at specific time points 
(because larger VAS scores / blister counts are consid-
ered as worse outcomes). The setup for power simu-
lations aligns with clinical expertise by considering 
different distributions (for more details regarding power 
in general, please see the Fig. 3 in Sect. “Discussion” and 
see Geroldinger et al. [14] and Verbeeck et al. [33]). The 
parameters of these distributions were chosen such that 
the expected values (shift effects) corresponded to clini-
cally meaningful effects. Since the outcomes are observed 
longitudinally, that is, at 4 time points within each 
period, the time point(s) when the effect was present had 
to be specified. To this end, two different scenarios were 
considered:

•	 Scenario 1 The random variables were added under 
placebo at the third time point (i.e., the post-treat-
ment visit) only (=scenario with a single time point 
with a treatment effect).

•	 Scenario 2 The random variables were added under 
placebo at the third time point (i.e., the post-treat-

Fig. 1  Illustration of the cross-over study design of the EB trial
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ment visit), and additionally, about half of the effect 
was added to outcome under placebo at the fourth 
time point, i.e., the follow-up visit (=scenario with 
multiple time points with a treatment effect).

The resulting empirical power values were based on a 
two-sided level of significance ( α = 0.05).

Methods
In this section, different approaches are presented for 
analyzing count, binary, and ordinal outcome meas-
ures in rare disease settings, respectively, if a cross-over 
study is conducted. Based on these methods, recom-
mendations are then suggested. At the outset, however, 
it is important to distinguish between three different 
basic approaches. Indeed, there are parametric, sem-
iparametric and nonparametric approaches that can be 
used. A large class of statistical methods is of a para-
metric nature; this means that a distribution is assumed 
for the data, and in particular, for longitudinal settings 
a correlation structure of the measurements within 
a subject is fully specified. Differences between two 
groups, for example, are then quantified by differences 
or ratios of certain parameters, such as means, medians, 
or other regression parameters. Results that emerge 
from these parametric procedures usually depend sub-
stantially on the extent to which the observed data in 
the sample can be modeled by these parametric distri-
butions, i.e., how well the model fits the data, and how 
sensitive the chosen methods are against violations of 
the parametric assumptions. Nonparametric statistics 
is a key counterpart to this, not requiring the use of 

specific distributional assumptions at all. Thus, non-
parametric approaches can be used to analyze metric, 
ordinal, categorical, or binary variables, either discrete 
or continuous, while a parametric approach would 
require distinct models for each of these variable types. 
Semiparametric methods, in contrast, have both para-
metric and nonparametric features; for example, one 
might assume a parametric mean-based model, while 
the correlation structure of the measurements is not 
fully specified [4, 5].

In the sequel, different parametric, semiparametric and 
nonparametric approaches are discussed, which have 
been selected as competitors for the simulation studies 
(see Sect.  “Simulation design and performance meas-
ures”). The choice of these approaches has been made by 
the project consortium and guided by extensive previous 
experience with applying these methods in the context of 
small samples / rare diseases. For a more detailed theo-
retical description of these methods, we refer to [14, 33], 
and the references therein.

Nonparametric marginal model (NMM)—nparLD
A nonparametric marginal model (NMM) is imple-
mented in the R package nparLD. This provides easy and 
user-friendly access to robust rank-based methods for 
the analysis of longitudinal data in factorial settings. For 
model classification purposes, nparLD uses a notation 
system for frequently used factorial designs depending 
on the number of factors. To this end, the factor which 
stratifies samples into independent groups, is called a 
whole-plot factor, while the factor defining the repeated 
measurements is of a so-called sub-plot-factor [28] type. 
This terminology derives, historically, from agricultural 

Fig. 2  Type-1-error

Fig. 3  Power
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experimental design. The underlying effect size for this 
method is the so-called relative effect. To illustrate the 
simplest case for the relative effect mathematically, the 
version for two random variables is defined as follows 
[4]. For two independent random variables X1 ∼ F1 and 
X2 ∼ F2 , the probability

is called relative effect of X2 with respect to X1 [4, 5]. This 
definition is based on the observation that for two inde-
pendent continuous random variables X1 and X2 , the rel-
ative effect of X2 to X1 can be characterized by

i.e., the probability that X1 takes smaller values than X2 , 
since in the continuous case P(X1 = X2) = 0 . Informally 
speaking, the relative effect quantifies the probability 
that the values of the outcome of one group are smaller 
than in the other group. Moreover, it immediately follows 
from its definition that the relative effect p takes values 
between 0 and 1.

To perform appropriate test procedures using the R 
package nparLD, the relative effect is used to derive test 
statistics. For the purpose of the EBStatMax project, 
that is, for the analysis of the time course within a cross-
over study, it was decided to test for an interaction effect 
within this framework, i.e., to test whether the longitudi-
nal profiles are different between the two treatments. To 
this end, the so-called ANOVA type statistic (ATS) was 
used, which can be regarded as a nonparametric general-
ization of the classical parametric ANOVA test statistic. 
In particular, its sampling distribution can be approxi-
mated by an F distribution (for details, see [4, 28]).

Generalized pairwise comparisons (GPC) variants
Another nonparametric approach is the so-called General-
ized Pairwise Comparisons (GPC). If there is only a single 
outcome and no missing data, the GPC approach is a lin-
ear transformation of the well-known Mann-Whitney rank 
test [25, 32]. Instead of a rank-based approach, the GPC 
method evaluates the longitudinally measured outcomes 
by constructing all possible pairs, one from each treatment 
group, and subsequently assigns a score to each pair. Since 
pairs are constructed between the two treatment arms 
independently from the treatment period, period effects 
are ignored in this method.

Intuitively, there are different approaches to construct 
these pairs for longitudinally collected outcomes. In math-
ematical terms, one could choose a univariate or multivari-
ate approach, distinguish between matched and unmatched 

(1)p = P(X1 < X2)+
1

2
P(X1 = X2)

p+ = P(X1 ≤ X2) = P(X1 < X2) = 1− P(X1 ≥ X2),

versions, and prioritized or non-prioritized methods. In 
each case, a score, denoted by Ukℓ , is assigned, correspond-
ing to the comparison of the univariate or multivariate out-
come, denoted by V1k , for patient k under verum and V2ℓ 
for patient ℓ under placebo, as follows:

In a univariate approach, the repeated measurements 
are evaluated by constructing one summary measure per 
subject and per treatment period and by comparing these 
summary measures within a pair. On the other hand, a 
multivariate approach allows for the evaluation of the 
longitudinal outcomes by comparing the outcomes per 
time point t, either ordered in a prioritized way or not 
ordered (non-prioritized). In a prioritized approach for 
repeated measurements, the time points are prioritized 
by importance. For each pair, a score is assigned by apply-
ing the rule defined in (2) to the first-ranked time point. 
If and only if the score results in a tie, the next ranked 
time point is evaluated in the pair, continuing until the 
last time point [6, 13, 29, 34]. Furthermore, it is possible 
to consider the treatment periods of a subject as inde-
pendent, which ignores the cross-over effect and is called 
an unmatched approach, leading to asymptotically valid 
results. Alternatively, pairs can be restricted to compare 
treatment periods only within subjects, in a matched 
approach.

After choosing the desired variant and assigning a score, 
various statistics can be constructed. An easy to interpret 
and frequently used treatment effect size, is the so-called 
net treatment benefit ( � ). For example, the unmatched net 
treatment benefit is defined as the sum of scores divided by 
the total number of pairs:

The range is [−1,+1] , which is easy to interpret as the dif-
ference of probability that a random subject will do better 
on active treatment than on placebo and vice versa.

Various testing procedures are available for the GPC 
variants. Due to the small sample sizes, permutation tests 
based on the null hypothesis are used for unmatched 
approaches:

with F̄i. defining the distribution of the outcome in treat-
ment group i. For matched variants, the conditional sign 
test is used to take ties and also the small sample size into 

(2)Ukℓ =

1, if V1k > V2ℓ

−1, if V1k < V2ℓ

0, if V1k = V2ℓ,

�unm =
1

n2

n
∑

k=1

n
∑

ℓ=1

Ukℓ.

H0 : F̄1. = F̄2.,
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account (see Coakley and Heise [9]; Dixon and Massey 
[7]; Fagerland [36]; Wittkowski [12] for more details).

GEE‑like semiparametric model
Modelling fully the two types of covariance patterns pre-
sent in repeated-measures cross-over designs—within-
treatment period dependencies and between-treatment 
period dependencies—may be challenging in small sam-
ples. Generalized estimating equations (GEE) and, more 
generally, semiparametric methods, including those 
based on pseudo-likelihood, avoid the need for full like-
lihood specification for Gaussian and non-Gaussian data 
[23]. GEE-like models involves, for example, specifying 
pairwise densities for repeated measures, which substi-
tute the full likelihood with the product of each possible 
pair of measures [26]. A variety of other versions exists. 
Bias-corrected sandwich estimators are available for 
small sample sizes, which lead to consistent estimators 
when correctly specified [24]. Assuming independence 
of the between- and within-period covariance structures, 
the between-period dependencies are modelled through 
fixed subject effects, while the within-period dependen-
cies are modelled using a residual covariance structure 
[21]. Considering i = 1, 2 for the treatment assignment, 
k = 1, . . . ,N  for the subjects and t = 1, . . . , 4 for the 
time points, the blister count Xikt ∼ Poisson(�ikt) and the 
dichotomized blister outcome Yikt ∼ Bernoulli(πikt) are 
modelled by:

where θikt is either �ikt or πikt , and with Gik a treatment 
group indicator, Pk a period indicator and Tijkt a dis-
crete time indicator. In these models, a Wald test for 
an overall treatment effect can be used, by evaluating a 
linear combination of parameters involving the treat-
ment group indicator Lβ = 0 . The treatment effect is 
expressed as the odds ratio for the dichotomized blister 
outcome and the rate ratio for the count outcome. The 
SAS procedure GLIMMIX supports repeated-measures 
designs, including cross-over designs, and hence can 
accommodate carry-over effect evaluation, while accom-
modating missing data. The results are valid when data 
is missing at random, provided likelihood-based estima-
tion is used. When a non-likelihood estimation method is 
used, it is advisable to pre-process the data using multiple 
imputation.

(3)

logit (θikt) = β0 + β1Gik + β2Pk +

5
∑

j=3

βjTijkt + β6GikPk +

9
∑

j=7

βjGikTijkt +

12
∑

j=10

βjPkTijkt ,

Model averaging (MA)
It is often seen that, for the analysis of longitudinal 
data, parametric models are the most powerful meth-
ods for hypothesis testing [22]. However, the meth-
ods require models to fully specify the time changing 
aspects of the data as well as the variance across indi-
viduals (at a minimum, for discrete data). For studies 
with small samples and relatively little previous infor-
mation about the data structure, finding an optimal 
model for the system may be challenging [3, 18]. One 
way to circumvent these limitations in small samples is 
to pre-define a range of models and to use a weighted 
average of metrics of interest across all models [1]. This 
approach is sometimes also called ensemble modeling.

In model averaging (MA), the weighting of the mod-
els is typically done according to their fit to the data 
(AIC, for example), but other weight factors can be 
used. These approaches are commonly applied in, for 
example, weather forecasts, where numerous models 
are used to make predictions of the coming weather. 
Those predictions are then weighted to give one single 
prediction, including the uncertainty of that prediction, 
based on model fits to available weather data.

A standard model averaging procedure to identify 
treatment effects in a clinical trial would involve:

•	 Predefining models that fit to the data
•	 Determining the weights for each of the models 

according to model fit to data. For example, the 
weight wq for the Mq model in the pool of candi-
date models M ( M = {M1, . . . ,MQ} ) models could 
be determined according to 

•	 Computing effect measures and uncertainty of 
those effect measures using a weighted prediction 
from the candidate model set.

Results and recommendations
Count outcomes
For count data, the number of blisters from the original 
study of Wally et al. [35] was used as the outcome vari-
able. For the analysis, the parametric, semiparametric, 

(4)wq =
e−

1
2AICq

∑Q
q′=1 e

− 1
2AICq′
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and nonparametric methods that have been introduced 
in Sects.  “Nonparametric marginal model (NMM)—
nparLD”, “Generalized pairwise comparisons (GPC) 
variants”, “GEE-like semiparametric model” and “Model 
averaging (MA)”– were compared, namely NMM 
(nparLD), GPC Variants, GEE-like models, and model 
averaging.

Firstly, it was found that the type-I error is controlled 
by almost all methods except for model averaging and 
matched GPC approaches. For the matched GPC mod-
els this is due to the fact that the number of pairs is too 
small, as the conditional sign test requires at least 15 
matched subjects (see Fagerland et  al. [11] or Coakley 
and Heise [7] for more details), which were not available 
within this data set.

It is important to note that the underlying null hypothe-
ses for the compared methods are different. For example, 
the null hypotheses accompanying the nonparametric 
methods are more restrictive compared to GEE-type and 
model averaging approaches. So, although an attempt 
was made to take a neutral position for deriving the rec-
ommendations, the fact that the underlying hypotheses 
are different must be kept in mind when interpreting the 
results provided in what follows.

Multivariate GPC methods (prioritized and non-pri-
oritized) resulted in the highest power values to detect 
a treatment effect. Prioritized GPC leads to the high-
est power for scenarios with a single time point with 
a treatment effect (i.e., Scenario 1 in Sect.  “Simula-
tion design and performance measures”), followed by 
model averaging. Non-prioritized GPC yields the high-
est power for scenarios with multiple time points with 
a treatment effect (i.e., Scenario 2 in Sect.  “Simulation 
design and performance measures”), closely followed 
by unmatched prioritized GPC. It should be noted that 
although prioritization was based on clinical grounds, it 
may have led to some bias towards favoring the method 
by design (see Verbeeck et  al. [33] for more details). 
Matched GPC approaches resulted in lower power val-
ues than unmatched counterparts. It should be noted 
that work by Fagerland et al. [11] suggests that matched 
GPC approaches only lead to meaningful results with a 
sample size of about N > 15 . Within-period and within-
subject dependence modeling in a cross-over trials using 
a GEE-type model do not produce a distinct advantage 
over nonparametric methods. The power is comparable 
to matched GPC and lower than unmatched GPC; also, 
there may be convergence problems. Parametric model 
averaging approaches are computer intensive and do not 
lead to higher power compared to nonparametric GPC 
variants, but on the other hand, similarly as the GEE-
like semiparametric model, they allow for evaluating if a 
carry-over or a period effect is present.

The nonparametric marginal model (NMM), which is 
implemented in the R package nparLD, can be used for 
testing the interaction effect between treatment and time. 
Hence, this means that NMM is suitable for detecting 
differences between groups regarding the longitudinal 
profiles. At this point it would have been interesting to 
compare GEE-type models and model averaging models 
with NMM, since these approaches can also test interac-
tion effects. However, since such sort of comparative sim-
ulations have not been carried out, no recommendations 
for evaluating differences between profile lines are pro-
vided. However, the results of the simulations that have 
been carried out for NMM are briefly summarized as fol-
lows. The simulations have shown that the nonparamet-
ric marginal model (NMM) is good at detecting a profile 
with a peak (i.e., a single time point with a treatment 
effect), yet much less so for a longitudinal profile with a 
treatment effect on multiple time points. Additionally, 
the nonparametric marginal model requires to test each 
treatment period separately and thus does not allow for 
considering a cross-over effect.

Binary outcomes
The primary endpoint of the study conducted by Wally 
et al. [35] was the proportion of patients with more than 
40% reduction from baseline in the number of blisters 
after 4 weeks of treatment. This binary outcome was also 
chosen as the starting point for the simulations. Overall, 
we evaluated the same methods as for the count out-
come (see Sect.  “Count outcomes”) in order to make a 
thorough empirical comparison in terms of the resulting 
type-I error and power. The methods under consideration 
were NMM, GPC variants, GEE-type, and model averag-
ing. Dichotomizing count data, as given by the number 
of blisters, leads to loss of granularity in the data. This 
translates in our results to lower power values to detect a 
treatment effect in the dichotomized blister counts com-
pared to the raw blister counts. Therefore, most tested 
methodologies are more sensitive to detect a treatment 
effect using a count outcome compared to the usage of a 
binary outcome, as provided by dichotomization of blis-
ter counts (see [33] for more details).

NMM is a liberal testing procedure, and has higher 
power values when there is only one treatment visit with 
a treatment effect. Furthermore, it is limited by the fact 
that there is only two-sided testing possible. GPC con-
trols type-I error well, except for the non-prioritized 
unmatched version, possibly due to a high amount of ties 
due to dichotomization. Similarly to the count outcome, 
the unmatched versions lead to higher power values than 
the matched counterparts (see Sect.  “Count outcomes” 
for more details).
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For GEE-type semiparametric models, small-sample 
corrections are not necessary, given that the variance for 
a dichotomized count is closer to homoscedasticity com-
pared to count data. The power is close to the matched 
GPC, but lower than the unmatched GPC. For model 
averaging, the difference between treatment and refer-
ence groups in terms of the proportions of the dichoto-
mized outcome was used, which is commonly referred 
to as a �� effect measure. The type I error is controlled; 
with respect to power, MA outperforms the other com-
petitors in scenarios with a single time point with a treat-
ment effect, while it is comparable to GPC in scenarios 
with multiple treatment effects.

Ordinal outcomes
For ordinal outcomes, the nonparametric rank-based 
marginal model (NMM) using the R package nparLD was 
compared with various generalized pairwise comparisons 
(GPC) methods. Especially for ordinal outcomes, only 
these two approaches were included in the comparison, 
since they are based on nonparametric approaches and 
are therefore very suitable for this type of outcome.

For the selected context of the EB data set, the ordinal 
outcomes were given by the visual analogue scale (VAS). 
This score was used for the outcomes “pain” and “pruri-
tus” and ranged from 0 (no pain/pruritus) to 10 (worst 
pain/pruritus imaginable) with an increment of 0.5 [35]. 
Note, that the visual analogue scale usually consists of a 
line of 100  mm in length, with anchor descriptors such 
as “no pain/pruritus” and “worst pain/pruritus imagina-
ble” where patients indicate their level of pain or pruri-
tus. Importantly, VAS scores are considered as being 
measured on an ordinal scale since differences can-
not be interpreted in an uniform, meaningful way. For 
example, in clinical practice, a decrease in VAS from 
8 to 6 might be interpreted differently than a decrease 
from 3 to 1 [16]. We have already outlined the basic con-
cept of the two methods NMM and GPC in more detail 
in Sects.  “Nonparametric marginal model (NMM)—
nparLD”  and “Generalized pairwise comparisons (GPC) 
Variants”, respectively.

For the aforementioned study design of a longitudinal 
cross-over study, we attempted to select statistical meth-
ods that could reasonably account for this study type. 
However, it must be noted that the NMM method imple-
mented in nparLD can only handle the periods separately 
at this stage. Thus, each treatment period is considered 
separately and the interaction effect of the considered 
outcome of the VAS score is calculated by a rank-based 
test statistic for each of the two periods separately. All 
evaluated methods control the type-I error, except for 
the matched GPC variant. Among all tested methods, 
the prioritized GPC variant achieved the highest power. 

The name of the method indicates, however, that speci-
fying a clinically relevant and meaningful prioritization 
is a key requirement for using this method. Since for 
NMM, periods had to be evaluated separately, the sample 
sizes were particularly low (i.e., a sample size of N = 6 
patients). However, NMM could still achieve very high 
power values, suggesting that this method can be recom-
mended also for very small sample sizes. The longitudinal 
structure can be analyzed properly with both unmatched 
GPC variants and NMM. Furthermore, the NMM is also 
capable of detecting interaction effects (i.e., detecting sig-
nificant differences between longitudinal profiles). As a 
conclusion, the results of Geroldinger et al. [14] indicate 
that especially for longitudinal data in a small sample size 
cross-over study, we can derive some recommendations 
indeed. At the same time, however, perhaps even more 
than in the binary and count outcome cases, a trade-off 
must be made between increasing power and analyzing 
period-specific effects.

Real‑life data application
The given results are based on several simulation stud-
ies, which were performed in the works of Geroldinger 
et  al. [14] and Verbeeck et  al. [33], also using real-life 
data examples. Instead of just duplicating the cor-
responding subsections of those papers, the present 
manuscript provides an application-oriented summary 
of the results and derives recommendations for prac-
tice. Still, however, it should be emphasized that these 
recommendations regarding the three analyzed out-
comes (count, binary, and ordinal) are based on the 
original data set of the study by Wally et al. [35]. In the 
sequel, we therefore briefly illustrate the application 
of our recommendations (Figs. 4, 5 and 6) to this con-
crete data example: The primary focus in the Diacerein 
trial conducted by Wally et al. [35] was to use a statis-
tical method that maximizes power, since the recruit-
ment of study subjects in Epidermolysis Bullosa—and 
in rare diseases in general—is usually quite difficult. 
Therefore, the sample size is very small. In addition, 
the time point immediately after the end of treatment 
is the clinically most relevant one, assuming that there 
is the peak of the therapeutic effect. Yet, also sustained 
long-term effects of the treatment are of interest, and 
therefore, the last time point (i.e., at the end of follow-
up) is relevant, too. Thus, a prioritization of time points 
would be desirable. By contrast, accounting for period-, 
interaction, and/or carry-over effects is somewhat less 
important, since some measures to avoid such effects 
have been taken already at the design stage. Thus, as 
an example, we will now demonstrate how to use our 
recommendations to identify an appropriate analysis 
method for ordinal outcomes: In the real-life data set 
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Fig. 4  Recommendations for count outcomes in cross-over rare disease trials

Fig. 5  Recommendations for binary outcomes in cross-over rare disease trials

Fig. 6  Recommendations for ordinal outcomes in cross-over rare disease trials
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of Wally et  al. [35], ordinally scaled outcomes were 
pain, pruritus, and quality of life. According to Fig.  6, 
this would mean that we could use the prioritized 
unmatched GPC variant due to the desired prioritiza-
tion, which would also be recommended for the maxi-
mization of the power. Analogously, due to the given 
clinical focus, we would obtain the respective methodo-
logical recommendations for the count and binary out-
come by the respective figures (Figs. 4 and  5) as well.

Finally we would like to emphasize once more that 
in other real-life data applications one might put more 
emphasis on period- or carry-over effects, and depend-
ing on this decision, different recommendations and 
methods may be applied. In summary, this implies that 
one can refer to these given recommendations in case 
of a longitudinal study design with cross-over. Any 
number of measurement time points within the respec-
tive treatment periods can be dealt with in this case. 
When applying these statistical recommendations, it 
is important to consider possible clinical aspects that 
appear to be crucial for the real-life data application. 
These may include whether it would be beneficial to 
prioritize study time points, to give greater considera-
tion to carry-over or period effects, or to emphasize 
the importance of maximizing the statistical power of 
the applied method. Indeed, depending on this deci-
sion, different methods are recommended, as shown in 
the respective figures (Figs. 4, 5 and 6) for the different 
scales of the outcome variables.

Discussion
The aim of this work was to provide some practically ori-
ented guidance regarding the use of different statistical 
methods for small sample sizes in a cross-over trial. For 
this purpose, the starting point was a study by Wally et al. 
[35], in which data on count, binary and ordinal outcomes 
was collected. Previously, neutral simulation studies that 
are based on this data set have been performed and pub-
lished (see Geroldinger et al. [14] and Verbeeck et al. [33] 
for more details, in particular for real-life data examples). 
To provide a more condensed summary of the recom-
mendations that can be derived from these rather tech-
nical publications, we provide this guidance document 
regarding the analysis of trials with a cross-over design 
with repeated measures. It should be mentioned that those 
recommendations are given on the basis of one single data 
set, and simulations based on permutations of this original 
data. Future work should be aimed at including also other 
data sets to further validate the given recommendations.

Overall, different statistical state-of-the-art methods 
were compared, including parametric, semiparametric, 

and nonparametric approaches. The methods were 
selected by an international consortium within the so-
called EBStatMax project. We compared rank-based and 
nonparametric methods, namely the generalized pairwise 
comparison (GPC) variants (univariate, multivariate, 
matched, unmatched, prioritized and non-prioritized) 
and inference based on a nonparametric marginal model 
(NMM, as implemented in the R package nparLD), the 
semiparametric GEE-like model and parametric model 
averaging approaches. Overall, for all three tested levels 
of measurement (count, binary and ordinal), it could be 
demonstrated that the power and the results strongly 
depend on the level of measurement of the outcome.

Based on our simulations, especially the prioritized 
unmatched GPC method was able to achieve particularly 
high power values and could lead to good results in many 
scenarios. This multivariate approach allows to analyze 
count, binary and ordinal outcomes and to prioritize them 
by time point. For each pair, a score is assigned to the first 
ranked time point. If and only if the score results in a tie, the 
next ranked time point is evaluated, continuing until the 
last time point. The prioritization of the time points there-
fore has a big impact on power. This makes sense, since the 
prioritization that was specified in the GPC closely corre-
sponds to the simulation settings (i.e., in the simulations, 
the effect was added in each scenario at the post treatment 
visit, which was, on the other hand, evaluated first in the 
prioritized analyses). However, we would like to emphasize 
that the reason for setting up the simulations and prioritiz-
ing with the GPC method in this way were clinical con-
siderations and not the intention to favor this particular 
method. It should be emphasized that a different prioritiza-
tion could also lead to inferior performance.

That being said, it is noteworthy that the NMM 
approach has a high power that is quite close to the 
prioritized GPC method, at least in some cases for 
example within ordinal outcome settings, even though 
the simulations were performed with a smaller sam-
ple size (group sizes of 6 and 7), which is due to the 
separate testing of the time periods. Future research 
could address this aspect and analyze parallel group 
designs in detail using these tested methodologies 
and to derive further recommendations for this study 
design. However, it should be noted that NMM as 
implemented in nparLD does not account for cross-
over effects, because of the separate testing procedure 
of the treatment periods. Yet, NMM can account for 
the longitudinal profile line information and interac-
tion effects. GEE-type models and model averaging 
might also be used to test interaction effects. Future 
work could link these to derive recommendations in 
this respect as well.
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Furthermore, note that the dichotomization of count 
data leads to a loss of granularity in the data. It was 
found that all tested methods had less power in the 
binary setting than in the count data counterpart. But, 
model averaging led to similarly high power values as 
the prioritized unmatched GPC method, especially for 
the binary outcome, where other tested methods per-
formed worse. Both MA and GEE-like models can take 
account of period or carry-over effects. Regarding the 
power of GEE and matched GPC approaches, however, 
it was found that they performed worse than compara-
tive methods such as the prioritized unmatched GPC. 
For matched GPC approaches we are suggesting that it 
may not be appropriate for less than 15 subjects.

In summary, our previous analyses, which constitute 
the basis for the recommendations provided in this 
paper, indicate that in certain scenarios some methods 
work better than others, yet there is no single method 
that outperforms the others in all scenarios. There-
fore, Fig.  7 has no decision tree structure, but reflects 
a balance between different aspects (e.g., prioritiz-
ing relevant time points, or maximizing power). As an 
applied researcher being confronted with the task of 
choosing the appropriate statistical analysis method in 
such a rare disease cross-over setting, it must therefore 
be decided at the outset which priorities should be set 
for the statistical analysis. Altogether, Fig. 7 shows the 
overall recommendations in a simplified and combined 
way, thereby summarizing the outcome-specific recom-
mendations and corresponding Figs. 4, 5 and 6.

It can be concluded that a balance between achieving 
high power, accounting for cross-over, period or carry-
over effects, and prioritizing clinically relevant time 
points must be found.
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