
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Shin et al. Orphanet Journal of Rare Diseases          (2023) 18:335 
https://doi.org/10.1186/s13023-023-02953-6

Orphanet Journal of Rare 
Diseases

*Correspondence:
Friederike Ehrhart
friederike.ehrhart@maastrichtuniversity.nl

Full list of author information is available at the end of the article

Abstract
Background 22q11.2 Deletion Syndrome (22q11DS) is a genetic disorder characterized by the deletion of adjacent 
genes at a location specified as q11.2 of chromosome 22, resulting in an array of clinical phenotypes including 
autistic spectrum disorder, schizophrenia, congenital heart defects, and immune deficiency. Many characteristics 
of the disorder are known, such as the phenotypic variability of the disease and the biological processes associated 
with it; however, the exact and systemic molecular mechanisms between the deleted area and its resulting clinical 
phenotypic expression, for example that of neuropsychiatric diseases, are not yet fully understood.

Results Using previously published transcriptomics data (GEO:GSE59216), we constructed two datasets: one set 
compares 22q11DS patients experiencing neuropsychiatric diseases versus healthy controls, and the other set 
22q11DS patients without neuropsychiatric diseases versus healthy controls. We modified and applied the pathway 
interaction method, originally proposed by Kelder et al. (2011), on a network created using the WikiPathways pathway 
repository and the STRING protein-protein interaction database. We identified genes and biological processes that 
were exclusively associated with the development of neuropsychiatric diseases among the 22q11DS patients. 
Compared with the 22q11DS patients without neuropsychiatric diseases, patients experiencing neuropsychiatric 
diseases showed significant overrepresentation of regulated genes involving the natural killer cell function and the 
PI3K/Akt signalling pathway, with affected genes being closely associated with downregulation of CRK like proto-
oncogene adaptor protein. Both the pathway interaction and the pathway overrepresentation analysis observed the 
disruption of the same biological processes, even though the exact lists of genes collected by the two methods were 
different.

Conclusions Using the pathway interaction method, we were able to detect a molecular network that could 
possibly explain the development of neuropsychiatric diseases among the 22q11DS patients. This way, our method 
was able to complement the pathway overrepresentation analysis, by filling the knowledge gaps on how the affected 
pathways are linked to the original deletion on chromosome 22. We expect our pathway interaction method could 
be used for problems with similar contexts, where complex genetic mechanisms need to be identified to explain the 
resulting phenotypic plasticity.
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Background
22q11.2 Deletion Syndrome (22q11DS), also known as 
DiGeorge or velocardiofacial syndrome (MIM:192,430), 
is a genetic disorder characterized by one copy of chro-
mosome 22 missing a segment in the q-arm known 
as q11.2. In about 1 in 4000 live births an incident of 
22q11DS [1, 2] is reported. Several somatic and neuro-
psychiatric symptoms are associated with this disease, 
including congenital heart defect, facial anomalies, 
schizophrenia/psychosis, hypoplastic thymus with 
immune deficiency, autistic spectrum disorder, palatal 
anomalies, neonatal hypocalcemia, speech and learning 
disabilities, and even combinations of such phenotypes 
[3–6]. The two most frequent phenotypes are congenital 
heart defect and schizophrenia, which comprises 60–70% 
and about 25%, respectively, of the patient population 
[7–9].

One major challenge of studying 22q11DS is to under-
stand the molecular mechanisms between the deleted 
genes and the resulting disease phenotypes; previous 
research showed that the phenotypes vary widely among 
individuals, even though most patients share a common 
3 Mb deletion [7, 10]. In addition, many of the associated 
clinical phenotypes are known to involve polygenic inher-
itance, for example autistic spectrum disorder, schizo-
phrenia, and congenital heart defect, making it harder 
to track the propagation of this genetic perturbation. It 
is now suspected that multiple genes deleted within and 
outside the 22q11.2 region interact and target various 
cellular mechanisms, causing a range of clinical variation 
with different degrees of severity [11–14]. On the other 
hand, many studies on the mechanisms of 22q11DS up 
to this day focused on identifying associations between 
individual genes and certain phenotypes, and possibly as 
a result, some have reached inconclusive or inconsistent 
results. For example, the association between mutation 
of COMT in the 22q11.2 region and schizophrenia have 
been supported by some researchers but opposed by oth-
ers [8, 75, 76]. Overall, much of the molecular dynamics 
of 22q11DS remain yet to be fully understood.

The complex genotype-phenotype variability of 
22q11DS and the polygenic characteristics would benefit 
from novel bioinformatical approaches that utilize our 
current knowledge of complex interactions between bio-
logical materials. Previous efforts to organize this current 
knowledge by the bioinformatics community resulted in 
several large and publicly available databases, which can 
be easily exploited. In particular, pathway databases such 
as WikiPathways, Reactome, and KEGG, created from 
the literature and manually curated, delineate numerous 
biological interactions at the gene and molecular level 
[15–17]. An important feature of these repositories is 
that each pathway can be regarded as a module, a group 
of often co-regulated genes related to a common process 

[18]. Another important class of databases describes 
direct interactions between biological entities, such as 
those occurring between proteins (e.g. STRING) [19]. 
Using these information-rich databases, we can create 
a network that reflects our integrated understanding of 
how relevant genes and proteins regulate and interact 
with each other.

In addition, networks can help us integrate omics data 
and biological interactome data for further analysis [20]. 
Previous studies have demonstrated that network meth-
ods were effective in detecting several molecular-level 
features of cell functions that are associated with various 
diseases, such as cancer, cardiovascular diseases, neuro-
logical diseases, and many others [21–26]. For example, 
some researchers proposed examining direct interac-
tion partners of known disease proteins, others check-
ing topological characteristics such as hubs and modules 
[23, 27–29]. A notable number of algorithms apply path-
based approaches, many of which use shortest paths or 
random walks, to identify disease genes and modules 
[28–30]. Previously, our group and others proposed a 
method to estimate interactions between pathways using 
threshold-based shortest paths traversing a biological 
network. This network was created from WikiPathways 
and KEGG repositories and was extended with protein-
protein interaction and transcription factor-target infor-
mation [31]. In that method, an interaction between two 
pathways is defined as a collection of significant paths, 
where two genes, each from different pathways, are con-
nected via protein-protein or transcription factor-target 
interactions. The significant paths can then be collected 
and the calculated ‘pathway score’ is used to determine 
the strength of interaction between each pair of pathways 
[31].

The complexity of molecular features involving 
22q11DS makes it an attractive subject for network 
biology methods discussed above. In addition, a deeper 
understanding of the genotype-phenotype relationships 
of 22q11DS may help us gain richer insights into sev-
eral other diseases that display polygenic traits, such as 
neuropsychiatric diseases, by identifying the collective 
characteristics of interacting genetic variants [32–34]. 
In one of few studies in this subject, Jalbrzikowski et al. 
[37] analysed data of 22q11DS patients including those 
with autism spectrum disorder and/or psychosis, using 
weighted gene co-expression network analysis, and iden-
tified co-expressed gene modules associated with psy-
chosis and autistic spectrum disorder. However, each 
module only provided the list of probes and information 
of associated genes, and more direct molecular relation-
ships between the members, could have been established 
using our knowledge of biological interactions.

In this paper, we reimplemented Kelder et al.’s path-
way interaction method to a transcriptomics 22q11DS 
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dataset, originally published by Jalbrzikowski et al. [37], 
and demonstrated that, with proper adjustments, it could 
detect a gene subnetwork likely to be associated with 
phenotypic expression of autism spectrum disorder and/
or psychosis among 22q11DS patients. Our approach 
used a combination of prior knowledge from WikiPath-
ways, protein-protein interactions from STRING, and 
experimental data from a previous gene expression study 
regarding 22q11DS. We believe our approach can be flex-
ibly applied to study molecular mechanisms of a wide 
range of genetic disorders with known origin - in our 
study, deleted genes at 22q11.2.

Results
In this study, we re-analysed a transcriptomics data-
set originally created by Jalbrzikowski et al. [37] using 
a novel pathway interaction analysis method to identify 
paths between the causative genes for this disorder and 
the differentially expressed genes.

Candidate biomarkers
After analysis of the transcriptomics dataset derived 
from peripheral blood, among a total 1,135 candidate 
pathways, the Psychiatric Group identified 167 pathways 
that included at least one significant path to the source 
(22q11DS pathway, WP4657), and 154 pathways with 
p-values less than 0.05. The Nonpsychiatric Group iden-
tified 246 significant pathways out of 255 pathways that 
have at least one significant path. The Psychiatric Group 
detected 116 genes contributing to the significant path 
network, and the Nonpsychiatric Group identified 185 
such genes. The genes collected from the Psychiatric and 
Nonpsychiatric groups are presented in Fig.  1, with the 
source node, which was labeled 22q11DS and colored 
yellow.

Genes associated with phenotypic expression of 
neuropsychiatric diseases
Our primary goal was to identify genes that were exclu-
sively expressed among the autism spectrum disorder/
psychosis patients. Figure 2 A describes the list of neuro-
psychiatric genes detected by the Psychiatric Group and 
the Nonpsychiatric Group. We found 12 neuropsychi-
atric genes that were exclusively represented among the 
patients experiencing autism spectrum disorder/psycho-
sis. None of those genes were exactly located at 22q11.2, 
but their first-degree neighbors included CRKL, which is 
located within the commonly deleted region and is highly 
expressed in brain [11, 35]. Here, first-degree neighbor-
hood means that such genes entail protein-protein inter-
action with CRKL. Using CRKL and an additional gene, 
GRAP2, one of the first-degree neighbors not in the Dis-
GeNet list but suspected to be linked with schizophrenia 
[36], we were able to create a fully connected subnetwork 

with those 14 genes and visualized it as Fig. 2B. Supple-
mentary Material S4 provides the full list of pathways 
that include any of the 14 genes.

Pathways detected by pathway overrepresentation 
analysis (ORA)
Using the differential expression analysis for autism spec-
trum disorder and/or psychosis patients (Psychiatric 
Group), we found 217 differentially expressed genes, con-
sisting of 98 downregulated and 119 upregulated genes. 
The same analysis involving patients without neuropsy-
chiatric diseases (Nonpsychiatric Group) found 145 dif-
ferentially expressed genes, among which the number 
of downregulated genes was 76 and that of upregulated 
genes was 69.

Table  1 lists top 10 pathways having at least two sig-
nificant genes, detected from each data group. Pathway 
ORA from both Psychiatric and Nonpsychiatric data 
groups detected the 22q11DS pathway (WP4657, labeled 
as 22q11.2 copy number variation syndrome) to be the 
most significantly overexpressed, which is rather obvious 
considering this pathway included the highest number 
of genes that had been directly affected by the deletion. 
Besides, only one pathway - Transcriptional regulation of 
granulopoiesis (WP5001) - was included in both lists.

Both data groups observed overrepresentation of bio-
logical pathways associated with immune system (e.g., 
Allograft Rejection-WP2328 and Neutrophil Degranu-
lation-WP4049), general metabolism (e.g., Purinergic 
signaling-WP4900 and DNA Methylation-WP3359), and 
cancer-related pathways (e.g., Wnt/beta-catenin Signal-
ing Pathway in Leukemia-WP3658), overall consistent 
with the findings by the authors of the dataset [37]. Path-
ways representing neuropsychiatric disorders, based on 
their titles, were not strongly represented in both results 
but the Amyloid fiber formation- WP3547 pathway was 
found in both groups. The complete results and associ-
ated genes were provided as Supplementary Material S5.

The overrepresentation analysis using differentially 
expressed neuropsychiatric genes is shown in Fig. 3. The 
genes identified by the two data groups were represented 
as a Venn diagram in Fig. 3A. Compared to the pathway 
interaction method, pathway ORA identified a different 
list of exclusively differentially expressed neuropsychi-
atric disease genes. Three genes - COMT, CLDN5, and 
SNAP29 - were commonly identified by both the path-
way interaction and the pathway ORA methods, and 
HLA-DQB1 and DGCR8 were exclusively identified 
among the Nonpsychiatric Group by both methods. All 
these genes, except CLDN5, are also expressed in brain 
tissues as compared with data from The Human Protein 
Atlas [https://www.proteinatlas.org/]. Figure  3B visual-
izes the exclusively differentially expressed genes by the 
Psychiatric group as a gene-pathway network, using the 

https://www.proteinatlas.org/


Page 4 of 14Shin et al. Orphanet Journal of Rare Diseases          (2023) 18:335 

pathways that include two or more such genes. Most 
pathways were connected to ADRB2 and ADORA2A, 
genes mainly associated with G-protein signalling path-
ways and expressed in the brain. FKBP5, GZMB, and 
PRF1 showed the highest expression level (log2FC), how-
ever, GZMB and PRF1 are typically expressed in blood, 

not brain tissue. The full list of pathways including these 
genes is provided as Supplementary Material S6.

Discussion
The pathway interaction method, originally proposed 
by Kelder et al. [31], analyses biological networks, con-
structed by previously identified relationships between 

Fig. 1 Pathway Interaction Network. Figure 1A represents the significant path network of the Psychiatric Group, and Fig. 1B the network of the Non-
psychiatric Group. Downregulated nodes were colored blue, upregulated red. The source node (yellow, labeled 22q11DS) was colored yellow. Figure 1A 
shows several hubs such as CRKL, PDGFRB, GRAP2, and SNAP29, while Fig. 1B has CEACAM8, SNAP29, KLHL22, and OLR1 as most connected nodes. The 
genes that are known to be directly affected by the deletion, i.e., members of the 22q11DS pathway, are first neighbours of the source node and are 
marked with red arrows
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genes and examines their collective behaviors. In this 
paper, we demonstrated that this method could detect 
the disease expression subnetwork (in this study, clinical 
expression of autism spectrum disorder and/or psycho-
sis) that was likely to have been affected by the deletion 
in the 22q11.2 region. The summary of our workflow is 
as follows. First, we created two large directed graphs, 
one for patients with autism spectrum disorder/psycho-
sis and the other without, consisting of protein-protein 

interactions and the WikiPathways repository. Next, 
using two transcriptomics datasets of 22q11DS, we iden-
tified sets of pathways and genes that closely ‘interact’ 
with the 22q11DS pathway (22q11.2 copy number varia-
tion syndrome, WP4657). We then refined the interac-
tion networks and identified a gene subnetwork that was 
exclusively associated with 22q11DS patients experienc-
ing autism spectrum disorder/psychosis. The results were 
compared with that of pathway ORA.

Fig. 2 Neuropsychiatric genes detected by the pathway interaction network and their subnetwork. Figure 2A indicates the neuropsychiatric genes 
detected by two groups. The Psychiatric Group identified 12 exclusive neuropsychiatric genes, based on the classification in DisGeNet, included in the 
interaction network. Using this exclusive list of genes and two additional first-degree neighbors (CRKL and GRAP2), we were able to create a fully con-
nected neuropsychiatric disease expression subnetwork shown in Fig. 2B. The 22q11DS pathway node was included to show its connection with CRKL. 
Supplementary Material S4 provides the full list of pathways that contain the detected genes
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In the subnetwork shown in Fig. 2B, a notable relation-
ship is a propagation of a signal starting from CRKL, a 
commonly deleted gene in the 22q11.2 region, leading to 
GRB2, and then PDGFRB, which is a major hub within 
the subnetwork. Previous studies suggest that CKRL, 
GRB2, IL2, ITGB3, and FYN are involved with natu-
ral killer (NK) cell activation [38–42]. Indeed, previous 
research observed decreased NK cell function among 
22q11DS patients [43]. In addition, there have been sev-
eral studies supporting that reduced NK cell cytotoxicity 
is associated with neurodevelopmental disorders, espe-
cially autism spectrum disorder [44–46]. Consequently, 
we suspect that NK cell function might be one of the 
important biological processes disrupted among the 
22q11DS patients who experienced neuropsychiatric dis-
orders. The upregulation of PDGFRB might give another 
piece of evidence for this mechanism. PDGFR-DD binds 
to NKp44 to activate NK cells, and also interacts with 
PDGFRB, to stimulate further downstream pathways 
[47–49]. Therefore, the upregulation of PDGFRB might 
be the result of increased PDGFR-DD activity, via a pos-
sible feedback loop, to compensate for the reduced NK 
cell functions initially caused by the silencing of CRKL.

Besides the association with NK cell functions via 
PDGFRB, a number of studies reported that the down-
regulation of the PI3K/Akt pathway is associated with 

autism spectrum disorder and schizophrenia [50–53]. 
PIK3CA and PIK3CB, two class I subunits of PI3K, as 
well as AKT1 are thus likely to have influenced the phe-
notypic expression of autism spectrum disorder and/
or psychosis among the 22q11DS patients. Since GRB2 
plays an important role in PI3K activation pathways [54, 
55], GRAP2 (GRB2 related adaptor protein 2) can be con-
sidered to take part in the same pathway. There have been 
a few studies which suggested the association between 
GRB2/GRAP2 and schizophrenia [56–58], but we sus-
pect GRAP2 might be actively involved in integrating and 
transmitting the effects of gene deletion leading to the 
expression of neuropsychiatric diseases. The role of other 
genes, HLA-A, HRAS, and PAK2, whose connection was 
not clearly demonstrated by the disease subnetwork, may 
be illuminated in conjunction with GRAP2 or its close 
interaction partners.

We can summarize our findings as follows. The dif-
ferentiating feature of the Psychiatric Group over the 
Nonpsychiatric Group, i.e. the molecular signature of 
the 22q11DS patients who have experienced autism spec-
trum disorder and/or psychosis, compared to those who 
have not experienced such diseases, implies the involve-
ment of NK cell functions and PI3K/Akt signalling path-
way, as well as several genes such as CRKL, PDGFRB, 
and AKT1.

Table 1 Top 10 pathways from pathway ORA from the Psychiatric Group (Table 1A) and that from the Nonpsychiatric Group 
(Table 1B). The pathways displayed here were ranked based on z score among those with at least three genes matching the criteria (p 
value < 0.05 and |log2FC| >= 0.15). Full lists are provided as Supplemental Material S5
wpid pathway description z score p value
A
WP4657 22q11.2 copy number variation syndrome 10.95 < 0.01

WP5001 Transcriptional regulation of granulopoiesis 6.81 < 0.01

WP2328 Allograft Rejection 6.30 < 0.01

WP4066 Interleukin-4 and Interleukin-13 signaling 6.26 < 0.01

WP3358 Caspase activation via Death Receptors in the presence of ligand 5.80 < 0.01

WP1829 Immunoregulatory interactions between a Lymphoid and a non-
Lymphoid cell

5.17 < 0.01

WP3658 Wnt/beta-catenin Signaling Pathway in Leukemia 4.06 0.01

WP3350 TNFs bind their physiological receptors 3.85 < 0.01

WP69 T-Cell antigen Receptor (TCR) Signaling Pathway 3.84 < 0.01

WP4900 Purinergic signaling 3.59 < 0.01

B
WP4657 22q11.2 copy number variation syndrome 14.71 < 0.01

WP5001 Transcriptional regulation of granulopoiesis 8.67 < 0.01

WP4101 Antimicrobial peptides 7.06 < 0.01

WP3391 Senescence-Associated Secretory Phenotype (SASP) 6.45 < 0.01

WP3359 DNA methylation 6.24 < 0.01

WP3364 SIRT1 negatively regulates rRNA expression 5.91 < 0.01

WP3397 Activated PKN1 stimulates transcription of AR (androgen receptor) 
regulated genes KLK2 and KLK3

5.80 < 0.01

WP3312 PRC2 methylates histones and DNA 5.52 < 0.01

WP3801 ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression 5.34 < 0.01

WP4049 Neutrophil degranulation 5.24 < 0.01
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Compared to the pathway interaction method demon-
strated here, pathway ORA detects individual genes that 
are significantly differentially expressed and are contained 
in previously defined pathways. Among the identified sig-
nificantly expressed neuropsychiatric genes, current lit-
erature suggests that PRF1, GZMB, ADORA2A, ADRB2, 
and IL1B play important roles regarding the NK cell func-
tion [59–63]. On the other hand, PRDX6, HSPA1B, and 
FKBP5 are known as biomarkers involved in regulation of 
the PI3K/Akt signalling pathway [64–66]. Therefore, we 
can conclude, at the level of biological processes both the 

pathway interaction and the ORA methods imply certain 
biological pathways that are commonly involved, which 
may warrant closer look at such mechanisms in future 
study. Considering the most significantly differentially 
expressed genes were a bit far from the deleted genes of 
the 22q11.2 region, we suspect some negative feedback 
mechanisms that decrease the expression level of the 
genes that directly interact with both the deleted genes 
and the most significant genes. Still, we found that three 
of the genes (GZMB, PRF1, IL1B) from pathway ORA 
had direct protein-protein connections with the genes 

Fig. 3 Neuropsychiatric genes detected by Pathway ORA. The Psychiatric Group identified 10 exclusive neuropsychiatric genes that were differentially 
expressed, as shown in Fig. 3A. Figure 3B is a gene-pathway network of the pathways that contain two or more such genes. ALOX12 and BTG1 were not 
included in any such pathways
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in Fig. 2B. Using this, we further extended our network, 
which is displayed in Fig. 4.

It would be beneficial to briefly compare the two meth-
ods we used. Considering our initial goal was to identify 
molecular interactions associated with the expression of 
autism spectrum disorder/psychosis among the 22q11DS 
patients, the pathway method seemed to offer a convinc-
ing way to identify a molecular subnetwork of the disease. 
One significant advantage of our method over the con-
ventional pathway ORA is that the pathway interaction 
method can collectively detect genes of interest, where 
the connections between such gene sets indicate plausi-
ble biological relationships powered by prior knowledge 
instead of “guilt by association”. For example, GRB2, IL2, 
PIK3CA, and PIK3CB were not differentially expressed 
enough under the individual gene significance criteria, 
thus would not have been identified had we applied only 
pathway ORA, even though they have direct protein-
protein interactions with other significant genes. On the 
other hand, pathway ORA seems to be better at identify-
ing individual genes that are strongly expressed, regard-
less of the expression level of nearby genes. Another 
advantage of ORA is that gene significance criteria can be 
easily adjusted and modified, and can easily include any 
combination of variables, while the pathway interaction 
method depends only on gene weights, which first needs 

appropriate transformations. Our understanding is that 
the two methods complement each other and together 
reveal a more complete picture of the molecular inter-
action of 22q11DS, as shown in Fig. 4. Therefore, future 
research projects would benefit from exploiting both 
methods. Table  2 summarizes the characteristics of the 
two methods.

For our study, we have applied several adjustments 
to the original methods by Kelder et al. [31]. First, the 
“interaction” between all possible pairs of two pathways 
was redefined as a source-target relationship, where the 
source was fixed as the 22q11DS pathway, and the focus 
was to choose the appropriate target pathways that inter-
act with the source, rather than describing interaction 
signatures between all pairs. Next, the path threshold 
was initially set at 0.9 when selecting significant path-
ways, but then flexible threshold criteria were applied to 
collect actual paths, backed by our sensitivity analysis on 
threshold-score relationships. Flexible criteria were used 
to detect additional pathways that involve genes that did 
not have a large change, but still contributed to the paths 
by interacting with other significant genes. Calculating 
empirical p-values was also simplified; 1,000 samples 
rather than 10,000 samples, and each sample matches the 
number of genes having weight less than or equal to 0.8 
and those having weight greater than 0.8. In addition, our 

Fig. 4 The extended molecular interaction network. The figure represents the combined subnetwork from the pathway interaction analysis and pathway 
ORA, of the genes suspected to be exclusively affected among 22q11DS patients experiencing neuropsychiatric diseases. All edges shown here, except 
22q11DS-CRKL, indicate protein-protein interactions. GZMB, PRF1, and IL1B (in red box) were identified by pathway ORA and had direct protein-protein 
interactions with some of the nodes identified from the pathway interaction subnetwork. The other ORA genes did not have any connection with the 
current subnetwork according to our STRING information

 



Page 9 of 14Shin et al. Orphanet Journal of Rare Diseases          (2023) 18:335 

focus was to offer a plausible interpretation of molecu-
lar mechanisms starting from an actually deleted gene 
on 22q11.2 (in our dataset, CRKL), by comparing results 
obtained from two parallel analyses of the Psychiatric and 
the Nonpsychiatric Groups. As for the final step, we com-
pared our results with that of pathway ORA and dem-
onstrated that the two methods could complement each 
other to obtain a more complete picture of the molecular 
perturbation from the gene deletion.

The value of pathways in this context is that pathways 
offer relatively safe start and end points. Pathways (at 
least those in the WikiPathways repository) are created 
and supported by previous publications, so that analy-
sis revolves around plausibly grouped genes, making the 
results easy to interpret. Computationally speaking, path-
way nodes are excellent source and target nodes, since it 
is much more efficient to find significant paths between 
pathways than to examine paths between all candidate 
gene pairs. In our study, we were able to use an already 
existing pathway (22q11DS pathway) as the source node, 
as it incorporated the deleted genes and their close inter-
action partners that were previously known. However, 
we would like to emphasize the flexibility of our method 
as well, since even if no published pathway existed, one 
would be able to directly create an appropriate gene-
pathway relationship and use it as a starting point. The 
pathway interaction method can also include transcrip-
tion-factor targets or other types of interaction databases, 
in addition to or instead of protein-protein interactions 
to further extend the base network.

As a final note, we would like to briefly discuss the 
data used. The dataset was obtained from whole blood 
rather than from brain cells, implying the tissue-specific 
gene expressions might have affected the key genes and 
pathways identified; for example, we found pathways 

involving innate immune systems and cell metabolism to 
be significantly over-expressed in both data groups. Con-
sidering our goal was to study the phenotypic expression 
of autism spectrum disorder and psychosis, actual brain 
cell expression data may provide clearer pictures on the 
dynamics between the deleted genes and related biologi-
cal processes, for example, whether the perturbations in 
the cellular processes we observed was due to peripheral 
pathology or a secondary effect, as result of brain dys-
function. However, our dataset was still useful to exam-
ine the neuropsychiatric genes that might reveal crucial 
interactions via the immune-related responses. The 
research community also has discovered that neuropsy-
chiatric functions and immune-related pathways tend to 
be closely associated [67, 68]. We hope future experimen-
tal work would confirm and verify our findings.

Conclusions
Challenges to understanding exact mechanisms of 
22q11.2 Deletion Syndrome (22q11DS) originate from 
the high level of genotype-phenotype variability and 
the polygenic inheritance of the disease. In this paper, 
we explored the pathway interaction method to iden-
tify molecular signature of 22q11DS, especially that of 
patients experiencing autism spectrum disorder and/or 
psychosis. Using the method, we were able to identify 
and explain possible involvement of pathways includ-
ing the NK cell functions pathway and genes such as 
CRKL for the development of autism and/or psychosis 
in 22q11DS patients. Our approach is flexible and can 
incorporate various knowledge of molecular dynamics, 
such as protein-protein interactions, and can be used to 
study other rare diseases with a similar context, where 
complex genetic mechanisms between mutated genes 
and the resulting phenotypes are in question.

Table 2 Comparison of the pathway interaction method and pathway ORA. Here we summarized a number of differences and 
similarities between the pathway interaction method and pathway ORA. As can be seen below, they differ in the databases used, 
number of genes detected, the way significant genes are selected, and the structure of resulting subnetworks. On the other hand, in 
our study both methods identified the same biological processes. The two have different strengths and weaknesses; we suggest that 
researchers exploit both methods to gain a bigger picture of the biological mechanism

Pathway Interaction Pathway ORA
Database Used WikiPathways, STRING WikiPathways

Detected Unit Significant path (two or more genes connected by protein-
protein interaction)

Individual gene

Selection Criteria Sum of weights
(transformed T-statistics)

P-value and log2FC score

Resulting Subnetwork Pathway-gene-gene-pathway Gene-pathway-gene-pathway

Biological Processes Identified 
for Psychiatric 22q11DS

NK cell function PI3K/Akt signalling NK cell function PI3K/Akt signalling

Strength Can detect multiple genes collectively having a strong expres-
sion profile, backed by prior knowledge.

Can detect single strongly expressed genes using 
flexible criteria.

Weakness Strongly dependent on pre-existing relationships between 
gene products. Genes with unidentified relationships will be 
ignored. Detection criteria are hard to adjust or modify.

Individual gene selection can be highly depen-
dent on the significance criteria. Depending on 
data quality, spurious genes might be mistaken as 
being significant.
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Methods
Data preparation
For this study we used a publicly available transcrip-
tomics dataset of whole-genome Illumina Human HT-12 
microarray assays, obtained from whole blood RNA of a 
total 112 subjects (46 patients and 66 healthy controls), 
from a study originally published by Jalbrzikowski et 
al. [37], with GEO accession number GSE59216. In the 
dataset, 46 individuals were 22q11DS patients, among 
which 19 had a diagnosis of either autism spectrum dis-
order (N = 16) or psychosis (N = 6). Three patients were 
diagnosed with both. In this dataset, the proportion 
of patients with autism spectrum disorder and/or psy-
chosis was significantly higher (41.3%) than that of the 
general patient population, which is about 25% [7]. The 
preprocessed dataset was downloaded from GEO. In 
order to detect genes and their interactions distinctive 
among patients with autism spectrum disorder/psycho-
sis, we created two datasets from the original data. The 
first set included data of healthy controls vs. 22q11DS 
patients with autism spectrum disorder/psychosis 
(N = 66 + 19 = 85), and the second set contained that of 
healthy controls vs. patients without reported psychiatric 
symptoms (N = 27 + 66 = 93). We analysed the two datas-
ets separately, using the approaches described below, and 
compared the results.

We decided to conduct two separate analyses instead 
of directly comparing the patients with vs. without neu-
ropsychiatric phenotypes. First, we noted that the num-
ber of patients with neuropsychiatric phenotypes [19] 
and the number of patients without such phenotypes 
[27] were rather small, so direct comparison of the two 
groups may not yield meaningful coefficients and p-val-
ues due to the small sample size. Second, both pheno-
type groups have gene deletion at similar locations but 
showing different phenotypes; we reasoned that it might 
be useful to identify genes that are commonly expressed 
in both groups and even the genes identified only by the 
non-neuropsychiatric group, especially for future studies. 
Combining healthy controls with each group for analy-
sis and comparing their results would help address these 
points.

We used R version 4.0.3 for our data analysis. As an ini-
tial step, we conducted a differential expression analysis 
at probe-level using the limma R package, version 3.46.0 
[69]. Gene-level log2 fold change (log2FC), p-values, and 
T statistics were collected by taking the probe observa-
tion with the median log2FC score, out of the probes 
matching each NCBI Entrez ID. In addition, a new vari-
able, called weight, was introduced from T statistics using 
the formula below, as suggested by Kelder et al. [31]. The 
weight indicates the edge weight of the pathway network, 
constructed in the next section.

 
weight = 1− 1

1 + e−2(|T |−3)

The weight variable inversely maps T statistics, which 
can take any real number (-infinity, +infinity), into a value 
within (0, 1). A smaller value of weight indicates a large 
T-value, which can be interpreted as a possibly signifi-
cant level of gene expression, and vice versa. According 
to Kelder et al., genes with an absolute T statistic > = 3 
correspond to unadjusted p-value < = 0.004 [31].

Analysing interactions between pathways
The pathway interaction analysis mostly followed the 
proposed method by Kelder et al., but we have made 
several adjustments in later steps to improve biological 
interpretability and contextual applicability. The original 
method by Kelder et al. was described visually as Supple-
mentary Material S1, directly from the study ([31] Fig. 5). 
We will discuss the novel aspects of our new approach 
in the discussion section in detail. The first step was to 
construct a network on which the paths would be iden-
tified. We started with creating a gene-pathway network 
using 628 pathways from the WikiPathways repository 
(Version 20,210,110) and 508 WikiPathways-archived 
Reactome pathways (Version 75). From the pathways, all 
genes with expression data were included. This network 
was extended by protein-protein interaction pairs that 
have a combined score of 900 or above from the STRING 
database Version 11.0 [19]. Between each pair of nodes 
(gene-gene or gene-pathway pair), two directed edges, 
each pointing at the opposite side, were added, with the 
edge weight being the weight of the edge head, calculated 
earlier using the T statistics and the formula above. If the 
edge was heading at a pathway node, zero was assigned 
to its corresponding edge weight.

In the network constructed above, we called the 
22q11DS pathway node (labeled WP4657) the source, 
and identified ‘significant paths’ that connected the 
source with another pathway node. A significant path 
was defined as a directed path comprising three or more 
edges, starting at WP4657 and ending at another can-
didate pathway node, with the edge weight sum below 
a certain threshold (lmax); the abbreviation ‘l’ originated 
from weighted ‘length’, which indicates the sum of edge 
weights). The minimum number of edges was introduced 
in order for each connected pair of pathways to include at 
least one protein-protein interaction. We applied the fol-
lowing algorithm to each candidate pathway (The differ-
ence in the below algorithm between the original method 
is that we only considered the pairs including the source, 
rather than all possible pathway pairs.):

1) Find the shortest path between the 22q11DS 
WP4657 pathway and the candidate pathway.
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2) Calculate the sum of edge weights of the shortest 
path, identified in step 1 above; if the sum is greater 
than lmax, stop the process; pick the next candidate 
pathway, and return to [1].

3) If the sum is less than lmax, check the length (number 
of edges) of the path, i.e. the number of edges.
 a) If length is 2, remove the last edge.
b) If length is greater than 2, remove all edges except 

the first and the last edge.
4) Store the path information, pick the next candidate 

pathway, and return to [1].
Using the algorithm above, we first collected all pathways 
that had at least one significant path connected to the 
central 22q11DS pathway (the “source”). The list of path-
ways depends on the path threshold lmax; we first used 
0.9 which was suggested by Kelder et al., i.e., a pathway 
would be selected if it contained at least one path with 
the sum of edge weights less than 0.9. Next, each candi-
date pathway was assigned an interaction score, using the 
formula below, where n was the total number of signifi-
cant paths and li the weight sum of each significant path.

 
Score =

∑n

i=1

1

li

For pathways with at least one significant path, we also 
calculated empirical p-values to check the statistical sig-
nificance, since pathways with large numbers of genes 
were likely to have many significant paths, resulting in 
high crude interaction scores. For each selected path-
way, we created 1,000 modified networks, where the 

corresponding gene-pathway portion was replaced by the 
same number of randomly chosen genes. In each sample, 
the proportion of differentially expressed genes with 
weight below 0.8 was fixed, so that they are likely to con-
tribute to significant paths if there exist appropriate pro-
tein-protein interactions. After calculating 1,000 random 
interaction scores from the networks, we computed the 
p-value of the pathways using the number of incidents 
that yielded the interaction score greater than or equal 
to the original score [70]. Those having p-values less than 
0.05 were selected for further consideration. The list of 
pathways and corresponding p-values were included as 
Supplementary Material S2.

Once the list of pathways was finalized, we collected 
significant paths, this time with a relaxed threshold. 
The reasoning behind this was that we wanted to iden-
tify paths containing a relatively non-significant gene 
that still interacts with other genes that were signifi-
cantly expressed. Expression of a gene is not constant 
over time and can be affected by activities of various 
other genes that interact with it, therefore, we wanted to 
find such genes (hence a meaningful collection of genes 
that interact with each other) whose partners had been 
significantly activated or repressed. Finally, all collected 
paths were filtered using the final threshold: lmax=0.9 for 
three-edge paths, and lmax=1.4 for longer ones. The rea-
son was that, when the threshold lmax increases, we want 
to remove shorter paths with large weights. The detailed 
reasoning of the relaxed threshold was based on our sen-
sitivity analysis, which is included as the Supplementary 
Material S3.

Fig. 5 A summary of workflow. First, we created two subgroup datasets (Psychiatric vs. Nonpsychiatric) and conducted a differential expression analysis 
for each set. Next, the pathway interaction method and pathway over representation analysis (ORA) were applied to each set of differential expression 
analysis results. Relevant genes and biological processes associated with neuropsychiatric diseases were identified by comparing the results from the 
pathway interaction method and pathway over representation analysis, respectively, by creating relevant networks. Finally, subnetworks from the two 
methods were compared and discussed. (ASD = autism spectrum disorder, 22q11DS = 22q11.2 deletion syndrome)
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In the final result, each selected pathway contained a 
pathway score and a list of genes that were connected via 
its significant paths. The resulting subnetwork was visu-
alized using Cytoscape version 3.8.1 [71]. Neuropsychiat-
ric genes from the pathways that closely interacted with 
the source node were identified and examined with exist-
ing literature.

Detection of key pathways and genes associated with 
autism spectrum disorder/psychosis
A major goal of our analysis was to identify meaning-
ful biological interactions and key genes associated with 
autism spectrum disorder and psychosis of 22q11DS 
patients. To achieve this, we created two datasets from 
the GSE59216 dataset and ran two separate analyses 
using the approach described above. The first dataset 
included 22q11DS patients with autism spectrum dis-
order/psychosis and healthy individuals (Psychiatric 
22q11DS vs. Healthy Control Group, we call it Psychiat-
ric Group); the second group contained 22q11DS patients 
without autism spectrum disorder/psychosis and healthy 
individuals (Non-psychiatric 22q11DS vs. Healthy Con-
trol Group, we call it Nonpsychiatric Group).

We identified the characteristics of genes and path-
ways derived from the Psychiatric Group, which were 
not detected by the Nonpsychiatric Group. To ensure 
certain genes were indeed associated with neuropsychi-
atric diseases, we downloaded the ‘Curated gene-disease 
associations’ dataset from the webpage of DisGeNet Ver-
sion 7.0, published in January 2020 [72], and extracted 
the list of genes labeled as ‘schizophrenia’ (UMLS CUI: 
C0036341), ‘autistic disorder’ (UMLS CUI: C0004352), 
and ‘psychotic disorders’ (UMLS CUI: C0033975). Using 
this list, we selected the genes identified by the significant 
path networks from the two data groups and compared 
the results. This would illustrate the 22q11DS-related 
biological processes that led to the phenotypic expression 
of autism spectrum disorder/psychosis.

Comparison with pathway overrepresentation analysis
In the final step of our study, we compared the results of 
the pathway interaction method with that from the path-
way overrepresentation analysis (ORA). Pathway ORA is 
an enrichment method which identifies pathways con-
taining significant numbers (i.e. higher numbers than 
expected) of genes of interest, assuming such genes fol-
low hypergeometric distribution [73]. First, each gene 
was regarded as significantly differentially expressed if 
(1) the p-value of it was less than 0.05 and (2) the abso-
lute value of log2FC was greater than or equal to 0.15. 
These criteria were chosen in order for the number of 
significant genes to roughly match the number of genes 
detected by pathway interaction networks, as well as to 
yield relatively easy interpretation (for example, 20.15 

would indicate about 10% up-regulation compared 
to healthy controls). Next, with those differentially 
expressed genes, we used PathVisio to conduct pathway 
ORA [73, 74]. In addition, we again used the same Dis-
GeNet dataset to identify differentially expressed genes 
that were also associated with neuropsychiatric diseases. 
Such genes and the pathways that contained them were 
visualized as a network.

We note in passing that when conducting the over-
representation analysis and selecting pathways from the 
interaction network, we used p-values instead of adjusted 
p-values. First, the reason was to make the analysis over-
all consistent with the original method proposed by 
Kelder et al., where the weights were computed using 
T-statistics, a direct basis of calculating p-values without 
further scaling. Second, in our overrepresentation analy-
sis, p-value and log2FC score thresholds were selected 
so that the number of detected genes roughly match 
that from pathway interaction analysis, rather than to 
determine the statistical significance of the genes. In our 
future studies, we are interested in extending our analy-
sis to give the full scope of weighting schemes as well as 
gene- or pathway-selecting criteria.

An overview of our approach is summarized in Fig. 5. 
The scripts we used for analysis can be found at https://
github.com/woosubs/PathwayInteraction.
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