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Abstract 

Background  Spinocerebellar ataxia type 3 (SCA3) is an inherited, autosomal, and rare neurodegenerative disease. 
Serum/plasma biomarkers or functional magnetic resonance imaging used to assess progression, except for neuro‑
logical examinations, is either inconvenient or expensive. Handgrip strength (HGS) may be considered as a biomarker 
to predict the progress of SCA3 and align with the alteration of plasma neurofilament light chain (NfL) and Scale 
for the Assessment and Rating of Ataxia (SARA).

Methods  Patients with SCA3 and healthy subjects were recruited from Changhua Christian Hospital. SARA, 
body mass index (BMI), and NfL were obtained for both groups. HGS was measured using a Jamar Plus + hand 
dynamometer.

Results  This study recruited 31 patients and 36 controls. HGS in the SCA3 group revealed a profound decrease 
(P < 0.001) compared with normal subjects. HGS also had a negative correlation with SARA (r =  − 0.548, P = 0.001), NfL 
(r =  − 0.359, P = 0.048), and a positive correlation with BMI (r = 0.680, P < 0.001). Moreover, HGS/BMI ratio correlated 
with SARA (r =  − 0.441, P = 0.013). Controlling for gender and age, HGS still correlated with the above clinical items. The 
initial hypothesis was also proved in SCA3 84Q transgenic mice, showing grip strength weakness compared to normal 
mice.

Conclusions  HGS can be an alternative tool to assess the clinical severity of SCA3. Further research is needed 
to investigate the underlying mechanisms.

Keywords  Spinocerebellar ataxia type 3, Handgrip strength, Neurofilament light chain, Scale for the assessment and 
rating of ataxia, Body mass index
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Background
Spinocerebellar ataxia (SCA) is an autosomal inherited 
disease and one of the rare neurodegenerative diseases. 
SCA type 3 (SCA3), also known as Machado-Joseph dis-
ease, caused by abnormal CAG trinucleotide expansion 
greater than 62 at the gene of ataxin-3, is the most fre-
quent SCA in most countries [1]. Common symptoms 
include imbalance, incoordination, muscle rigidity or 
spasticity, dysarthria, diplopia, and depression [2]. Scien-
tists have been searching for disease-modifying therapies 
in recent years, such as varenicline, valproic acid, or Tre-
halose, because SCA3 is challenging to treat [3]. SCA3 is 
a slowly progressive neurodegenerative disease; however, 
monitoring the change of clinical status by neurological 
scales in a short period would be challenging [4].

Physicians are on the lookout for assessment tools 
that are both accessible and efficient when it comes to 
neurological status assessment for ataxia. The Scale for 
the Assessment and Rating of Ataxia (SARA) is a clini-
cal scale dedicated to detecting disease progression of 
cerebellar symptoms [5]. Morphometric magnetic reso-
nance imaging (MRI) offers vital insights into structural 
changes, such as volumetric reduction in cerebellum, 
basal ganglia, brain stem, and diencephalon. These are 
instrumental in confirming and enhancing our under-
standing of this disease [6]. Functional MRI has revealed 
cerebellar/cortical dissociation pattern specific to SCA3 
patients, as opposed to healthy controls. This finding 
shed light on the evaluation of potential functional con-
nectivity within cerebral-cerebellar motor networks [7]. 
Neurofilament light chain (NfL) is an emerging blood 
biomarker to evaluate neuroaxonal damage such as 
Alzheimer’s disease, multiple sclerosis, postoperative 
delirium, multiple system atrophy, and amyotrophic lat-
eral sclerosis [8–10]. NfL also correlates with the disease 
severity of SCA3 and predicts its pre-ataxic and ataxic 
stages [11, 12]. Urinal polyglutamine ataxin-3 protein is 
elevated in patients with SCA3 [13]. while polyglutamine 
ataxin-3 in plasma or peripheral blood mononuclear 
cells correlates with disease severity [14, 15]. However, 
fMRI and the above biomarkers, except for SARA, are 
either expensive or inconvenient. Developing an easy and 
affordable assessment tool is highly anticipated and much 
needed for clinical use.

Handgrip strength (HGS), which is measured using a 
portable hand-held dynamometer, has been a practical 
tool to assess the well-being of the elderly. HGS could 
predict longitudinal declines in cognition, functional 
status, and mortality in older community populations 
[16]. The United Kingdom Biobank data reported that 
higher dementia incidence and mortality were indepen-
dently associated with lower grip strength [17]. Grip 
strength could also assess muscle activity, which predicts 

functional loss in patients with Parkinson’s disease, where 
striatal dopamine and impaired motor unit degeneration 
are recruited [18]. Proper grip strength cutoff points are 
good predictors of functional independence and wheel-
chair skills for males with spinal cord injuries [19]. HGS 
might relate functional capacity or motor performance 
to cerebellar disorders in a small pilot study, including 
three patients with degenerative cerebellar ataxia, with-
out mentioning the genetic background [20]. For ani-
mal models related to neurodegeneration diseases, HGS 
can be identified as a physiologic biomarker to forecast 
the disease course [21–23]. In a transgenic marmoset 
model of SCA3 diseases, age-associated decrease of HGS 
were significantly more prominent in transgenic symp-
tomatic marmosets compared to either wide-type or 
asymptomatic marmosets [24]. However, the relation-
ship between HGS and the clinical status of patients with 
SCA3 remains unknown.

Herein, we aim to establish the validity of HGS inspec-
tion as a predictor of the disease progress in patients and 
mice with SCA3, and its application in ataxia clinic for 
the disease following.

Result
Demographic data
This study enrolled 31 participants with SCA3 and 36 
healthy controls. No significant difference was found in 
age or gender between the two groups (age: P = 0.517, 
gender: P = 0.988), as shown in detail in Table 1. The BMI 
of participants in the SCA3 group was lower than that 
of the control group (21.5 kg/m2 [19.5–25.5] vs. 23.6 kg/
m2 [21.8–25.6], P = 0.043), consistent with the previous 
studies [25, 26]. The SCA3 group exhibited weaker HGS 
(24.3  kg [19.2–38.2] vs. 40.7  kg [27.1–49.3], P < 0.001, 
Fig.  1A) and lower HGS/BMI ratio compared to the 
control group (1.19  kg/(kg/m2) [0.95–1.55] vs. 1.38  kg/
(kg/m2) [1.11–1.79], P < 0.001). A decrease in HGS was 
observed in either SCA3 female (20.10 kg [18.60–25.10] 
vs. 26.80  kg [25.45–30.4], P = 0.007) or SCA3 male 
(35.10  kg [23.30–38.33] vs. 47.20  kg [42.35–55.25], 
P < 0.001) patients compared with normal subjects in 
Fig. 1B. Additionally, a notable difference was observed in 
the significantly elevated plasma level of NfL in patients 
with SCA3 as compared to that in normal subjects 
(28.01  pg/mL [20.65–32.75] vs. 6.35  pg/mL [4.22–7.63], 
P < 0.001, Table  1). An elevated NfL level was found to 
predict the severity of SARA within the SCA3 group 
(r = 0.436, P = 0.014; see Additional file 1), consistent with 
previous reports [11, 12].

Correlation between HGS and clinical items
The high strength of HGS can predict low scor-
ing on SARA (r =  − 0.548, P = 0.001, Fig.  2A) and NfL 
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(r =  − 0.359, P = 0.048, Fig.  2B) in SCA3 patients. Addi-
tionally, greater HGS was associated with lower scores 
in each subscale of SARA, including gait (r =  − 0.525, 
P = 0.002), stance ( r =  − 0.487, P = 0.005), sitting 
(r =  − 0.636, P < 0.001), speech disturbance (r =  − 0.522, 
P = 0.003), finger chase (r =  − 0.510, P = 0.003), finger-
nose test (r =  − 0.355, P = 0.050), fast alternating hand 
movements (r =  − 0.505, P = 0.004), and heel-shin slide 
(r =  − 0.403, P = 0.025), as shown in Table 2.

In the SCA3 patient group, HGS was effectively indica-
tive of BMI (r = 0.680, P < 0.001, Fig. 2C). BMI has been 
demonstrated as a disease progression predictor in SCA3 

[25, 26], and our study revealed a significant negative cor-
relation with SARA (r =  − 0.420, P = 0.019; see Additional 
file 1). BMI has been correlated with HGS in most stud-
ies [27, 28]; thus, the HGS/BMI ratio was calculated as a 
new variable after adjusting HGS for BMI. The HGS/BMI 
ratio still exhibited a negative correlation with SARA 
scores (r =  − 0.441, P = 0.013, Fig.  2D). Even after con-
sidering gender and age as controlling factors, HGS con-
tinued to illustrate a consistent relationship with SARA, 
NfL, and BMI. Moreover, lower HGS can predict SCA3 
patients with a higher CAG repeat number under adjust-
ing for age (r =  − 0.396, P = 0.030; see Additional file 2).

Table 1  Demographic data for patients with SCA3 and control subjects

Values are median with interquartile range

The intergroup comparison for gender was analyzed using the chi-square test, while the Mann–Whitney U test was used for other variables

BMI Body mass index, SARA​ Scale for the assessment of rating of ataxia, NfL Neurofilament light chain, N/A Not applicable, *P < 0.05

Control SCA3 P value

Case number 36 31

Male (%) 22 (61.1%) 19 (61.3%) 0.988

Age (years) 47.0 (32.0–53.5) 49.0 (40.0–55.0) 0.517

BMI (kg/m2) 23.6 (21.8–25.6) 21.5 (19.5–25.5) 0.043*

Handgrip strength (kg) 40.7(27.1–49.3) 24.3 (19.2–38.2)  < 0.001*

Handgrip strength (kg)/BMI (kg/m2) 1.38 (1.11–1.79) 1.19 (0.95–1.55)  < 0.001*

Disease status

  The age of onset (years old) N/A 36 (32–45)

  Duration (years) N/A 10 (5–12)

  CAG repeat count N/A 71.0 (69.0–74.0)

  SARA​ N/A 15.0 (8.5–21.0)

Plasma

  NfL (pg/mL) 6.35 (4.22–7.63) 28.01 (20.65–32.75)  < 0.001*

Fig. 1  Handgrip strength of patients with SCA3 and healthy controls. Values are given as median with 95% coefficient interval (CI) for comparison 
of both groups (A) and both genders (B). P: by Mann–Whitney U test
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Grip strength in SCA3 mice
The grip strength of SCA3 84Q transgenic mice was sig-
nificantly decreased at the age of 18  months than that 
of WT mice (P = 0.003, Fig.  3A). After correcting for 

body weight, the grip strength of SCA3 mice remained 
lower when compared to that of the WT mice(P = 0.007, 
Fig. 3B).

Discussion
The current assessment of disease progression in SCA3 
involves neurological examinations, such as SARA, for 
evaluating ataxia. NfL [12] and BMI [26] have estab-
lished themselves as reliable predictors of SCA3, and our 
research uncovered a robust relationship between HGS 
and SARA, even after adjusting for gender and age. The 
increased strength of HGS can predict higher BMI and 
lower plasma levels of NfL. Additionally, a higher HGS/
BMI ratio indicated lower scores in the SARA evaluation. 
Moreover, our study demonstrated that patients with 
SCA3 exhibited significantly lower HGS compared to 
healthy controls. This study represents the first instance 
where HGS or the HGS/BMI ratio has independently 
predicted the disease severity of SCA3, including all eight 
subscores of SARA. HGS can serve as an easily accessible 

Fig. 2  Correlation between HGS and SARA, NfL, and BMI (as shown in A–C). Correlation between HGS/BMI ratio and SARA (D). r: correlation 
coefficient, P: by Spearman rank test

Table 2  Correlation between HGS and eight subscales of SARA​

Spearman rank test was used for correlation

HGS Handgrip strength, SARA​ Scale for the assessment and rating of ataxia

Variable Correlation coefficient P value

HGS

Gait − 0.525 0.002

Stance − 0.487 0.005

Sitting − 0.636  < 0.001

Speech disturbance − 0.522 0.003

Finger chase − 0.510 0.003

Finger-nose test − 0.355 0.050

Fast alternating hand movements − 0.505 0.004

Heel-shin slide − 0.403 0.025
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tool to estimate the disease status of SCA3 in a clini-
cal setting, even when considering the gene loading of 
SCA3-CAG repeat expansion.

HGS is a widely used measure of muscular strength, 
but various factors can influence its accuracy. HGS in 
patients with SCA3 may relate to myopathy, neuropathy 
or other comorbidity. Our study revealed a significant 
inverse correlation between HGS and disease severity, 
even after controlling for common factors. Various con-
ditions, including arthritis, tendinitis, and major vascular 
or neurological disorders, can affect grip strength. Other 
factors, such as sex, age, handedness, and nutritional 
status, also impact HGS [29]. Participants with severe 
comorbidities, such as stroke, cancer, heart failure, or 
kidney failure, were excluded, and the absence of arthri-
tis or tendinitis was screened to ensure the accuracy of 
our study. Handedness was determined according to the 
standard protocol for using a hand dynamometer [30], 
while sex and age were considered during statistical 
analysis.

Accordingly, recent literature revealed a report inves-
tigating grip strength in transgenic SCA3 135Q mice 
without mentioning the pathogenesis that contributes 
to the reduction of grip strength [31]. In the present 
study, we found a similar result in SCA3 84Q mice with 
weak grip strength compared with WT mice during 
the late disease stage. To account for the potential con-
founding effect of decreased body weight in SCA3 84Q 
mice at 18  months, we adjusted for body weight and 
still detected weaker grip strength in SCA3 mice com-
pared to WT mice. Our previous studies have also dem-
onstrated a decrease in the ratios of muscle mass and 
body weight in the quadriceps, gastrocnemius, tibialis, 
extensor digitorum longus, and soleus muscles com-
pared to WT mice. The cross-sectional area of muscle 

fibers was found to be reduced in SCA3 84Q mice [32]. 
Atrophic signaling involving Akt/Forkhead box-O and 
myosin heavy chain (MyHC) expressions were impli-
cated in these findings, indicating the existence of sar-
copenia or muscle disease [33, 34]. Specifically, our 
study revealed a significant decrease in phosphorylated 
AKT and the muscle cell differentiation marker, MyHC, 
in SCA3 84Q mice compared to WT mice which indi-
cated the possible muscular pathogenesis involved in 
the disease of SCA3 [32].

Muscle weakness is a common feature in patients with 
SCA3, and recent studies indicate that myopathic ori-
gin may contribute to distal muscle weakness in these 
individuals [35]. Further, evidence indicates a potential 
association between SCA3 and sarcopenia, as patients 
with SCA3 display lower muscle strength and lean mass 
than healthy controls [36]. Therefore, the muscle atro-
phy pathway may be related to the lower HGS observed 
in patients with SCA3 who have sarcopenia. Our study 
revealed that sarcopenia-related BMI and HGS could 
provide valuable insights into the clinical progression 
of patients with SCA3. A declining BMI signifies dete-
rioration in the condition of patients with SCA3 and 
may indicate the possible occurrence of comorbidity 
with sarcopenia. Another report suggests that hyperki-
nesia may lead to increased energy expenditure, while 
dysphagia results in decreased nutrition intake, both 
potentially contributing to a body composition resem-
bling sarcopenia [36]. The Foundation for the National 
Institutes of Health Biomarkers Consortium Sarcopenia 
Project also recommends grip strength measurements, 
such as HGS and HGS/BMI ratio, as non-Dual-energy 
X-ray absorptiometry approaches to identify sarcopenic 
patients among the elderly [37]. Our study revealed 
that HGS not only helps assess the clinical severity of 

Fig. 3  Four-limb grip strength (A) and relative grip strength (B) in micewith WTand transgenic SCA384Q mice. Data expressed as median with 95% 
CI (WT, n = 4; SCA3 84Q, n = 7). P: by Mann–Whitney U test
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SCA3 but is also significantly related to BMI. HGS can 
be regarded as a valuable tool for evaluating the pro-
gression of SCA3 patients with sarcopenia.

Therefore, further investigation into the possible mech-
anism of decreased HGS, including peripheral neuropa-
thy, such as electromyography, nerve conduction studies, 
or even muscle biopsy, should be considered as the next 
step. In the future, we will conduct long-term longitu-
dinal observations to examine the relationship between 
HGS and disease progression and expand our sample size 
to include more SCA3 patients and normal subjects.

Conclusions
This is the first report on HGS in patients with SCA3. 
HGS exhibited an inverse correlation with the neuro-
logical status, namely SARA and NfL, and demonstrated 
a strong correlation with BMI, which is another predic-
tor of disease progression. The increased HGS/BMI ratio 
consistently showed a relationship with SARA, providing 
valuable insights into disease severity. Combined with 
the grip strength information obtained from SCA3 84Q 
mice in the present study, HGS can serve as a practical 
and accessible tool to evaluate the clinical status of SCA3.

Methods
Patient recruitment
Subjects diagnosed with SCA3 by genetic mutational 
screening were recruited at Changhua Christian Hos-
pital (CCH), Taiwan. The inclusion criteria for patients 
were a SARA score of ≥ 3 points [38]. Informed consent 
was collected from May 2021 to January 2022 (CCH-IRB 
approval No:200703). Participants were aged from 20 to 
80 years. Exclusion criteria were pregnancy, comorbidity 
with stroke, cancer, heart failure, or renal failure. Patients 
with < 3 Points on the SARA scale were excluded. Demo-
graphic data such as age, age of disease onset, disease 
duration, CAG trinucleotide repeat number, and body 
mass index (BMI) were recorded. Age- and sex-matched 
individuals with negative genetic screening for mutant 
ataxin-3 were recruited as healthy controls from the 
normal population of staff in CCH (CCH-IRB approval 
No:200730).

HGS
A single physician measured the HGS with a Jamar 
Plus + hand dynamometer (Sammons Preston Rolyan, 
Bolingbrook, IL, USA). Participants were asked to sit on a 
straight back chair, keep their elbow flexed at 90 degrees, 
and hold the dynamometer with handle position 2, which 
is the distance of 4.8 cm from the handle to the fixed part 
of the dynamometer [30]. Participants had to apply maxi-
mal power for 3  s by the dominant hand. Grip strength 
was measured three times, with rest for 15  s between 

each effort [39]. The handgrip strength was the maximal 
value of the three measurements.

SARA​
A single experienced neurologist measured SARA for 
the SCA3 group. SARA is a universal scale to assess the 
severity of ataxia. SARA has eight subscores, including 
gait, stance, sitting, speech disturbance, finger chase, 
nose-finger test, fast alternating hand movements, and 
heel-shin slide [40]. The total scores ranged from 0 to 40, 
with higher points indicating worse cerebellar conditions.

Plasma NfL
Blood was collected in BD EDTA tubes and then cen-
trifuged at 2500 × g for 10 min at 4  °C to obtain plasma 
for each participant. Plasma samples were diluted at a 
ratio of 1:4. The single-molecule (Simoa) array technol-
ogy by an ultra-high sensitivity protein molecular detec-
tion instrument (Simoa HD-X, Quanterix, MA, USA) 
and the Simoa NfL Advantage kit (Quanterix, MA, 
USA) measured the plasma NfL level [41]. All NfL values 
were within the linear ranges of the assays. The average 
intraassay coefficient of variation was 4.94%.

Animal model and grip strength
C57BL/6 wild-type (WT) mice were obtained from the 
National Laboratory Animal Center (Taipei, Taiwan), 
and SCA3 84Q transgenic mice (C57BL/6 background) 
have been previously described [42]. The Institutional 
Animal Care and Use Committee of Changhua Chris-
tian Hospital approved all animal experiments (approval 
number: CCH-AE-108-021). The genotype of SCA3 
84Q mice was confirmed through the polymerase chain 
reaction of a DNA sample obtained from the mouse tail 
(primer sequences for forward: 5′-TGG​CCT​TTC​ACA​
TGG​ATG​TGAA-3′, reverse: 5′-CCA​GTG​ACT​ACT​
TTG​ATT​CG-3′). The 430-bp molecule refers to the 
positive of SCA3 84Q. Mice received standard diets and 
were housed under a 12-h light/dark cycle in a temper-
ature-controlled room. The body weights of the mice 
were recorded weekly to monitor their health status. 
Grip strength tests were performed only on 18-month-
old mice. A Digital Force Gauge (Model DPS-5R: range 
of 0–5 kgf, Imada, Japan) was used to measure the mice’s 
four-limb grip strength. The mouse was placed on a 
metal grid, and its tail was gently pulled back in parallel, 
and the apparatus automatically recorded the peak force 
when the mouse released its grip. The maximal force 
(grams) was represented as four-limb grip strength, while 
relative grip strength was normalized to the weight of the 
mouse. Each mouse underwent a grip strength test three 
times at 1-min intervals [43].
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Statistics
Continuous variables were presented as the medi-
ans and interquartile ranges (25th–75th percentile), 
whereas the categorical variables were presented as 
numbers and percentages because most of the continu-
ous variables did not follow a normal distribution. The 
Mann–Whitney U test was used to assess the differ-
ence in continuous variables between the healthy and 
diseased populations, while the chi-square test was 
employed for categorical variables. Additionally, the 
Spearman rank test was used to determine the strength 
of the relationship between the two variables. The par-
tial correlation was used to adjust for age and gender. 
All data were analyzed using IBM Statistical Package 
for the Social Sciences for Windows, Version 22.0 (IBM 
Corp., Armonk, NY). A P value of < 0.05 was considered 
statistically significant.
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