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Abstract 

Background Generalized pairwise comparisons (GPC) can be used to assess the net benefit of new treatments 
for rare diseases. We show the potential of GPC through simulations based on data from a natural history study 
in mucopolysaccharidosis type IIIA (MPS IIIA).

Methods Using data from a historical series of untreated children with MPS IIIA aged 2 to 9 years at the time of enrol‑
ment and followed for 2 years, we performed simulations to assess the operating characteristics of GPC to detect 
potential (simulated) treatment effects on a multi‑domain symptom assessment. Two approaches were used for GPC: 
one in which the various domains were prioritized, the other with all domains weighted equally. The net benefit 
was used as a measure of treatment effect. We used increasing thresholds of clinical relevance to reflect the magni‑
tude of the desired treatment effects, relative to the standard deviation of the measurements in each domain.

Results GPC were shown to have adequate statistical power (80% or more), even with small sample sizes, to detect 
treatment effects considered to be clinically worthwhile on a symptom assessment covering five domains (expressive 
language, daily living skills, and gross‑motor, sleep and pain). The prioritized approach generally led to higher power 
as compared with the non‑prioritized approach.

Conclusions GPC of prioritized outcomes is a statistically powerful as well as a patient‑centric approach for the anal‑
ysis of multi‑domain scores in MPS IIIA and could be applied to other heterogeneous rare diseases.

Keywords Generalized pairwise comparisons, Prioritized outcomes, O’Brien test, Net benefit, Multi‑domain analysis, 
Sanfilippo syndrome, Mucopolysaccharidosis type IIIA

*Correspondence:
Vaiva Deltuvaite‑Thomas
vaiva.thomas@iddi.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13023-023-02943-8&domain=pdf
http://orcid.org/0000-0003-0889-3248


Page 2 of 9Deltuvaite‑Thomas et al. Orphanet Journal of Rare Diseases          (2023) 18:321 

Background
Mucopolysaccharidosis type IIIA (MPS IIIA), or San-
filippo A syndrome, is a rare monogenic lysosomal 
disease that causes intracellular accumulation of toxic 
levels of partially degraded oligosaccharides [20]. MPS 
IIIA typically causes severe neurodegenerative symp-
toms that lead to a rapidly deteriorating quality of life 
for the patient [21]. The estimated prevalence of MPS 
IIIA falls between 1:250,000 and 1:50,000 depending 
on the population studied [10]. The majority of patients 
have the rapidly progressing or severe classical form of 
MPS IIIA, and typically symptoms are first recognized 
between 1 and 3  years of age with slowed cognitive 
development. Most children with MPS IIIA never reach 
a cognitive age greater than 3 years. They go on to expe-
rience severe behavioral problems, loss of speech, and 
progressive intellectual decline. Later in the teenage 
years, children lose most intellectual and communica-
tive abilities, experience a decline of all motor func-
tions, which culminates in complete loss of locomotion, 
dysphagia, and pyramidal-tract lesions [2, 18, 22].

As it is a heterogenous disease profoundly affect-
ing various organs and disrupting multiple functions 
with its multitude of symptoms, MPS IIIA is a perti-
nent example highlighting the significant challenges 
in identifying a single clinically relevant endpoint for 
trials. Specifically, there may be a range of differential 
effects of therapy on the varying disease manifestations 
of MPS IIIA, and these effects may also vary between 
individuals. Thus, capturing comprehensive change in 
disease status cannot be adequately measured through 
a single outcome or endpoint. Three prospective lon-
gitudinal natural-history studies have published neu-
rocognitive outcomes in patients with MPS IIIA [2, 
18, 20, 24]. Such outcomes are typically assessed using 
developmental scales, like the Bayley Scales of Infant 
Development (BSID-III), within which three domains 
are of focus: cognitive, language, and motor develop-
ment [1]. The scores across these domains have histori-
cally been summarized in the Development Quotient 
(DQ), which serves as a numerical estimate of a child’s 
neurocognitive development. An overall general DQ is 
obtained by dividing the subject’s developmental age 
(DA) by chronological age (CA), and multiplying by 100 
(DQ = DA/CA × 100) [6]. In subjects with MPS IIIA, to 
accurately capture the impact of disease and treatment, 
it is important to supplement standardized assessments 
of neurocognitive development with assessments from 
other domains, including behavioral capabilities, sleep–
wake habits, pain, eating, as well as the quality of life 
of the subjects and their families [24]. Furthermore, 
these domains are reported by parents of children with 
MPS IIIA as the most important to treat according to 

previous qualitative research using parent interviews 
[11, 15].

A recent FDA Guidance clearly recommends to “assess 
multiple, distinct clinical endpoints in trials to provide 
a global characterization of treatment effects on disease 
manifestations”[8]. Given that quantitative assessments 
of benefits (and potential risks) of new treatments are 
typically estimated using univariate methods, estimation 
and testing of each outcome individually requires multi-
plicity correction, generally resulting in a loss of power. 
Furthermore, since the correlations between the indi-
vidual outcomes are ignored, it is difficult to gauge the 
overall effect of a treatment on all the domains of inter-
est simultaneously. As an alternative, to enable assess-
ment of multidimensional domain scores, composite 
measures such as DQ have historically been used. These 
scores can capture clinically meaningful changes across 
multiple domains within individuals and, as such, have 
better statistical power and clinical relevance than any 
univariate outcome measure in most cases [19]. The uti-
lization of a single composite score is advantageous for 
statistical analysis as well through the use of standard 
statistical tests, facilitating predefined decision-making 
processes. For instance, a new treatment may be consid-
ered eligible for regulatory approval if a minimum dif-
ference considered to be clinically important is seen in 
treated patients as compared with control patients. There 
are, however, some limitations to these composite out-
come analyses: they may lose granularity and lack power 
to detect the most meaningful outcome among the con-
tained domains, or identify specific outcomes within the 
domain driving the analysis in opposite directions [4]. 
More importantly, these composite measures are unlikely 
to capture all neurological disease manifestations that are 
important to patients and their families [12, 23].

In this paper, we explore a new method for the analy-
sis of multi-domain scores in comparative trials, using 
generalized pairwise comparisons (GPC) of all subjects 
receiving the new intervention vs. all subjects receiving 
the standard of care [3]. Since no randomized clinical tri-
als of new treatments have been conducted in patients 
with MPS IIIA, we perform simulations based on a natu-
ral history cohort of 23 untreated subjects as described 
in the Methods section. We fit a model to these data, 
and use this model to generate two sets of hypotheti-
cal observations, one set having the same distribution 
as the natural history cohort, and the other set hav-
ing shifted distributions to reflect treatment effects that 
experts would consider plausible and clinically worth-
while. We show the flexibility of GPC to perform analy-
ses that include an arbitrary number of domains (and 
subdomains if desired), similarly varying thresholds of 
clinical relevance for each domain, and various types of 
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aggregations of the domains (prioritized with potentially 
various orders of priorities, and non-prioritized). The 
choice of the preferred analysis may be highly context-
dependent, but the approach remains identical from a 
mathematical as well as from an interpretational point 
of view. We use simulations to calculate the power of a 
GPC analysis for a range of treatment effects in a putative 
comparative experiment, either a matched comparison 
between a group receiving an experimental treatment 
and a natural-history cohort, or when feasible, a rand-
omized control trial comparing an experimental treat-
ment with a standard of care [8].

Methods
Generalized pairwise comparisons
The method of generalized pairwise comparisons (GPC) 
to analyze data from comparative clinical trials has been 
described in detail elsewhere [3]. Essentially, each indi-
vidual in the intervention group is compared against each 
individual in the control group, and the resulting pair is 
assigned a pairwise score of + 1, − 1 or 0 depending on 
whether the comparison favors treatment (a “win”), con-
trol (a “loss”) or neither (“neutral”). The net benefit is 
estimated by calculating the sum of the pairwise scores 
for all possible pairs, divided by the number of pairs. The 
net benefit is the net probability that a random subject 
has a better outcome in one group than in the other: it is 
equal to zero if there is no preference for either treatment 
or control, to + 1 if all patients in the treatment group do 
better than all patients in the control group, and to − 1 in 
the opposite situation. One advantage of the net benefit 
is that its estimation and interpretation is independent of 
the type of outcome considered, which can therefore be 
binary (for instance, success/failure), ordered categorical 
(for instance, none, mild, moderate, severe), continuous 
(for instance, a score ranging from 0 to 100), time-to-
event (for instance, overall survival), etc. GPC can be 
implemented using a threshold of clinical relevance, 
whereby the comparison in a pair is considered neutral 
if the difference between the outcomes of the patient in 
the treatment group and the patient in the control group 
is less than this threshold. For multiple outcomes, GPC 
can be extended using either a prioritized or a non-pri-
oritized analysis. For the non-prioritized analysis, all 
the outcomes can be weighted equally, in which case 
the pairwise score is the average of the pairwise scores 
for all outcomes. For the prioritized analysis, all the out-
comes can be classified following a pre-specified order-
ing of interest, in which outcomes lower in the hierarchy 
are only assessed in a pair when the pairwise compari-
son of the previous outcome led to a tie. Therefore, each 
pairwise score is calculated from the outcome of high-
est priority that classifies the pair as a win or a loss in a 

hierarchical fashion that follows the prespecified order-
ing. Additional file 1: Appendix I provides further details 
about GPC and the net benefit.

Natural‑history cohort
The data we used for the simulations came from a pro-
spective natural-history cohort of 23 subjects from 5 
centers in Brazil, France, Germany, the Netherlands, and 
the United Kingdom [24]. Subjects included in the cohort 
had a documented MPS IIIA diagnosis, were 2 to 9 years 
old (median age 4  years old), had no other serious co-
morbidity, and were medically stable without potential 
disease-modifying medicinal product.

Data were collected at 6 onsite visits at baseline (assess-
ment day 0), and 6, 12, 18 and 24 months (± 14 days) from 
baseline. The baseline assessment included a neurocogni-
tive and adaptive behavior assessment, Sanfilippo specific 
behavioral and disability assessment [17] and quality-of-
life questionnaires. Changes from baseline were assessed 
in terms of cognitive function and adaptive behavior 
using Vineland Adaptive Behavior Scales, Second Edition 
(VABS-II) for “expressive language”, “Daily living skills 
(eating)” and “gross motor (walking)”. The Children’s 
Sleep Habit Questionnaire (CSHQ) was used to evaluate 
sleep disturbances. The subject’s and parents’ quality-of-
life (pain scale) was evaluated using Infant Toddler qual-
ity of life questionnaire (ITQoL) and semi-structured 
interviews of parents.

Bayley Scales of Infant Development, Third Edition 
(BSID-III) was used to compute the cognitive Develop-
ment Quotient (DQ) and select 7 patients among the 
Natural History Cohort with a score > 50% (Table 1).

Simulations
The simulations considered a multi-domain analysis 
consisting of five outcomes related to the expressive 
language, daily living skills, and gross-motor, sleep and 
pain domains. These outcomes were selected because 
they all represent key domains which parents/car-
egivers have reported as important symptoms of MPS 
IIIA to be targeted with future therapies [15]. We used 

Table 1 Median and range of the baseline score of patients in 
the natural history cohort

Domains Natural history scores at 
baseline (median, range)

Expressive language (VABS‑II) Median 63, range 22–162

Daily living skills (VABS‑II) Median 30.5, range 28–47

Gross‑motor (VABS‑II) Median 58, range 0–74

Sleep (CSHQ) Median 4, range 0–10

Pain (ITQOL) Median 75, range 25–100
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Fig. 1 Comparison of the evolutions of individual outcomes over 24 months in the historical data (left column) versus simulated data 
for the control group (right column). Each line represents one patient
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mixed-effects modeling, including both linear and 
quadratic trends over time, for the data generation in 
order to fully capture the natural evolution of the dis-
ease. The parameters for these models were estimated 
using the available information from the natural-his-
tory cohort. A joint covariance matrix for all five mod-
els was also estimated based on the natural-history 
data. Defining such a joint structure for variability 
allows the random effects for a same patient to be cor-
related across the outcomes. Figure 1 shows a compari-
son between the evolutions of outcomes in historical 
data vs. simulated data for the control group. Visually, 
the simulated data for the control group adequately 
mimic the natural-history data.

In our simulations, we assumed a comparison between 
two groups of 23 subjects (as in the available natural-
history cohort). The control group was simulated as 
explained above (Fig.  1). The parameter of interest for 
each of the five domains was the rate of change in score 
over time, defined as the difference in scores from base-
line to 2 years, divided by observation time (24 months). 
This parameter is the slope of a linear trend in score 
over time. The experimental treatment group was simu-
lated by assuming a shift in the rate of change in score 
over time. This shift was based on expert opinion about 
meaningful magnitudes of change (treatment effects) on 
the various outcomes considered. Table  2 displays the 
observed rates of change in score over time for each of 
the five domains in the control group, and the corre-
sponding slopes in the experimental treatment group. 
Note that the rates of change may depend on the subject’s 
age, at least for some domains such as expressive lan-
guage and daily living skills. Given that the limited data 
we had to conduct simulations, we ignored this depend-
ency. We assumed the same variance–covariance struc-
ture for both groups (treated group and natural-history 
cohort), which could also be subject to criticism.

We generated 10,000 datasets with a sample size of 46 
observations, equally divided into two groups. We didn’t 
assume any missing information as, given the rarity of 
the disease, every effort possible is made to follow-up 
patients carefully. Each of these datasets was analyzed 
using either non-prioritized (with equal weights across 
outcomes) or prioritized GPC, with the following list 
of priorities defined following the expert opinions and 
feedback from the patients’ families on what matters 
the most: (1) expressive language, (2) daily living skills, 
(3) gross motor, (4) sleep and (5) pain (this list of priori-
ties will be referred to henceforth as 12,345). Caregivers 
feedback also stressed that it is difficult to prioritize these 
outcomes as the impact and expectations will be different 
depending on where the child is situated in their disease 
trajectory.

We compared the two groups based on the rates of 
change in scores of the five domains over time. Further-
more, we conducted analyses over a range of thresholds 
of clinical relevance, varying similarly for each outcome, 
and expressed in terms of the fractions of standard devia-
tions of the distributions of the rates of change for the 
corresponding outcome.

The p-values for the analyses were based on the per-
mutation distribution [3]. As we simulate assuming the 
presence of a treatment effect, the power of each test 
is reflected by the empirical rate of rejection of the null 
hypothesis of no treatment effect among the 10,000 sim-
ulated datasets. We performed sensitivity analyses con-
sidering several other possible lists of priorities for the 
prioritized GPC in order to evaluate possible changes in 
test results with changing order of priorities.

Software
Software to implement generalized pairwise comparisons 
is available in the R [16] package BuyseTest [14], which 
can be freely downloaded from GitHub and CRAN.

Results
Figure  2 presents the power of the main GPC analysis 
under either non-prioritized, or prioritized approach, 
based on the list of priorities (12,345) described above. 
The non-prioritized approach including all outcomes of 
interest leads to a lower power across all thresholds of 
clinical relevance, as compared to a prioritized approach 
taking expressive language as the outcome of highest pri-
ority. The power becomes more similar for high thresh-
old values.

Figure  3 shows the marginal power of GPC for each 
individual outcome. The expressive language, which is 
the outcome of highest priority in the prioritized analysis 
(12,345), has very high power when analyzed alone.

Table 2 Average rate of change in score over time in the control 
group and in the experimental treatment group. Note that for 
the outcomes related to the expressive language, daily living 
skills, gross‑motor and pain domains, larger values of the rates of 
change are considered as better outcome. The inverse is true for 
the outcome related to the sleep domain

Rate of change (per year) in 
score over time

Control group Experimental 
treatment 
group

Expressive language (VABS‑II) 1.31 3.53

Daily living skills (VABS‑II) 0.10 0.42

Gross‑motor (VABS‑II) 0.28 0.94

Sleep (CSHQ) − 0.01 − 0.47

Pain (ITQOL) − 0.21 0.50
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Figure  4 shows the power of several other possible 
lists of priorities. In cases where the highest importance 
is assigned to an outcome with a low marginal power, 
small threshold values lead to a low power. However, as 
the threshold increases for all outcomes, there is increas-
ingly less contribution from the low-power high-priority 
outcome, and more information included from the lower 
priority outcomes with high marginal power, leading to 
an increase in the overall power of the prioritized GPC.

Discussion
We have performed a simulation study in order to inves-
tigate the power of two possible multivariate approaches 
to detection of a treatment effect based on GPC. We have 
created hypothetical trials in the setting of MPS IIIA, a 
rare disease which affects multiple aspects of a child’s 
development, based on data from a natural history study 
of MPS IIIA. We focused on five main domains: expres-
sive language, daily-living skills, gross-motor function, 

Fig. 2 Comparison of the power for prioritized and non‑prioritized GPC analyses with threshold values increasing similarly for all outcomes 
(expressed in standard deviations of the linear trend)

Fig. 3 Marginal power of the 5 individual outcomes of interest
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sleep and pain. All of these aspects play a significant role 
in the natural history of the disease and impact the qual-
ity of life of the patients and their families.

This multi-domain approach is valuable, particularly 
to the rare disease community where disease pheno-
types are complex and vary depending on each patient’s 
age and disease trajectory, as well as on the time at which 
treatment is started in this trajectory. Because of the pro-
gressive nature of many rare diseases, historically many 
patients were excluded from clinical trials if their disease 
had already progressed substantially. This further com-
pounds the difficulty in conducting clinical trials and in 
having enough statistical power to detect differences in 
outcomes of interest.

Our simulations show that, in the majority of cases, 
the prioritized approach leads to a larger overall power 
as compared with the non-prioritized approach. The 
non-prioritized approach considers the average treat-
ment effect across all five outcomes, hence the treatment 
effect of the most powerful outcome is diluted and leads 
to a lower proportion of rejected null hypotheses of no 
treatment effect. The opposite is seemingly true only in 
scenarios where the largest contribution to the overall 
Net Benefit comes from the outcomes with a very low 
marginal power. While in our simulations the prioritized 
approach was generally superior to the non-prioritized 
GPC, caution should be exercised when generalizing our 
results: the power of the prioritized GPC will not always 
be higher than that of the non-prioritized approach. The 
power of the prioritized GPC can be further influenced 
not only by marginal treatment effects, but also by corre-
lations between the individual outcomes [7]. Our simula-
tions also showed that the power of the non-prioritized 

approach becomes more similar to the power of the pri-
oritized approach for high threshold values. This happens 
because with large thresholds, most of the pairs are clas-
sified as “neutral”, and the number of remaining informa-
tive pairs (i.e., pairs that are classified as a win or a loss) 
is insufficient either to allow large differences between 
the prioritized and non-prioritized settings, or to provide 
high power for either. Overall, the results of our simula-
tions should be considered illustrative of the methodol-
ogy, as these depend on the specific assumptions that 
were made for the treatment effect, resulting from dis-
cussions with key-opinion leaders.

The major advantage of prioritized outcomes is that 
the choice of priorities can potentially be decided by the 
patient and/or the family, thus enabling a patient-centric 
analysis to be performed. The flexibility allowed by the 
prioritization may also be attractive for a disease that 
evolves over time, such that the outcomes considered 
most important may also change with the child’s age and 
degree of disease progression already experienced by the 
child at the time of initiating therapy. On the other hand, 
the need to pre-specify a list of priorities for a trial aimed 
at registration of an experimental drug or treatment may 
not always be straightforward. Moreover, the selection of 
domains and their prioritization should involve qualita-
tive research into understanding patients and/or their 
caregivers needs and expectations from treatment, as a 
function of the degree of impairment at the time of start-
ing therapy. The non-prioritized approach has its place 
in  situations where each outcome is equally important, 
and one would like to evaluate the joint effect of treat-
ment on all of them.

Fig. 4 Power of prioritized GPC analyses. The numbers in scenario descriptions correspond to the combination (in decreasing priority from left 
to right) of the following outcomes: 1‑expressive language, 2‑daily‑living skills, 3‑gross‑motor function, 4‑sleep and 5‑pain; with threshold values 
increasing similarly for all outcomes (expressed in standard deviations of the linear trend)
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Tandon and Kakkis [19] have proposed a multi-
domain responder index to capture clinically mean-
ingful changes across multiple domains, which is close 
in spirit to, but technically different than, the GPC 
approaches (prioritized and non-prioritized) presented 
in this paper. The multi-domain responder index uses 
the treatment-induced change in the score of each indi-
vidual patient to assign them a “responder” status if the 
change exceeds a minimally important difference (MID). 
Numerically, the status is set to + 1 if the change is an 
improvement exceeding MID, to −  1 if the change is a 
worsening exceeding MID, and to 0 otherwise. The over-
all responder status of a patient is the sum of the scores 
across all outcomes of interest, and as such it has more 
statistical sensitivity than a single responder analysis [5]. 
This approach is very attractive for treatment-induced 
changes in scores, i.e., differences between the score at 
baseline and the score at a later time suitable to assess 
treatment effects. The GPC approach is more general as 
it uses pairwise comparisons for any outcome type (not 
just changes in scores, for instance the time to an event) 
between treated patients and control patients, with 
thresholds of clinical relevance playing a similar role for 
pairwise comparisons as the minimally important differ-
ence for the change in score within a patient.

Table 3 summarizes the advantages and limitations of 
the various approaches.

Our simulations have several important limitations. 
We have ignored the effect of age on the rates of change 
of the scores for the five domains considered. Fur-
ther simulations could be conducted to include an age 
dependency, but these simulations should ideally be 
based on a larger set of natural-history data. We have 
focused our attention on the average rate of change 
over a 2-year period, which ignores clinically important 
time dependencies, for instance larger changes occur-
ring earlier in the disease trajectory. Finally, we have 
expressed thresholds of clinical relevance as quantiles 
of the distribution of each outcome. Such a distribu-
tion-based approach is convenient because it makes 
all domains comparable in the analysis (which can be 
especially important for a non-prioritized approach in 
which all domains are considered with equal weights). 

However, the approach illustrated in our simulations 
could just as easily use absolute changes considered to 
be clinically meaningful in each domain, just as in the 
development of a multi-domain responder index [19]. 
Considerations driving the choice between distribu-
tion-based thresholds versus anchor-based thresholds 
fall beyond the scope of the present paper [9]. Once 
again, qualitative research would be needed to under-
stand expectations of patients and/or their caregivers, 
but the approach proposed here seems consistent with 
the need to capture the effects of new interventions 
on several outcomes in order to maximize clinical rel-
evance as well as statistical power in the design of clini-
cal trials [5, 12].

Conclusions
Multivariate analyses using GPC are a particularly 
interesting tool in the rare-disease setting because they 
allow the analysis of a large set of outcomes, possibly 
related to various aspects of the disease evolution and 
patient quality of life. Besides, they are based on raw 
measurements instead of a single summary measure 
which inevitably results in a loss of information. While 
the statistical relevance of including several outcomes 
may sometimes be questioned, especially in  situations 
where the joint analysis leads to a lower power than 
focusing on one specific marginal analysis, the clinical 
relevance of assessing the impact of treatment on sev-
eral domains is more in line with how patients and their 
caregivers will make real world decisions about accept-
ance of a new treatment’s risks and benefits.

Abbreviations
BSID‑III  Bayley Scales of Infant and Toddler Development, Third Edition
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Interview

Table 3 Advantages and limitations of three methods of analysis of multi‑domain scores

Method Main advantage Main limitation

GPC with non‑prioritized outcomes [13] Can be applied to outcomes of all types Statistically significant treatment effects may be due 
to small differences

GPC with prioritized outcomes [3] Prioritizes outcomes and allows thresholds of clinical 
relevance to be specified

Net treatment benefit may be difficult to understand 
(in probabilistic terms)

Multi‑domain responder index [19] Has better statistical power than a single responder 
analysis

Requires ability to define “responder” status for all 
outcomes
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