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Abstract 

For the development of a test treatment or drug product, it is necessary to conduct composite hypothesis test‑
ing to test for effectiveness and safety simultaneously, since some approved drug products have been recalled due 
to safety concerns. One of the major issues in conducting a composite hypothesis testing for effectiveness and safety 
is the requirement of a huge sample size to achieve the desired power for detecting clinically meaningful differences 
in both safety and effectiveness. Situation can be much difficult in orphan drug development. In this article, a gen‑
eralized two‑stage innovative approach to test for effectiveness and safety simultaneously is proposed. Additionally, 
to alleviate the requirement of a large randomized clinical trial (RCT) and revealing effectiveness, real‑world data 
is suggested to use in conjunction with RCT data for orphan drug development. The proposed approach can help 
investigators test for effectiveness and safety at the same time without worrying about the sample size. It also helps 
reduce the probability of approving a drug product with safety concerns.

Keywords Composite hypotheses, Demonstrating effectiveness and safety, Real‑world data (RWD), Orphan drug 
development

Introduction
Real-world data (RWD) is defined as “data relating to 
patient health status and/or the delivery of health care 
that is routinely collected from a variety of sources” [1]. 
Evidence generated from RWD is called real-world evi-
dence (RWE). RWD/RWE have been frequently used in 
regulatory submission in terms of evaluating drug effec-
tiveness, safety and benefit-risk balance recently [2, 3]. 
RWD/RWE can be used for rare disease drug develop-
ment, historical control in single-arm clinical trials, and 
post-market effectiveness and safety assessment [2, 4, 5].

For regulatory approval and post-marketing assess-
ment of a new drug (or a new treatment), various types 
of clinical trials aiming to evaluate the effectiveness and/

or safety of the test drug can be considered. Though in 
Phase I and II trials, safety issue was one of the primary 
objectives, the sample size of these trials is always small, 
and only short-term safety issues are considered. As for 
Phase III trials, though the sample size is larger and the 
follow-up period is longer, the trials’ primary objec-
tive is often efficacy (only using RCT data) or effective-
ness (using RWD), i.e., the power for safety objective 
(secondary objective) may not reach the desired level 
[6]. This usual practice has caused some approved drug 
products to be withdrawn after several months or years 
of approval due to safety concerns [7, 8]. Table 1 lists the 
top ten unsafe prescribed drugs being withdrawn by FDA 
between 1993 and 2010. As shown in Table 1, many with-
drawn drugs have been used thousands of times per year 
while on market. This has put patients at unreasonable 
risk. Similar problem also exists in orphan drug market.

In a post-marketing safety study on orphan drugs, Fan 
et al. [9] reported that about 69.2% of approved orphan 
drugs had at least one post-marketing safety event dur-
ing a 6.74-year follow-up, from 1999 to 2018. And about 
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1/5 of European Medicines Agency (EMA)-approved 
orphan drugs either have no benefits or do harm [10]. It 
is necessary to evaluate both effectiveness and safety at a 
desired statistical power, instead of treating safety issues 
as a secondary objective. However, in practice, the typi-
cal approach is to power the study based on effectiveness 
alone and then assess the safety parameters for tolerabil-
ity. Use composite hypothesis testing to power on both 
effectiveness and safety is another option, which can 
alleviate the probability of having an effective but unsafe 
drug.

Although composite hypothesis testing has the advan-
tage in testing multiple endpoints (e.g., effectiveness end-
point and safety endpoint), many complex issues require 
full understanding and attention. While utilizing com-
posite hypothesis testing, one intuitive concern would 
be the required sample size. Composite hypothesis test-
ing always requires a much larger sample size compared 
with single hypothesis testing [6]. Sample size is always a 
big worry in typical drug development, let alone orphan 
disease drug development [11]. Defined by Orphan Drug 
Act (1983), orphan disease is a disease or condition that 
affects less than 200,000 people in the US or has a preva-
lence of less than 7.5 per 10,000 Americans [12]. In other 
words, orphan disease patients are scattered all over 
the country with a very limited amount in each medical 

center. One major problems discussed in this paper about 
orphan drug development is how to deal with limited and 
scattered target population, and how to evaluate effec-
tiveness as well as safety simultaneously.

One possible solution to the above-raised problems is 
RWD. One of the most important properties of RWD 
compared with RCT data is that it is more accessible and 
reveals more information about the test product, i.e., it 
covers a broader range of population with a longer fol-
low-up period [2, 13]. Though it is hard to recruit enough 
participants for a rare-disease RCT, it is easier to gather 
RWD about this specific disease all over the country. In 
this way, the desired statistical power may be achieved.

Resolving these problems not only benefit pharma-
ceutical companies in developing orphan drugs but also 
provide valuable clinical evidence of orphan drugs to 
health technology assessment (HTA) agencies. Specifi-
cally, it can assist HTA agencies in evaluating orphan 
drugs and determining public funding reimbursement. 
For pharmaceutical manufacturers, the small number of 
target patients makes it hard for them to recover the drug 
development cost [14, 15], which makes reimbursement 
an essential incentive for orphan drug development. 
Due to economic concerns, oncology orphan drugs have 
received greater attention compared with non-oncology 
orphan drugs by investors, since oncology orphan drugs 

Table 1 Top ten prescribed drugs withdrawn by FDA between 1993 and 2010 (Source: Saluja et al.) [8]

a Average number of visits per year during which drug was prescribed

Drug name Use for Company Reasons Years on market Visit timesa

Rofecoxib COX‑2 selective
nonsteroidal
anti‑inflammatory
drug

Merck & Co. Heart attack
and stroke risk

1999–2004 10647

Valdecoxib Nonsteroidal
anti‑inflammatory
drug

G. D. Searle
& Company

Stevens‑Johnson
syndrome and
cardiovascular risk

2001–2005 5612

Cisapride Gastroprokinetic
agent

Janssen
Pharmaceuticals

Cardiac toxicity 1993–1999 2196

Troglitazone Antidiabetic and
anti‑inflammatory
drug

Parke‑Davis Hepatic failure 1997–2000 1976

Gatifloxacin Antibiotic of the
fourth‑generation
fluoroquinolone family

Kyorin
Pharmaceutical
Company

Hypoglycemia and
hyperglycemia

1999–2003 1332

Tegaserod A 5-HT4 agonist Novartis Cardiovascular risk 2002–2007 980

Cerivastatin A synthetic
lipid‑lowering agent

Bayer A.G. Kidney failure 1997–2001 968

Trovafloxacin A broad‑spectrum
antibiotic

Pfizer Hepatic toxicity 1997–2000 645

Bromfenac Nonsteroidal
anti‑inflammatory drug

ISTA
Pharmaceuticals

Hepatic failure 1997–1998 434

Mibefradil Nonselective
calcium channel
blocker

Roche Drug interactions 1997–1998 409
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often charge higher prices [16]. Hence, many orphan 
drugs, especially non-oncology orphan drugs and ultra-
orphan drugs, eagerly need reimbursement to incent 
development.

Though reimbursement may greatly enhance orphan 
drug development, currently, the probability of negative 
HTA recommendation is high. In some Europe coun-
tries, the negative recommendation probability was 
about 30–40%; and only about 20–25% of recommended 
orphan drugs that truly obtained reimbursement [17, 
18]. One commonly used framework to evaluate orphan 
drugs is multi-criteria decision analysis (MCDA). Well-
accepted criteria in MCDA are comparative effective-
ness/efficacy, existence of alternatives, disease severity, 
safety, target population size and quality of evidence [18–
20]. However, there is still disagreement on how to select 
criteria, how to quantify factors, and how to determine 
the weight for each criterion [14]. One way to improve 
recommendation probability is to provide more reli-
able information about the effectiveness and safety of the 
orphan drug to HTA.

In this article, some innovative thinking regarding com-
posite hypothesis testing for effectiveness and safety is 
proposed. These out-of-box innovative thinkings include 
(i) utilizing RWD in combination with RCT data to dem-
onstrate effectiveness and safety; (ii) determining null 
and corresponding alternative hypotheses of composite 
hypothesis testing; and (iii) proposing a generalized two-
stage approach to conduct composite hypothesis testing 
with superiority test(s).

In the next section, challenging issues regarding RWD 
are presented. Detailed innovative thinking about com-
posite hypothesis testing is illustrated in “Composite 
hypothesis testing for effectiveness and safety” Section. 
The generalized two-stage approach for composite 
hypothesis testing with superiority test(s) is proposed in 
“The implementation of RWD in composite hypothesis 
testing” Section. Finally, the concluding remarks are pro-
vided in “Concluding Remarks” Section.

Challenging issues about real‑world data
RWD has become a hot topic due to its large quantity and 
unique nature in assessing the real-world performance of 
a new drug or a new treatment. Though the idea of using 
RWD evaluating effectiveness and safety has been pro-
posed for several years, RCT is still the gold standard in 
this field. A well-controlled RCT has two essential fea-
tures: randomization and blindness, which can eliminate 
potential bias and the impact of confounding. However, 
RCTs also have some limitation, such as (i) RCTs have 
many restrict inclusion and exclusion criteria, and (ii) 
RCTs have a very limited study population and follow-up 
period. In this way, RCTs create a too idea condition to 

evaluate the real-world performance of the test drug, and 
it is hard for some trials to recruit enough participants. 
Thanks to RWD, the real-world performance of the test 
drug can be determined, information for a broader study 
population can be collected, and the follow-up period 
can also be longer. Thus, RWD can be very helpful in 
drug development, especially for orphan drugs [2].

Though RWD could become a complement to RCT 
data, there are many concerns about how to utilize RWD 
in drug development. For instance, the biased nature of 
RWD, i.e., without randomization, the treatment differ-
ence detected from RWD might be because of confound-
ing. Additionally, without blindness, whether the patient 
receives the test treatment is subjective, and patients may 
be more likely to drop off if the treatment is not benefi-
cial. Due to these unfavorable characteristics of RWD, 
it is essential to pay attention to how the data were col-
lected and the methodology used to conduct the research 
[21]. In this section, challenging issues regarding the use 
of RWD in support of clinical investigation of the test 
treatment are demonstrated.

Representativeness of RWD
In a clinical trial evaluating the performance of a test drug 
for a given disease, it is essential to determine whether 
RWD is representative of the target population because 
RWD are usually collected from different individual stud-
ies and might have (i) different structural or nonstruc-
tural format, (ii) similar but different study protocols, (iii) 
similar but different inclusion/exclusion criteria, (iv) sim-
ilar but different target populations, (v) similar but dif-
ferent study objectives/hypothesis/endpoints, (vi) similar 
but different trial procedures, and (vii) similar but differ-
ent statistical procedures; or electronic health records, 
which makes it necessary to assess patients’ geography, 
health status and received health care [22]. It is necessary 
to generate some approaches to test for the representa-
tiveness of RWD; however, currently, there is no gener-
ally accepted method to test for representativeness.

Heterogeneity of RWD
Heterogeneity of RWD is another essential issue that 
needs to be considered before using RWD in practice, 
which exists due to the difference within and across 
individual studies with different means, variances, and 
sample sizes. The treatment-by-study interaction among 
individual studies also can affect the poolability for final 
analysis. Detailed information on how to evaluate the 
heterogeneity of RWD can be found in Moran et al. [23].

Confounding/interaction of RWD
Confounding exists in RWD because of the difference 
in baseline demographics, such as age, gender, weight/
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height or BMI, race, etc., and patient characteristics, such 
as disease severity, medical history, concomitant medica-
tion, etc. Yang et al. [24] proposed to use the confound-
ing function to summarize the impact of unobserved 
confounders on outcome variables while accounting for 
observed covariates to improve the inference based on 
RWD. As for interaction, it exists may be because of dif-
ferent treatments, centers, and covariates (demographics 
and patient characteristics). Data should not be pooled 
for analysis if a significant qualitative interaction is 
observed. Data may be pooled for final analysis though a 
significant quantitative interaction is observed.

Missing data of RWD
Missing data or incomplete data are commonly encoun-
tered in biomedical research, because of dropouts, loss 
of follow-up, withdraw of informed consent, withdraw 
by investigators, etc. Missingness could also exist due 
to non-medical reasons, such as health insurance plan 
issues. It is important to first determine whether the loss 
of follow-up or other missingness will significantly affect 
study conclusions. If there is no significant influence, 
then missingness is less critical [22]. Otherwise, a proper 
approach to handling missing data or incomplete data 
should be considered.

Reproducibility/generalizability of RWD
Reproducibility means the observed clinical result using 
RWD at one study center can also be found at another 
study center, where the target population remains the 
same. Shao and Chow [25] have proposed to use repro-
ducibility probability for a given clinical trial to evaluate 
reproducibility. They have considered three approaches 
to analyze reproducibility probability, including the esti-
mated power approach, confidence bound approach, and 
Bayesian approach. As for generalizability, it suggests 
that the clinical results from one target population (e.g., 
adults) can be generalized to another similar but differ-
ent target patient population (e.g., children or elderly). 
The generalizability can be evaluated using the sensitivity 
index proposed by Chow [26].

Data quality and validity of RWD
While using RWD to conduct a study on drug develop-
ment, we should also pay attention to the confidential-
ity agreement for data sharing and the development of 
standard forms of data capture. As for the data man-
agement process, many essential issues should be paid 
attention to, such as data transfer, data review/query, 
data verification/validation, and database lock. Gliklich 
and Leavy [27] proposed several criteria evaluating data 
quality for RWD to ensure the reliability of real-world 
evidence.

Composite hypothesis testing for effectiveness 
and safety
Traditionally, the effectiveness of a test drug was ana-
lyzed first by selecting a proper sample size for achieving 
the desired power in detecting treatment effect. Using 
the same data, some approaches are considered to deter-
mine whether there is safety concern. However, this idea 
is unfavorable since the study is not powered to test for 
safety. The sample size required to test for safety is often 
larger than the one for effectiveness, since the adverse 
event incidence rate difference between treatment and 
control is much lower compared with typical effective-
ness assessment. According to Chow et  al. [28], the 
sample size of extremely low incidence rate trials can be 
very large. Hence, it is inappropriate to establish a study 
based on the effectiveness endpoint alone and evaluate 
both effectiveness and safety at the same time since the 
power for evaluating safety may below the desired level. 
To avoid this from happening, composite hypothesis test-
ing for effectiveness and safety in regulatory approval is 
one of the solutions.

Innovative thinking for composite hypothesis testing
For testing composite hypotheses for both effectiveness 
and safety, the first step is to determine the null and alter-
native hypotheses. There are nine possible combinations 
of composite hypotheses while considering effectiveness 
and safety at the same time. Table 2 lists all nine possible 
combinations. The first letter of each combination rep-
resenting the type of hypothesis testing for effectiveness 
and the second letter representing the type of hypothesis 
testing for safety. For instance, “SN” represents superior-
ity test in effectiveness and non-inferiority test in safety, 
and the composite hypotheses can be written as

(1)

H0: no superiority in effectiveness or

inferiority in safety or both v.s.

HA: superiority in effectiveness and non

- inferiority in safety.

Table 2 Possible composite hypotheses of testing for effectiveness 
and safety

a  N = non-inferiority
b  S = superiority
c  E = equivalence

Safety

Na Sb Ec

Effectiveness

N NN NS NE

S SN SS SE

E EN ES EE
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Superiority test requires a larger sample size compared 
with non-inferiority test. The sample size calculation for-
mula of control arm for non-inferiority test and superior-
ity test are:

and

respectively, where p1 − p2 is the incidence rate differ-
ence of adverse events, k is the allocation ratio, and δ is 
the non-inferiority/superiority margin ( δ > 0 ). The dif-
ference between these two formulae is the denominator 
of the first term. The denominator of superiority tests is 
smaller, which makes the sample size larger. And com-
posite hypothesis testing requires a larger sample size 
compared with single hypothesis testing. Therefore, a 
composite hypothesis testing with superiority test(s) 
requires a very large sample size to maintain enough 
power.

To make good use of all the data, the two-stage inno-
vative approach proposed by Chow  [29] is generalized 
for composite hypothesis testing with superiority test(s). 
Before discussing the details of the proposed generalized 
two-stage approach, first mention the difference between 
superiority and non-inferiority tests.

While conducting a non-inferiority test for safety, the 
alternative hypothesis ( HA ) is “not-unsafe”; while the HA 
of a superiority test is “safe”. As shown in Fig. 1A, there 
would be an inconclusiveness zone between “not-unsafe” 

(z1−α + z1−β)
2

(p1 − p2 + δ)2

p1(1− p1)

k
+ p2(1− p2) ,

(z1−α + z1−β)
2

(p1 − p2 − δ)2

[

p1(1− p1)

k
+ p2(1− p2)

]

,

and “safe”. If the primary objective is to test for safety 
(superiority test), instead of directly conducting this 
superiority test, another option is to conduct the non-
inferiority test first demonstrating the “not-unsafety” 
of the test drug. If the null hypothesis ( H0 ) of non-infe-
riority test is rejected, then test for the probability of 
inconclusiveness. If the probability of inconclusiveness 
is negligible, we may finally conclude the safety of the 
test drug [29]. Similarly, there is an inconclusiveness 
zone between “effectiveness” and “not-ineffectiveness” 
as shown in Fig.  1B. The main advantage of using this 
approach is that it allows us to stop early for inferiority in 
effectiveness and/or safety.

Conduct hypothesis testing
There are three types composite hypothesis testing that 
are applicable for the proposed two stage approach: (i) 
“SN” (superiority test for effectiveness and non-inferi-
ority test for safety), (ii) “NS” (non-inferiority test for 
effectiveness and superiority test for safety), and (iii) “SS” 
(superiority test for effectiveness and safety). In compos-
ite hypothesis testings, the definition of inconclusiveness 
also exist, details are shown in Fig.  2. Specifically, for 
"SN" hypothesis testing (in Fig.  2(A)), the inconclusive-
ness exists due to effectiveness only; for "NS" hypothesis 
testing (in Fig.  2(B)), the inconlusiveness exists due to 
safety only; and for "SS" hypothesis testing (in Fig. 2(C)), 
both effectiveness and safety will lead to inconclusive-
ness.  Here, use “SN” as an example to illustrate how to 
set up hypothesis, derive test statistic and calculating the 
required sample size to reach desired statistical power.

Let Xijk denote the response of binary outcome k from 
the jth subject in the ith arm, where i ∈ {1, 2} represent 

Fig. 1 Illustration of inconclusiveness in safety and effectiveness
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Fig. 2 Demonstration of composite hypothesis testing with superiority test(s)
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the treatment and control arm, j ∈ {1, · · · , ni} , and 
k ∈ {1, 2} represent effectiveness and safety endpoint. 
Xijk ∼ Bernoulli(πik) . Specifically, Xij1 = 1 represents 
that the patient was benefit from the test treatment, and 
Xij2 = 1 represents that the patient experienced adverse 
events. For simplicity and illustration purpose, assume the 
allocation ratio is 1  :  1, i.e., n1 = n2 = n . The hypotheses 
for Stage 1 (non-inferiority tests) are as follows:

where δ1N and δ2N are the non-inferiority for effective-
ness and safety, respectively. The test statistic for hypoth-
esis testing shown in Eq. (2) is

where sek0 =
√

2
npk(1− pk) , pk = p1k+p2k

2  , pik =
∑

j Xijk

n  . 
Using the asymptotic normal method without continuity 
correction proposed by Sozu et  al. [30], the asymptotic 
statistical power can be derived as (detailed derivation is 
shown in Appendix A1):

where �(·) is the cumulative distribution function (CDF) 
for standard normal distribution, and �nml is the CDF for 
2-variate standard normal distribution. Applying power 
analysis method, the sample size for composite hypoth-
esis testing can be determined iteratively [30]: 

Step 1  Specify Bernoulli distribution parameters πik 
( i, k ∈ {1, 2} ), the correlations between two 
outcome variables, and the non-inferiority 
margins.

Step 2  Set initial value of n(0) and compute the statisti-
cal power (1− β)(0).

Step 3  Repeat Step 2 by gradually increasing the sam-
ple size, until the statistical power reaches the 
desired level.

 The hypotheses for Stage 2 (test for inconclusiveness) are

(2)

H0 : π11 − π21 ≤ −δ1N or π12 − π22 ≥ δ2N or both v.s.

HA : π11 − π21 > −δ1N and π12 − π22 < δ2N ,

(3)

Z1 =
p11 − p21 + δ1N

se10
and Z2 =

p12 − p22 − δ2N

se20
,

(4)
Power = �

(

(p11 − p21 + δ1N )− se10z1−α

se1

)

−�nml

(

(p11 − p21 + δ1N )− se10z1−α

se1
,
(p12 − p22 − δ2N )− se20zα

se2

)

,

(5)
H0 : PI (−δ1N < π11 − π21 < δ1S) ≥ p0 v.s.

HA : PI (−δ1N < π11 − π21 < δ1S) < p0,

where PI stands for the probability of inconclusiveness, 
δ1S is the superiority margin for effectiveness, and p0 is 
the pre-determined threshold for PI . The test statistic 
derived under H0 in Eq. (5) is

where the calculation of P̂I is shown in Appendix A2, and 
m is the sample size. The approximate statistical power is

where PI is the true probability of inconclusiveness under 
HA in Eq. (5), and zq is the qth quantile of standard nor-
mal distribution. The sample size m can be computed 
using Eq. (8):

(6)Z = P̂I − p0
√

p0(1− p0)/m
∼ N (0, 1),

(7)�

(√
m(p0 − PI )− zα

√

p0(1− p0)
√

p0(1− p0)

)

,

(8)m = (z1−β + zα)
2p0(1− p0)

(p0 − PI )2
.

Simulation for composite hypothesis testing
One major goal of this paper is to emphasize the impor-
tance of RWD/RWE in orphan drug development. A 
simulation is conducted aiming to compare the required 
sample size for composite hypothesis testing for Stage 1 to 
a typical non-inferiority test for effectiveness. As state ear-
lier, if a study sets the effectiveness as the primary objec-
tive whereas safety as the secondary objective, there will 
be no enough power to test for safety. Table 3 presents the 
sample sizes for the composite hypothesis testing in Eq. 
(2) and single hypothesis testing for effectiveness only.

Fixing π11 , π21 and δ1N , the sample size of the com-
posite hypothesis testing is more than 3 times larger 
than the sample size of single hypothesis testing, espe-
cially when π12 and π22 are close, e.g., when π12 = 0.07 
and π22 = 0.08 , the sample size for composite test is 
around 9000, whereas the one for effectiveness test is 
only around 300. This suggests that while using effective-
ness as primary objective, the power for secondary objec-
tive (safety) is very limit. The required sample size for 
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composite hypothesis testing is extremely large, which 
makes it impossible for orphan drug trials. Though the 
composite test’s sample size is associated with the non-
inferiority margin for safety, the overall sample size is 
still more than 700. Thus, it is necessary to utilize RWD 
in orphan drug development; otherwise, it is difficult to 
maintain enough power for testing for effectiveness and 
safety.

The implementation of RWD in composite 
hypothesis testing
Based on the simulation study, the required sample size 
for the two-stage approach is extremely large. Follow-
ing Chow and Huang [13], we propose to use RCT data 
in conjunction with RWD data to test for the probability 
of inconclusiveness. Again, use “SN” type of composite 
hypothesis testing as an example to illustrate the two-
stage approach.

The first stage is to test for non-inferiority in both 
effectiveness and safety. In other words, the first step 
aims to determine whether the test drug is both “not-
ineffective” in effectiveness and “not-unsafe” in safety. 
After confirming “not-ineffectiveness” and “not-
unsafety”, the second step is to use RCT data in con-
junction with RWD to eliminate the probability of 
inconclusiveness for “effectiveness”. If the probability 
for inconclusiveness is of no or little clinical meaning 
or importance, we then conclude that the test treat-
ment is superior to the control in terms of effectiveness 
and non-inferior to the control in terms of safety.

This generalized two-stage innovative approach using 
RWD for testing “SN” composite hypotheses can be 
briefly summarized below: 

Step 1  At the first stage, following Chow et  al. [28], 
derive the required sample size achieving the 
desired power. With the selected sample size, 
the composite hypothesis testing, as shown 
in Eq. (2), will be conducted to test for “not-
ineffectiveness” and “not-unsafety”. Note that 
statistical test will be performed based on data 
collected from RCT and RWD at the first stage.

Step 2  If we fail to reject the null hypothesis in Eq. (2), 
then stop the trial. Otherwise, we may conclude 
that the test drug is “not-ineffective” and “not-
unsafe” and move to Step 3.

Step 3  Compute the sample size required for obtain-
ing desire power in conducting one-sided test 
for the probability of inconclusiveness. At this 
step, At this step, new samples from RWD will 
be used to control type I error rate. However, if 
the data used in Stage 1 will be continued to use 
at Stage 2, some approaches to control family-
wise type I error rate need to be considered.

Step 4  Test hypotheses as shown in Eq. (5). If we fail to 
reject the null hypothesis for the probability of 
inconclusiveness, i.e., the probability of incon-
clusiveness could not be ignored. Then we fail 
to conclude the superiority of the test treatment 
in terms of effectiveness. Otherwise, the superi-
ority in terms of effectiveness is confirmed.

Table 3 Sample size comparison of composite hypothesis 
testing and single hypothesis testing

a Ncom = sample size for composite hypothesis testing for effectiveness and 
safety
b Neff = sample size for single hypothesis testing for effectiveness

Correlation between effectiveness and safety are assumed to be the same 
for treatment and control group, which is ρ1 = ρ2 = 0.3 . α = 0.025 and 
1− β = 0.80

Effectiveness Safety N
a
com N

b

eff

Treatment 
( π11)

Control 
( π21)

Treatment 
( π12)

Control 
( π22)

δ1N = 0.1, δ2N = 0.001.

0.6 0.5 0.05 0.08 992 385

0.06 2317

0.07 9000

0.7 0.5 0.05 0.08 992 362

0.06 2317

0.07 9000

0.8 0.5 0.05 0.08 992 322

0.06 2317

0.07 9000

δ1N = 0.1, δ2N = 0.005.

0.6 0.5 0.05 0.08 778 385

0.06 1635

0.07 4840

0.7 0.5 0.05 0.08 778 362

0.06 1635

0.07 4840

0.8 0.5 0.05 0.08 778 322

0.06 1635

0.07 4840

δ1N = 0.3, δ2N = 0.001.

0.6 0.5 0.05 0.08 992 43

0.06 2317

0.07 9000

0.7 0.5 0.05 0.08 992 41

0.06 2317

0.07 9000

0.8 0.5 0.05 0.08 992 36

0.06 2317

0.07 9000
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In summary, the proposed two-stage innovative 
approach for composite hypothesis testing would be 
helpful especially for superiority test(s), i.e., the com-
posite hypotheses contain one or more superiority 
tests. In this way, the trial could be allowed to stop early 
and avoid requiring a large RCT.

Concluding remarks
Many clinical trials for drug development are powered 
on effectiveness only, and safety issue is considered as 
the secondary objective. This practice has made some 
approved drugs have safety concerns, and some are even 
withdrawn or recalled. One possible reason for research-
ers not power on safety is that testing for safety requires 
a much larger sample size. As for orphan drug devel-
opment, this problem is even worse due to the limited 
availability of participants. In this article, a generalized 
two-stage approach to conduct composite hypothesis 
testing with superiority test(s) for evaluating effective-
ness and safety simultaneously is proposed. Building on 
Chow [29]’s idea, the first stage is to conduct composite 
non-inferiority tests, and the second stage is to test for 
the probability of inconclusiveness, after rejecting the 
null hypothesis in Stage 1. Since composite hypothesis 
testing with superiority test(s) requires a large sample 
size, we further proposed to use RCT data in conjunction 
with RWD to to meet the desired power level.

This idea can greatly benefit orphan drug develop-
ment. Though the definition of rare disease in different 
countries are different, it is always difficult to recruit 
enough patients with the specific rare disease. Using 
RWD in orphan drug development or assessment has 
many advantages: (i) revealing real-world performance 
of the test orphan drug; (ii) allowing to assess effective-
ness and safety at the same time with desired power; and 
(iii) providing more valuable information for reimburse-
ment. In this way, more orphan drug reimbursement may 
be offered to pharmaceutical manufacturers to incent 

both non-oncology and oncology orphan drug develop-
ment. Additionally, RWD may provide more information 
regarding the performance of the orphan drug than con-
ventional RCTs. For example, RWD allows to assess the 
drug for a longer follow-up period and broader popula-
tion. In this way, greater insight for orphan drugs can be 
provided, which may help reimbursement assessment. It, 
however, should be noted that the good characteristics of 
RWD are the key factors for the success of the proposed 
approach. The good characteristics of RWD include, but 
are not limited to, representativeness, quality, consist-
ency, and relevancy.

Apppendix
A1: Power calculation for stage 1
The asymptotic power formula is

where Z∗
k = p1k−p2k−(π1k−π2k )

sek
 , sek =

√

1
n (v1k + v2k) , and 

vik = πik(1− πik) . Since Z∗
k follows standard normal dis-

tribution, Z∗ = (Z∗
1 ,Z

∗
2 )

T follows 2-variate standard nor-
mal distribution N2(0,�) , where the diagonal elements 
are 1s, and off-diagonal elements are [30]

where ρi is the correlation coefficient between effec-
tiveness and safety for the ith arm. Since effectiveness 
and safety are correlated, using the asymptotic normal 
method without continuity correction proposed by Sozu 
et al. [30]. The power in Eq. (9) can be written as

(9)

Power = P({Z1 > z1−α} ∩ {Z2 ≤ zα}|HA is true.)

= P({Z∗
1 >

se10z1−α − (π11 − π21 + δ1N )

se1
} ∩ {Z∗

2

≤ se20zα − (π12 − π22 − δ2N )

se1
}|π11,π21,π12,π22),

(10)ρnml =
∑2

i=1 ρi
√
vi1vi2√

(v11 + v21)(v12 + v22)
,

(11)

P

(

{Z∗
1 >

se10z1−α − (π11 − π21 + δ1N )

se1
} ∩ {Z∗

2 ≤ se20zα − (π12 − π22 − δ2N )

se2
}
)

= P

(

Z∗
1 >

se10z1−α − (π11 − π21 + δ1N )

se1

)

−P

(

{Z∗
1 >

se10z1−α − (π11 − π21 + δ1N )

se1
} ∩ {Z∗

2 >
se20zα − (π12 − π22 − δ2N )

se2
}
)

= �

(

(p11 − p21 + δ1N )− se10z1−α

se1

)

−�nml

(

(p11 − p21 + δ1N )− se10z1−α

se1
,
(p12 − p22 − δ2N )− se20zα

se2

)

,
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where �(·) is CDF of standard normal distribution, and 
�nml(·) is the CDF of N2(0,�).

A2: Probability of inconclusiveness
The probability of inclusiveness PI is derived as:

where Z′
1 =

p11−p21−δ1S
se10

 . Therefore, P̂I can be computed 
by plugging the observed data.
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