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Preliminary study of noninvasive prenatal 
screening for 22q11.2 deletion/duplication 
syndrome using multiplex dPCR assay
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Abstract 

Objective This study aimed to establish a cell-free fetal DNA (cffDNA) assay using multiplex digital PCR (dPCR) 
for identifying fetuses at increased risk of 22q11.2 deletion/duplication syndrome.

Methods Six detection sites and their corresponding probes were designed for the 22q11.2 recurrent region. A dPCR 
assay for the noninvasive screening of 22q11.2 deletion/duplication syndrome was established. A total of 130 plasma 
samples from pregnant women (including 15 samples with fetal 22q11.2 deletion/duplication syndrome) were blindly 
tested for evaluating the sensitivity and specificity of the established assay.

Results DNA with different sizes of 22q11.2 deletion/duplication was detected via dPCR, indicating that the designed 
probes and detection sites were reasonable and effective. In the retrospective clinical samples, 11 out of 15 samples 
of pregnant women with 22q11.2 deletion/duplication were detected during the cffDNA assay, and accurate regional 
localization was achieved. Among the 115 normal samples, 111 were confirmed to be normal. Receiver operating 
characteristic curves were used for assessing the cut-off values and AUC for these samples. The sensitivity, specificity, 
and positive as well as negative predictive values were 73.3%, 96.5%, 73.3%, and 96.5%, respectively.

Conclusion The cffDNA assay based on dPCR technology for the noninvasive detection of 22q11.2 recurrent copy 
number variants in fetuses detected most affected cases, including smaller but relatively common nested deletions, 
with a low false-positive rate. It is a potential, efficient and simple method for the noninvasive screening of 22q11.2 
deletion/duplication syndrome.
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Background
Copy number variants (CNVs) are ubiquitous in the 
human genome. Some CNVs exist in the normal human 
population in the form of genetic polymorphisms, 
whereas others may be related to human traits and dis-
eases. CNVs occur frequently in certain regions, known 
as the recurrent regions, because of non-allelic homol-
ogous recombination, end-joining replication fork stag-
nation, and fork stalling and template switching [1]. The 
occurrence frequency of the 22q11.2 region is approxi-
mately 1/4000 in the human population and as high as 
1/800–1/1000 in fetuses. Duplications and deletions 
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are both equally common. The 22q11.2 deletion/dupli-
cation syndrome is the second most common genetic 
cause for developmental delay and congenital heart dis-
ease following Down syndrome, and more commonly 
occurring than trisomy 18 and trisomy 13 combined 
[2, 3]. The 22q11.2 deletion syndrome present hetero-
geneously including multiple congenital anomalies and 
later-onset conditions, such as congenital heart disease 
(tetralogy of Fallot, aortic arch malformation, ventricu-
lar septal defect, etc.), palatal malformation (cleft palate 
and velopharyngeal insufficiency), and characteristic 
facial deformity [4, 5]. Antenatal diagnosis or screening 
of 22q11.2 deletion syndrome ensures timely treatment 
for neonatal hypocalcemia and immunodeficiency, 
improving treatment outcomes [6, 7]. The 22q11.2 
duplication syndrome varies widely in penetrance and 
presentation, with some patients having mild to severe 
abnormalities, usually including facial deformities, car-
diac abnormalities, autism spectrum disorders (ASD), 
and neurological deficits (OMIM # 608,363) [8, 9]. The 
incidence of ASD in 22q11.2 duplication syndrome is 
14–25%, which is the highest among all genetic dis-
eases. It is suggested that prospective medical screen-
ing should be performed in all patients with 22q11.2 
duplication syndrome [3, 10].

Screening for 22q11.2 deletion/duplication syndrome 
in fetuses is difficult because of the lack of effective tar-
geted programs. Currently, screening is performed pri-
marily through fetal ultrasound [11]. Ultrasound detects 
fetal abnormalities and is followed by diagnostic testing, 
thus detecting 22q11.2 deletion/duplication syndrome on 
a microarray. Due to many factors, such as the individual 
fetal development, standard of ultrasound technology 
and operators, most abnormal fetuses are not detected 
until the second or third trimester [12]. In addition, 
22q11.2 deletion/duplication syndrome is easily missed 
in fetuses because of the high heterogeneity in its pres-
entation [13].

Discovery of circulating cell-free fetal DNA (cffDNA) 
in the maternal plasma has enabled the development 
of noninvasive prenatal screening and diagnostic tech-
niques. In recent years, noninvasive prenatal screening 
based on next-generation sequencing (NGS) technology 
has been mainly used for detecting common fetal ane-
uploidy with high sensitivity and specificity; however its 
use is relatively low for fetal CNVs detection [14–16]. 
Studies for improving the technology have been con-
ducted. These include increasing the sequencing depth, 
adding probes to custom chips, changing the algorithm 
to enhance detection effect accuracy, such as single 
nucleotide polymorphism (SNP) based digital analysis 
of selected areas (DANSR) and targeted capture enrich-
ment assay (TCEA) technology [17]. However, due to 

the significant increase in detection costs, promoting the 
clinical application of these methods is difficult.

Studies have reported that digital PCR (dPCR) tech-
nology has a positive effect on fetal T21/T18 noninva-
sive prenatal screening [18, 19]. dPCR is a nucleic acid 
absolute quantification technology that can be used for 
absolute quantification of the initial sample [20]. In this 
process, the PCR reaction is randomly distributed to tens 
of thousands of independent partitions. After amplifica-
tion, PCR partitions are read and counted as negative or 
positive based on their fluorescence amplitude, in which 
minute differences in the abundance of target sequences 
can be accurately detected. Finally, Poisson distribution 
is used to calculate the number of target sequences. This 
technique has high sensitivity, accuracy, stability, and 
tolerance [20, 21]. dPCR is sufficiently precise for detect-
ing fetal chromosomal aneuploidy in maternal plasma 
and suitable for noninvasive prenatal diagnosis of cer-
tain monogenic diseases, such as hemophilia, fetal sex 
detection, rhesus blood group D antigen genotyping, and 
achondroplasia [22–26].

In this study, we developed a dPCR assay for noninva-
sive detection of the 22q11.2 recurrent CNV in fetuses, 
and preliminarily evaluated its effectiveness through ret-
rospective research.

Materials and methods
Ethics approval and consent for participation
The design and protocol of this study were reviewed and 
approved by the ethics committee of Changzhou Mater-
nity and Child Health Care Hospital (No. 2022014). All 
pregnant women received genetic counseling and pro-
vided informed consent prior to testing.

Clinical subjects
This study recruited patients who had undergone chro-
mosomal microarray (CMA) testing from the Prena-
tal Diagnosis Center of Changzhou Maternal and Child 
Health Hospital.

1. Subjects for the preliminary evaluation of probe 
effectiveness: Four patients with differently sized 22q11.2 
deletion/duplication identified via CMA were recruited 
for this study.

2. Subjects for the retrospective evaluation: A. True 
positive group: 15 pregnant women with fetal CNV at 
22q11.2, aged 21–36  years, gestational age 18 + 3 w–26 
w. B: Negative group: 115 pregnant women with normal 
fetuses, aged 20–46 years, gestational age 17 + 1 w–27 w.

Maternal blood samples were collected prior to amnio-
centesis. Plasma was isolated from blood samples, stored 
at -80  °C, and retrospectively analyzed. The samples 
were then blind-coded and processed by operators and 
analysts.
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Sample collection and DNA extraction
Genomic DNA extraction
Blood samples (2 ml) were collected in EDTA tubes, and 
genomic DNA was extracted using the Puregene Blood 
Core Kit C (Qiagen, Hilden, Germany) according to the 
manufacturer’s instructions. Amniotic fluid (10  ml) was 
obtained from each pregnant woman via amniocente-
sis. DNA was extracted from the amniotic fluid using 
a QIAamp DNA Mini Kit (Qiagen Inc., Valencia, CA, 
USA) following the manufacturer’s instructions.

Plasma separation and cffDNA extraction
Peripheral blood (10  ml) was collected from pregnant 
women via simple needle aspiration and centrifuged at 
1600 g at 4 °C for 10 min and again at 16,000 g for 10 min 
to obtain cell-free plasma. Cell-free DNA was extracted 
from 2  mL plasma using a Magbead Free-Circulating 
DNA Maxi Kit (KangWei Shiji, China), according to the 
manufacturer’s instructions. A magnetic bead-based 
cell-free fetal DNA (cffDNA) enrichment kit (Magnetic 
Bead-Based cffDNA Purification Kit) (Xingzhi Biotech-
nology, China) was used for enrichment to enhance the 
proportion of cffDNA, following the manufacturer’s 
instructions.

CMA
DNA (250 ng) was amplified, labeled, and hybridized to 
a GCS 3000Dx v.2 microarray platform (Affymetrix, CA, 
USA). The SNP array test was performed using a com-
mercial 750  K microarray chip (Affymetrix CytoScan 
750 K Array). After hybridization with fragmented DNA, 
the chip was washed with buffer and scanned using a 

GeneChip Scanner 3000 7G. Data was analyzed using 
the Chromosome Analysis Suite v4.1 (ChAs) software 
package. Public databases (DECIPHER, OMIM, ClinVar, 
ISCA, NCBI, and UCSC) were used to retrieve the data. 
The pathogenicity of the identified CNVs was evaluated 
according to the American College of Medical Genetics 
and Genomics (ACMG) guidelines.

Target specific primer and probe designs
The 22q11.2 recurrent region contains four hot spot 
regions known as A–D low-copy repeats (LCR) on the 
long arm of the chromosome 22 [27]. Three sequence 
tagged sites in the proximal segment (LCR A-B) and cen-
tral segment (LCR B-D) were selected as detection tar-
gets (Fig. 1). Two housekeeping genes on chromosome 1 
were selected as the reference gene testing loci.

Candidate primers and probes were chosen using the 
online nucleotide BLAST and primer-BLAST tools pro-
vided by the National Center for Biotechnology Informa-
tion (NCBI) and its website (https:// www. ncbi. nlm. NIh. 
gov). These sequences were analyzed using an online tool 
provided by iGeneTech (https:// mfeprimer3.Igene tech.
com) to ensure that no primer dimers or hairpin struc-
tures were present. The primers and probes that passed 
the selection criteria were sent to Thermo Fisher Scien-
tific (https:// www. therm ofish er. cn) for synthesis. To dif-
ferentiate the amplification signals, the detection probes 
for LCR A-B, LCR B-D, and reference genes were labeled 
with FAM, VIC, and Cy5 fluorophores, respectively. The 
sequence information for primers and probes are pre-
sented in Additional file1: Supplement Table  S1. Train-
ing set sample information are shown in Additional file1: 

LCR A LCR B LCR C LCR D

cen

Probe site

Fig. 1 Depiction of the 22q11.2 region in chromosome 22 and the probe site. The ideogram of chromosome 22 and the 22q11.2 highlighted 
in a small red box are shown on top. This region includes four sets of LCR referred to as LCR-A, LCR-B, LCR-C, and LCR-D (brown boxes). The probes 
sites of dPCR are marked in red. Schematic of the CMA results of the four patients in the preliminary assessment of probe effectiveness study and 15 
patients in retrospective study. The red bars represent deletion sizes, and blue bars represent duplication sizes

https://www.ncbi.nlm.NIh.gov
https://www.ncbi.nlm.NIh.gov
https://www.thermofisher.cn
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Supplement Table S2. The information regarding positive 
samples for assessing probe effectiveness are shown in 
Additional file1: Supplement Table S3.

dPCR
The dPCR system used for detection was the QIAcuity 
One 5Plex System (Qiagen). In a 40  μL multiplex reac-
tion, 27 μL DNA/cfDNA targets were added into 13 μL 
dPCR Probe Master Mix (Qiagen) containing eight 
primer pairs and the corresponding detection probes. 
The dPCR cycling conditions were as follows: 95  °C for 
2 min and 40 cycles of 95 °C for 30 s, 58 °C for 30 s, and 
72 °C for 30 s.

After amplification, the system automatically detected 
the fluorescence signal and calculated the copy number 
according to the Poisson distribution. The copy number 
of the target in each detection region  (CTn (n = A-B, B-D)) 
or the reference gene  (CR) was automatically calculated 
using the instrument’s software. The Z-score was calcu-
lated for each target detection region using the following 
equation:

where ZTn
R

 is the Z-score of the copy number ratio 
between the target being tested and the reference gene 
CTn
CR

 from the same sample in the same dPCR assay. 
NSMean

CTn
CR

 is the mean copy number ratio of normal 
samples that serves as a baseline for cut-off value deter-
mination, and SD is the standard deviation of NSMean

CTn
CR

.
The risk of 22q11.2 deletion/duplication was deter-

mined according to the Z-score. If the absolute Z value 
was ≥ 3.67, there was a high risk of 22q11.2 deletion/
duplication. Positive Z value indicated duplication in 
this region, while negative value indicated a deletion. If 
the absolute values of all Z values were <  3.67, the risk of 
22q11.2 deletion/duplication was low. If the absolute Z 
values were ≥ 3 and <  3.67, they were in the gray zone and 
needed verification.

A total of 130 plasma samples were tested using dPCR, 
and all operators were unaware of the true status of the 
samples throughout the testing process for all samples 
and until results were obtained. Results of the dPCR were 
then compared with those of amniocentesis CMA.

Statistical analysis
The data were analyzed using EmpowerStats 
software(X&Y solutions, inc.) and R (http:// www.R- proje 
ct. org) [28]. The sensitivity, specificity, positive predic-
tive value (PPV), and negative predictive value (NPV) of 

ZTn
R
=

CTn
CR

−NSMean
CTn
CR

SDofNSMeanCTn
CR

the dPCR results were assessed. The receiver operating 
characteristic (ROC) curve was drawn and the area under 
curve (AUC) value was calculated.

Results
Preliminary assessment of probe effectiveness
Probes were set for the LCR A-B and LCR B-D regions of 
22q11.2 deletion/duplication syndrome. Probe effectivity 
was verified by analyzing the DNA of four patients with 
differently sized 22q11.2 deletion/duplication as follows: 
Patient A: male, 28 yrs, 22q11.2 deletion 2.8 Mb (contain-
ing region LCRA-D); Patient B: female, 30 yrs, 22q11.2 
deletion 1.4 Mb (containing region LCRA-B); Patient C: 
female, 23 yrs, 22q11.2 duplication 2.8  Mb (containing 
region LCRA- D); and Patient D: male, 27 yrs, 22q11.2 
duplication (containing region LCRA-B) (Fig. 1). Results 
showed that the changes in Z values in each region of 
the four patients from A—D were consistent with their 
CNVs.

DNA with differently sized 22q11.2 deletion/duplica-
tion were detected by dPCR, indicating that the design 
of these probes and detection sites is reasonable and 
effective.

Retrospective evaluation of cffDNA assay using multiplex 
dPCR
In the true positive group, we recruited 15 cases with 
fetal CNV in the 22q11.2 recurrent region, as confirmed 
by CMA. There were nine cases of 22q11.2 duplication, 
including two cases that involved the LCR A-B region, 
and the rest with the LCR A-D region. Deletion of the 
22q11.2 region occurred in six cases, including two, one 
and three cases with the LCR A-B, LCR B-D, and LCR 
A-D regions, respectively (Fig. 1).

Eleven out of 15 positive cases with 22q11.2 deletion/
duplication were detected through the dPCR assay, and 
accurate regional localization was achieved. The dPCR 
assay sensitivity for detecting fetal 22q11.2 deletion/
duplication was 73.3% (Table 1). The clinical information, 
diagnostic results, and dPCR detection values of the 15 
cases with 22q11.2 deletion /duplication in fetuses are 
shown in Table  2. Among the successfully detected 11 

Table 1 The results of dPCR in retrospective study

*Contain one 22q11.2 duplication sample was identified as a deletion

CMA n dPCR

Positive Negative

22q11.2 deletion /
duplication

15 11 4*

Negative 115 4 111

total 130 15 115

http://www.R-project.org
http://www.R-project.org
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positive samples, seven, three and one contained LCR 
A-D, LCR A-B, and LCR B-D regions, respectively, in 
the 22q11.2 recurrent region. The dPCR assay accurately 
detected and indicated these abnormalities. Three cases 
(Patients 5, 6 and 14) were not successfully detected via 
dPCR, with two and one cases having LCR A-D and 
LCR A-B regions, respectively, with a size between 1.7–
3.2 Mb. One 22q11.2 duplication sample with LCR A-D 
(Patient 10) was identified as a deletion (Table 3).

In the negative group, among the 115 pregnant women 
with normal fetuses, as confirmed by CMA detection, 
four cases showed high risk for 22q11.2 deletion/duplica-
tion in the dPCR assay (with one and three cases showing 
deletion and duplication, respectively), while 111 cases 
were considered to be normal. The false-positive rate and 
specificity were 3.5% and96.5%, respectively.

In this study, the positive and negative predictive values 
for the noninvasive detection of 22q11.21 deletion/dupli-
cation via dPCR assay were 73.3% and 96.5%, respectively.

dPCR assay performance evaluation in plasma samples
A receiver operating characteristic (ROC) curve and the 
area under the ROC curve (AUC) are usually used to 
assess the performance of a diagnostic test [29]. Since 
one 22q11.2 duplication sample (Patient 10) was iden-
tified as a deletion, we plugged an ROC curve and cal-
culated the AUC using the Z-scores of the 129 samples 
(Fig. 2). The AUC value was 0.854 (95% CI: 0.708–0.999) 
for the LCR A-B region and 0.864 (95% CI: 0.684–1.000) 
for the LCR B-D. This indicated that the dPCR assay was 
an efficient test method for screening fetal 22q11.2 dele-
tion /duplication syndrome. Results of the ROC curve 
analysis supported that the Z-score cut-off value of the 
LCR A-B region was ± 3.67, suggesting that the Z-score 
cut-off value of the LCR B-D region was ± 3.99.

The positive detection rate for screening techniques 
should be as high as possible while maintaining the false-
positive rate at an acceptable level. Our results verified 
that a Z-score cut-off value of 3.67 is appropriate for the 

Table 3 Detailed information of inconsistent samples detected by dPCR

Case Sample Information CMA dPCR

GA MA cfDNA (ng/ul) Deletion/Duplication Size (Mb) region ZA-B ZB-D final result

(WKRS) (YRS)

Patient 5 18 + 3 26 0.320 duplication 2.8 LCRA-D 0.397 − 0.101 Negative

Patient 6 18 + 3 35 0.128 deletion 3.2 LCRA-D − 0.783 − 0.958 Negative

Patient 10 26 21 0.284 duplication 2.8 LCRA-D − 5.603 − 5.683 deletion(LCRA-D)

Patient 14 19 + 5 34 0.466 deletion 1.7 LCRA-B − 0.775 − 0.229 Negative

Negative case 23 23 + 5 31 0.415 Negative – – 5.202 2.1 duplication(LCRA-B)

Negative case 53 19 30 0.314 Negative – – 4.083 3.336 duplication(LCRA-B)

Negative case 76 21 33 0.438 Negative – – − 4.771 − 5.122 deletion(LCRA-D)

Negative case 114 26 + 2 24 0.332 Negative – – 4.945 6.959 duplication(LCRA-D)

LCR A-B LCR B-D

The optimal cut-off value:3.67 
AUC :0.864  
(95%CI: 0.684–1.000)

The optimal cut-off value:3.99 
AUC :0.854  
(95%CI: 0.708–0.999)

Fig. 2 ROC curve analysis to assess the dPCR assay performance for identifying CNV in the LCR A-B and LCR B-D regions. The absolute value 
of a Z-score was used as a predictor of CNV for samples exceeding the cut-off value of 3.67 for the number of high risk results
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available sample volume and dPCR system used. All the 
samples (130 samples) were sorted by Z-score (Fig.  3) 
with 96.5% of the negative samples being scattered 
between the Z-score cut-off lines of -3.67 and 3.67. Only 
four samples were beyond the two lines, with the abso-
lute Z score of 4.08–6.96, which was close to the Z-score 
cut-off value. Most of the positive samples (73.3%) were 
scattered beyond the cut-off lines. The three cases which 
were scattered between the Z-score cut-off lines were not 
successfully screened.

Discussion
The requirement for prenatal screening is justified by the 
high incidence of 22q11.2 deletion/duplication syndrome 
in prenatal fetuses resulting in the occurrence of a vari-
ety of severe abnormalities with long-term consequences, 
such as autism spectrum disorder and schizophrenia, and 
potential benefits of early neonatal therapy for hypocal-
cemia and immune deficiency in neonates [4, 7, 9]. In this 
study, we developed a dPCR assay for the noninvasive 
detection of 22q11.2 recurrent CNV in fetuses. Retro-
spective analysis preliminarily confirmed that the sen-
sitivity, specificity, and PPV of this method were 73.3%, 
96.5%, and 73.3%, respectively. Our study provided a 
method for noninvasive prenatal screening of 22q11.2 
deletion/duplication syndrome. However, its effectivity 
needs to be further confirmed through prospective stud-
ies involving larger populations.

In approximately 85% of individuals affected by 22q11.2 
deletion/duplication syndrome, copy number changes 
occur in the entire 2.5–3 Mb LCR A-D region (classical 
region), while others have smaller deletions/duplications 
within this region [27]. The LCR A-B region, contain-
ing many critical genes for determining the deletion/

duplication syndrome, is associated with particular fea-
tures and with similar clinical presentation as that of the 
classical region. Although the LCR B-D region has not 
been studied much, clinical features associated with these 
deletions/duplications, including heart defects and neuro 
developmental phenotypes, such as delay and autism 
spectrum disorders, overlap with those associated with 
classical deletion/duplication [27, 30]. In this study, tar-
get-specific sequences and probes were respectively set 
for two regions, the LCR A-B and LCR B-D. Due to the 
limited sample size of the retrospective study, the num-
ber of positive samples for the LCR A-B and LCR B-D 
were not equal, which led to different optimal Z-score 
cut-off values for both, as suggested by the ROC curve. 
Although the optimal Z-score cut-off value for LCR B-D 
differed after realignment, it did not affect the detection 
rate of positive samples. When the number of positive 
samples increased, the Z-score cutoff value was further 
optimized.

In the true positive group of this study, three cases 
(Patients 5, 6 and 14) were not detected by the dPCR 
assay, while one 22q11.2 duplication sample (Patient 10) 
was identified as a deletion (Table 3). By analyzing all test 
parameters, we found that the concentration of cfDNA 
extracted from Patient 6 was 0.128  ng/µL, which was 
much lower than that of other samples. The accuracy 
of dPCR is greatly affected when the cfDNA concentra-
tion is < 0.2  ng/µLin noninvasive prenatal screening or 
diagnosis, due to the high background of maternal DNA 
[19]. The data of Patients 5, 10 and 14 indicated that all 
parameters were normal. One possible cause for this may 
be the confined placental mosaicism (CPM). As cffDNA 
is mainly derived from cytotrophoblasts of chorionic villi 
in the placenta, it is not always representative of the fetus 
[31]. Unfortunately, we did not obtain placental tissue for 
verifying the CMP occurrence in these cases. Patient 10 
was repeatedly identified as a deletion by the dPCR assay. 
We suspected that another possible cause to this conflict-
ing result might be related to the microheterogeneities 
of the cfDNA target sequences present in this sample, 
which led to the unequal concentration of cfDNA frag-
ments in the maternal plasma [32].

Given that the features of 22q11.2 deletion/duplica-
tion syndrome may not be apparent prenatally or dur-
ing the clinical examination at birth, prenatal screening 
can prompt early diagnosis and intervention among 
high-risk pregnant women. In recent years, noninvasive 
prenatal screening based on NGS of cffDNA in mater-
nal blood has introduced the potential for targeting any 
region of the genome, including an option to screen for 
sub-chromosomal CNVs [16, 33, 34]. However, the high 
false-positive rate of noninvasive prenatal testing leads 
to unnecessary invasive prenatal diagnosis increasing 

3.67 

-3.67 

 ZA-B(nega�ve)  ZA-B(posi�ve)  ZB-D(nega�ve) ZB-D(posi�ve) 
Fig. 3 Z-score distributions for the LCR A-B and LCR B-D regions 
of 130 samples. The long horizontal dotted line indicates the cut-off 
value with a Z-score at 3.67. The short solid line in each data group 
represents the median Z-score value. The Z-scores of the 22q11.2 
duplication sample identified as a deletion are circled in red
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the difficulty of clinical prenatal consultation [35]. Some 
studies have achieved more accurate detection through 
increasing sequencing depth, customizing chips to add 
probes, and changing algorithms; however, these increase 
the cost involved [34, 36, 37]. Moreover, compared with 
dPCR, NGS is more expensive, more difficult to operate, 
and takes longer to provide results. The clinical applica-
tion of NGS requires a more sophisticated interpretation 
of the results relying on bioinformatic databases.

In this study, a noninvasive assay based on dPCR was 
established to detect CNVs in the 22q11.2 recurrent 
region, and the screening effect was preliminarily evalu-
ated on 130 clinical retrospective samples. Although the 
preliminary results suggested that the detection rate and 
specificity of the CNV in the 22q11.2 region are satisfac-
tory, due to the limited sample size, there may be a devia-
tion in the cut-off value, which requires more samples to 
be optimized. As a prospective study was not included in 
this study, the PPV of 22q11.2 deletion/duplication syn-
drome risk screening could not be obtained in the true 
sense.

Conclusions
In this study, we developed a dPCR assay for noninvasive 
detection of 22q11.2 recurrent CNV in fetuses, which 
detected most affected cases, including smaller but rela-
tively common nested deletions, with a low false-positive 
rate. Thus, we presented a potential, efficient, and sim-
ple dPCR assay for the noninvasive screening of 22q11.2 
deletion/duplication syndrome in fetuses.
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