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Abstract
Background Klippel–Trenaunay syndrome (KTS) is a rare slow-flow combined vascular malformation with limb 
hypertrophy. KTS is thought to lie on the PIK3CA-related overgrowth spectrum, but reports are limited. PIK3CA 
encodes p110α, a catalytic subunit of phosphatidylinositol 3-kinase (PI3K) that plays an essential role in the PI3K/AKT/
mammalian target of rapamycin (mTOR) signaling pathway. We aimed to demonstrate the clinical utility of targeted 
next-generation sequencing (NGS) in identifying PIK3CA mosaicism in archival formalin-fixed paraffin-embedded 
(FFPE) tissues from patients with KTS.

Results Participants were 9 female and 5 male patients with KTS diagnosed as capillaro-venous malformation 
(CVM) or capillaro-lymphatico-venous malformation (CLVM). Median age at resection was 14 years (range, 5–57 
years). Median archival period before DNA extraction from FFPE tissues was 5.4 years (range, 3–7 years). NGS-based 
sequencing of PIK3CA achieved an amplicon mean coverage of 119,000x. PIK3CA missense mutations were found in 
12 of 14 patients (85.7%; 6/8 CVM and 6/6 CLVM), with 8 patients showing the hotspot variants E542K, E545K, H1047R, 
and H1047L. The non-hotspot PIK3CA variants C420R, Q546K, and Q546R were identified in 4 patients. Overall, the 
mean variant allele frequency for identified PIK3CA variants was 6.9% (range, 1.6–17.4%). All patients with geographic 
capillary malformation, histopathological lymphatic malformation or macrodactyly of the foot had PIK3CA variants. No 
genotype–phenotype association between hotspot and non-hotspot PIK3CA variants was found. Histologically, the 
vessels and adipose tissues of the lesions showed phosphorylation of the proteins in the PI3K/AKT/mTOR signaling 
pathway, including p-AKT, p-mTOR, and p-4EBP1.
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Background
Klippel–Trenaunay syndrome (KTS, [MIM 149,000]) 
is a slow-flow combined vascular malformation with a 
characteristic triad of symptoms: capillary malforma-
tion (CM), limb hypertrophy, and venous malforma-
tion (VM) with or without lymphatic malformation 
(LM) [1, 2]. From 2012 onward, several studies have 
reported on PIK3CA variants found in KTS. Kurek et al. 
screened DNA extracted from lesional tissue in 3 of 15 
patients with KTS and found PIK3CA variants [3]. Luks 
et al. reported that up to 90% of patients with KTS have 
PIK3CA variants in pathological lesions. Accordingly, 
KTS is thought to lie on the PIK3CA-related overgrowth 
spectrum (PROS) [4, 5], but reports are limited [3, 6–9] 
and genetic differences among races are unknown.

PIK3CA encodes p110α, a catalytic subunit of phos-
phatidylinositol 3-kinase (PI3K) that plays a role in cel-
lular processes such as proliferation, motility, invasion, 
and death through its involvement in the PI3K/AKT/
mammalian target of rapamycin (mTOR) signaling path-
way [10]. Moreover, p110α is required for endothelial cell 
migration during angiogenesis [11, 12], and its aberrant 
activation has been associated with the development of 
vascular malformations [13, 14]. Activation of PI3K leads 
to phosphorylation of AKT followed by mTOR and its 
downstream targets, including eukaryotic translation ini-
tiation factor 4E-binding protein 1 (4EBP1) [15].

The activation of mutations in PIK3CA is reported to 
play a role in many human cancers [16]. Of the PIK3CA 
variants, more than 80% are found at three hotspots: the 
glutamates E542 and E545, located in the helical domain 
of exon 10, and the histidine H1047, located in the kinase 
domain of exon 21 [17]. These three mutations exert the 
strongest effect on downstream signaling and enzymatic 
activation [17]. In patients with KTS as well, E542K, 
E545K, H1047R, and H1047L are the most frequent (i.e., 
hotspot) variants [3, 6, 8, 9].

These somatic gain-of-function variants, which arise 
in the postzygotic stage during embryonic develop-
ment, result in a mosaic pattern in the affected lesion [5]. 
Therefore, molecular testing of peripheral blood or saliva 
has been ineffective for detecting pathogenic variants in 
patients with PROS [3]. Meanwhile, archival formalin-
fixed paraffin-embedded (FFPE) tissues can be a valuable 
resource for clinical genomic studies [18], but the DNA 
obtained from these tissues can have a wide range of 

quality depending on factors such as age, DNA–protein 
crosslinking, fixation conditions, and inhibitors, all of 
which can affect downstream genomic analyses [19].

Next-generation sequencing (NGS) involving an ampli-
con-based targeted sequencing method with high sensi-
tivity can identify low-level mosaicism from low-input 
DNA extracted from FFPE tissues and provide a diagnos-
tic option when affected tissue is available [20]. There-
fore, this study aimed to demonstrate the clinical utility 
of targeted NGS with a custom-designed panel for iden-
tifying PIK3CA mosaicism in archival FFPE tissues from 
patients with KTS, a relatively rare vascular malforma-
tion with limb hypertrophy.

Results
Patient characteristics
Participants were 9 female and 5 male patients, including 
5 (35.7%) adults (defined as age 18 years or older). Their 
clinical characteristics and genetic profiles are shown 
in Table 1. Median age at resection was 14 years (range, 
5–57 years). Archival median period before DNA extrac-
tion from FFPE tissues was 5.4 years (range, 3–7 years). 
Lesions were resected from the abdomen (n = 2), buttock 
(n = 1), thigh (n = 2), knee (n = 3), lower leg (n = 4), and foot 
(n = 2). Tissue specimens were skin with subcutaneous 
tissue (n = 8), subcutaneous tissue only (n = 5), and subcu-
taneous tissue with muscles (n = 1). Figure 1 shows clini-
cal photographs and magnetic resonance imaging (MRI) 
of all patients with detected PIK3CA variants. Patient 1 
[21], patients 3 and 4 [22], and patient 9 [23] were previ-
ously reported without genetic analyses.

Clinicopathological diagnoses were capillaro-venous 
malformation (CVM) (n = 8) and capillaro-lymphatico-
venous malformation (CLVM) (n = 6). Geographic CMs 
were found in 8 patients. Lower limb discrepancy (LLD) 
in terms of length was found in 7 patients, including 
2 patients with epiphysiodesis, while LLD in terms of 
girth was observed in all 14 patients (right-sided hyper-
trophy in 7 patients). Digital anomalies were found in 5 
patients as macrodactyly of the foot. Patient 7 had bilat-
eral lesions in the lower limbs (with CLVM in the left 
limb) and bilateral macrodactyly, and the longer right 
limb required epiphysiodesis. Thirteen patients had 
received treatment prior to resection for genetic analysis, 
including partial resection (n = 10), percutaneous sclero-
therapy (n = 12), transcatheter arterial embolization for 

Conclusions The PI3K/AKT/mTOR pathway in mesenchymal tissues was activated in patients with KTS. Amplicon-
based targeted NGS could identify low-level mosaicism from low-input DNA extracted from FFPE tissues, potentially 
providing a diagnostic option for personalized medicine with inhibitors of the PI3K/AKT/mTOR signaling pathway.

Keywords Capillary malformations, High-throughput nucleotide sequencing, Klippel–Trenaunay Syndrome, 
Limb hypertrophy, Lymphatic abnormalities, Phosphatidylinositol 3-Kinase, PIK3CA-related overgrowth spectrum, 
Segmental hypertrophy, Vascular malformations, Venous malformations
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micro-arteriovenous shunts (n = 6), and high ligation of a 
lateral marginal vein in the thigh (n = 4).

Detection of PIK3CA variants
Median DNA concentration from FFPE tissues measured 
using a Qubit 3.0 Fluorometer and a 2200 TapeStation 
system were respectively 20.5 ng/µL and 25.5 ng/µL. 
NGS-based ultradeep sequencing of PIK3CA achieved 
an amplicon mean coverage of 119,000x (range, 96,000–
142,000x) for FFPE tissues and 107,000x (range, 95,000–
136,000x) for controls.

The detected PIK3CA variant frequency in posi-
tive control DNA of 5%, 1%, 0.5%, and 0.1% of E545K/ 
H1047R mixture were respectively 4.3%, 0.8%, 0.5%, 
and 0.1% in E545K and 10.3%, 1.2%, 0.5%, and 0.1% in 
H1047R. No PIK3CA variants were detected in negative 
control DNA. PIK3CA missense mutations were found 
in 12 of 14 patients (85.7%; 6/8 CVM and 6/6 CLVM) 
(Table  1). Of the 12 variants detected, 8 (66.7%) were 
hotspot variants: E542K (c.1624G > A) in 2 patients, 
E545K (c.1633G > A) in 2, H1047R (c.3140  A > G) in 3, 
and H1047L (c.3140 A > T) in 1. The rest were 3 distinct 
non-hotspot variants: C420R (c.1258T > C) in 1 patient, 
Q546R (c.1637 A > G) in 2, and Q546K (c.1636 C > A) in 
1. All of the detected PIK3CA variants were previously 
reported in patients with PROS or LM and are consid-
ered pathogenic variants according to ClinVar (Table 2). 
Overall, the mean variant allele frequency (VAF) for the 
identified PIK3CA variants was 6.9% (range, 1.6–17.4%). 
Summaries of the PIK3CA variants in PROS (n = 696) [3, 
6–8, 20, 24–48] and vascular malformations except PORS 
(including LM, VM, fibro-adipose vascular anomaly and 
combined vascular malformations; n = 307) [6, 8, 42, 49–
55] from the literature as well as our cohort (n = 12) are 
presented in Additional file 1, Fig. 2 (frequent variants in 
PROS ≥ 5 patients in each variant, n = 597 from the litera-
ture; vascular malformations except PORS, n = 300), and 
Table 2 (variants presented in Fig. 2), including the ranks 
in COSMIC v97 and variant class in ClinVar.

Genotype–phenotype analysis
All patients with geographic CM, histopathological LM, 
or macrodactyly of the foot had PIK3CA variants. How-
ever, we did not find any association with phenotype or 
its severity between hotspot and non-hotspot PIK3CA 
variants.

Histopathological analysis
The expression of D2-40 in lymphatic endothelial cells 
was confirmed in 6 patients. Anastomosing vascular 
channels were found in all 14 patients with positive stains 
for p-AKT (n = 12), p-mTOR (n = 7), and p-4EBP1 (n = 14); 
small vessels were found in 11 patients with positive 
stains for p-AKT (n = 10), p-mTOR (n = 1), and p-4EBP1 Ta
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(n = 11); venules were found in all 14 patients with posi-
tive stains for p-AKT (n = 14), p-mTOR (n = 10), and 
p-4EBP1 (n = 14); and adipose tissues were found in all 14 
patients with positive stains for p-AKT (n = 8), p-mTOR 
(n = 1), and p-4EBP1 (n = 12). Positive stains for p-AKT, 
p-mTOR, and p-4EBP1 were also found in two patients 
with undetected PIK3CA variants in vessels and adipose 
tissues. Representative images of hematoxylin and eosin, 
p-AKT, p-mTOR, and p-4EBP1 stains are shown in Fig. 3. 
The immunohistochemical analysis results for all patients 
are shown in Table 3.

Discussion
This study investigated the largest cohort of molecularly 
diagnosed patients with KTS in an Asian population. 
Using archival FFPE tissues, we identified PIK3CA vari-
ants in 85.7% of our cohort with KTS, 66.6% of which 
were the hotspot variants E542K, E545K, H1047R, and 
H1047L. The non-hotspot variants Q546K and Q546R 

were also identified, despite being rare in patients with 
vascular malformations. To our knowledge, Q546K was 
previously unreported in patients with KTS but was 
found in a patient with a fibro-adipose vascular anomaly 
[6] and in 3 patients with LM [8, 52]. Q546R has been 
reported in a patient with KTS [7] as well as a patient 
with LM [8] (Fig. 2). Our mutational findings were in line 
with those of patients with KTS in Western populations 
[3, 6, 8].

The PI3K catalytic subunit p110α encoded by PIK3CA 
has five domains: a C2 domain, a helical domain, a kinase 
domain, an N-terminal adapter-binding domain, and a 
Ras-binding domain (Fig. 2) [56]. In many cancers, muta-
tions are found throughout the entire p110α protein, 
except for the Ras-binding domain, including the follow-
ing hotspots: E542 and E545 in the helical domain and 
H1047 in the kinase domain [17]. The PIK3CA variants 
in PROS, including KTS, have a similar profile to that in 
cancers (Table 2), and an association of hotspot variants 

Fig. 1 Clinical photographs (upper) and short-tau inversion recovery or fat-suppressed T2-weighted magnetic resonance images (lower) of the patients 
with Klippel–Trenaunay syndrome with detected or undetected PIK3CA variants. Various clinical manifestations were observed, including geographic 
capillary malformations (a, c-g, i, l), lower limb discrepancy in terms of length (c, d, f, g, i, l, m), and macrodactyly (a, c, d, f, l). Magnetic resonance images 
are axial views at the arrowhead position in each clinical photograph with the lesions of high signal intensity
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with more severe hypertrophy has been suggested, with 
milder hypertrophy linked to rarer non-hotspot variants 
[7, 27, 30]. However, in our cohort, patients who had 
non-hotspot variants did not exhibit milder hypertrophy 
compared with those who had hotspot variants. Thus, a 
meta-analysis should be conducted to clarify any poten-
tial genotype–phenotype correlations in this rare disease. 
To that end, molecular diagnoses may prove helpful in 
providing prognostic information on clinical manifesta-
tions [20].

Molecular genetic testing for the diagnosis of PROS 
requires clinically affected tissues, preferably fresh frozen 
tissues [4]. Testing can be performed using FFPE tissues; 
however, unlike fresh frozen tissues, DNA obtained from 
FFPE tissues can vary widely in terms of quality [19]. 
NGS with the use of a highly sensitive amplicon-based 

targeted sequencing method can identify low-level 
mosaicism from DNA extracted from widely available 
archival FFPE tissues [20]. Although digital droplet PCR 
is a simple and highly sensitive and specific method for 
the detection and quantification of targeted DNA vari-
ants, entire exons must be sequenced by NGS in order 
to capture all the coding single-nucleotide variants as 
well as small insertion and deletion variants in rare dis-
eases [4]. Detection of rare variants remains a challenge 
because of the error-prone nucleotide changes resulting 
from sequencing errors. NGS combined with molecular 
barcodes can eliminate false-positive variants and enable 
detection thresholds of 0.1% VAF [57].

Using archival FFPE tissues, we were able to compare 
the genotype and histology of the lesions. Immunohis-
tochemistry revealed that the vessels in all 14 patients 
and the adipose tissues in 13 patients expressed p-AKT, 
p-mTOR, and/or p-4EBP1 (Fig.  3; Table  3), indicating 
enhanced activation of the PI3K/AKT/mTOR pathway 
in mesenchymal tissues compared with that in normal 
tissues in these patients with KTS. These findings are in 
line with previous reports of PIK3CA variants detected in 
adipocytes in PROS [3] and abnormal vessels detected in 
fibro-adipose vascular anomaly [58]. However, 2 patients 
(patients 13 and 14) with undetected PIK3CA vari-
ants showed some expression of p-AKT, p-mTOR, and/
or p-4EBP1 in vessels and adipose tissues. Neither had 
geographic CM, histopathological LM, or macrodactyly 
of the foot. Patient 13 can be diagnosed with CVM and 
congenital nonprogressive limb overgrowth [59] caused 
by somatic GNA11 mutation [60]. Patient 14 might 
have common VM caused by a somatic TEK mutation 
[61] encoding TIE2 upstream of the PI3K/AKT/mTOR 
pathway.

To date, fewer than 30 different PIK3CA gene vari-
ants have been reported in PROS, five of which—C420R, 
E542K, E545K, H1047R, and H1047L—have been 
shown to be recurrent [5]. As for the PIK3CA variants in 
patients with KTS [3, 6–9], Kurek et al. reported H1047R 
in 3 of 15 patients [3], while Luks et al. reported E542K 
in 3, E545K in 9, E545G in 1, H1047R in 6, and H1047L 
in 1 of 21 patients [6]. Kuentz et al. reported G364R in 
1, E542K in 1, E545K in 2, Q546R in 1, and H1047L in 1 
of 13 patients [7]. Brouillard et al. reported E110del in 1, 
and E545K in 3 of 4 patients [8]. Nozawa et al. reported 
E542K in 2, E545K in 5, and H1047R in 1 of 10 patients 
[9].

The therascreen® PIK3CA RGQ PCR Kit was developed 
to be a companion diagnostic tool for 11 PIK3CA gene 
variants: C420R, E542K, E545A, E545D, E545G, E545K, 
Q546E, Q546R, H1047L, H1047R, and H1047Y. It uses 
genomic DNA extracted from FFPE or circulating tumor 
DNA isolated from plasma in patients with breast cancer. 
Patients with advanced or metastatic breast cancer who 

Table 2 Summary of the frequent PIK3CA variants found in PROS 
and vascular malformations
Amino 
acid 
variants

Ranks in 
COSMIC1

Counts1 Relative 
frequency2

Variant class3

H1047Ra 1 5,368 36.73 Pathogenic
E545Ka 2 4,111 28.13 Pathogenic
E542Ka 3 2,515 17.21 Pathogenic
H1047La 4 739 5.06 Pathogenic
Q546Kb 8 301 2.06 Conflicting interpreta-

tions of pathogenicity
C420Rb 9 258 1.77 Pathogenic
M1043I 11 190 1.30 Pathogenic/Likely 

pathogenic
E726K 12 168 1.15 Pathogenic
Q546Rb 13 150 1.03 Pathogenic
H1047Y 14 143 0.98 Pathogenic
G118D 15 124 0.85 Pathogenic
E81K 17 113 0.77 Pathogenic
E453K 19 98 0.67 Pathogenic
Y1021C 25 77 0.53 Pathogenic
T1025A 31 60 0.41 Pathogenic/Likely 

pathogenic
E545D 34 58 0.40 Pathogenic/Likely 

pathogenic
E110del 42 46 0.31 Likely pathogenic
E365K 54 34 0.23 Pathogenic
P104L 63 26 0.18 Pathogenic/Likely 

pathogenic
A1035V 113 11 0.08 Pathogenic
G914R 127 9 0.06 Pathogenic
R115P 159 6 0.04 Likely pathogenic
C378Y 159 6 0.04 Pathogenic
E453del 177 5 0.03 Pathogenic
Total PIK3CA vaiants 14,616 100
The PIK3CA variants found in PIK3CA-related overgrowth spectrum (PROS) [3, 
6–8, 20, 24–48] and vascular malformations [6, 8, 42, 49–55]. aHotspot variants. 
bNon-hotspot variants detected in our cohort. 1Ranks and counts in COSMIC 
(Catalogue of Somatic Mutations in Cancer) v97. 2Relative frequency in this 
table. 3Variant class in ClinVar.
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test positive for the presence of one or more PIK3CA 
variants are eligible for treatment with the PI3K inhibi-
tor alpelisib [62]. With a limit of detection from 2.4 to 
14.04% VAF [63], the therascreen kit would not have 
detected five cases in our cohort because of the low VAF 
(C420R with 1.6% VAF; E542K with 3.3% VAF; Q546R 
with 3.9% VAF and 5.9% VAF, respectively; and H1047R 
with 1.6% VAF) as well as one case with the Q546K vari-
ant, which is not targeted by the kit.

Our findings have potential implications for the treat-
ment of patients with KTS using inhibitors of the PI3K/

AKT/mTOR signaling pathway, which have shown prom-
ising results with mTOR inhibitor sirolimus [64, 65], pan-
AKT inhibitor miransertib [66], and selective class I PI3K 
inhibitor alpelisib [67] or taselisib [68]. It is thus critical 
to obtain more detailed information regarding specific 
variants in order to identify of the options for targeted 
treatment [69].

This study has some limitations. First, we evaluated 
only patients with KTS who were diagnosed based on 
the triad of CM, VM, and hypertrophy of the affected 
limb [2], so there was no controlling for vascular 

Fig. 2 Distribution of frequent PIK3CA variants in PIK3CA-related overgrowth spectrum (PROS) [3, 6–8, 20, 24–48] and vascular malformations [6, 8, 42, 49–
55] from the literature as well as our cohort (variants in PROS ≥ 5 patients in each variant). Right, variants found in patients with PROS (blue, n = 597) in the 
literature and Klippel–Trenaunay syndrome (KTS) in our cohort (orange, n = 12). Left, variants found in patients with vascular malformations except PROS 
(green, n = 300) in the literature. ABD, p85α-binding domain; RBD, Ras-binding domain; C2, C2 domain; Helical, helical domain; Kinase, kinase domain
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malformations except KTS in the immunohistochemical 
analysis. Second, we performed targeted sequencing of 
PIK3CA gene coding sequences using a panel consisting 
of amplicons with an overall coverage of 87.9%, so genes 
not on the panel would have been missed.

Conclusions
We identified PIK3CA variants in 12 of 14 patients 
(85.7%) with KTS by using archival FFPE tissues, and 8 of 
these patients had the following hotspot variants: E542K, 
E545K, H1047R, and H1047L. The rarer non-hotspot 
PIK3CA variants Q546R and Q546K were also identified 
in 3 patients. Amplicon-based targeted NGS was able 
to identify low-level mosaicism from low-input DNA 

extracted from FFPE tissues, suggesting its potential as a 
diagnostic option for personalized medicine.

Methods
Patients
This retrospective study involved Japanese patients with 
vascular malformations with lower limb hypertrophy 
who underwent resection of the vascular malformations 
at Tonan Hospital between 2011 and 2020. Of the 17 
patients identified, 14 provided written informed consent 
and were included in the analysis. KTS was diagnosed 
based upon the triad of CM, VM, and hypertrophy of the 
affected limb [2]. In younger patients, VM was often less 

Fig. 3 Histology and immunohistochemical analysis of the PI3K/AKT/mTOR signaling pathway in the serial sections of patients with Klippel–Trenaunay 
syndrome. Representative images of anastomosing vascular channels (a-d), small vessels (0.1–1.0 mm diameter) (e-h), venules (10–100 μm diameter) (i-l), 
and adipose tissues (m-p). Staining for hematoxylin and eosin (HE) (a, e, i, m), p-AKT (b, f, j, n), p-mTOR (c, g, k, o), and p-4EBP1 (d, h, l, p). Cytoplasmic 
intensity of the immunohistochemical stains graded as positive (b, d, f, h, j, k, l, n, p) and negative (c, g, o). Scale bars: a-d, m-p = 250 μm, e-h = 100 μm, 
i-l = 50 μm
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conspicuous but was diagnosed based on veins that were 
subtly dilated relative to the unaffected limb [70].

The patients’ medical charts were reviewed, and the 
following demographic information and medical his-
tory data were collected: sex, date and age at resection, 
lesion resected, type of tissues in resected specimens, 
clinical photographs, and radiologic studies. Geographic 
CMs were defined as those with sharply demarcated bor-
ders and saturated dark red/purple color throughout the 
entire stain [70].

Prior to resection, all patients underwent MRI and 
color duplex ultrasound to evaluate the characteristics, 
distribution, and extent of the lesions. Vascular malfor-
mations were diagnosed based on the clinical history as 
well as the physical examination, ultrasonography, and 
MRI findings. LLD was evaluated in terms of length 
and girth according to teleoroentgenography and cross-
section on MRI, respectively. LLD in terms of length was 
defined as 5  mm longer compared with the unaffected 
limb in children and 1 cm longer in adults, while LLD in 
terms of girth was defined as 10% greater in cross-sec-
tional area compared with the unaffected limb [71].

DNA extraction
Surgical specimens were fixed with 10% buffered for-
malin and embedded in paraffin. Affected tissue was 
retrieved from archived FFPE tissue blocks. QIAamp 
DNA FFPE Tissue Kit (Qiagen, Germantown, MD) 
was used to extract genomic DNA from FFPE tissues. 
The positive and negative control DNA from the FFPE 
PIK3CA Reference Standard (E545K, HD112; H1047R, 
HD599; wild-type [WT], HD320; Horizon Discovery, 
Cambridge, UK) were extracted using a Maxwell RSC 
FFPE DNA Kit (Promega, Madison, WI). The concen-
tration and quality of the extracted DNA were assessed 
using a 2200 TapeStation system with the Genomic DNA 
ScreenTape (Agilent, Santa Clara, CA) and a Qubit 3.0 
Fluorometer with a Qubit dsDNA BR Assay Kit (Thermo 
Fisher Scientific, Waltham, MA), respectively. DNA con-
trols were prepared for each condition: 5%, 1%, 0.5% and 
0.1% of E545K/ H1047R mixture diluted in WT for the 
positive controls and only WT for the negative control.

Next-generation sequencing
We used an Ion AmpliSeq™ HD Made-to-Order Panel 
(IAH215884_374) to perform targeted sequencing of all 
PIK3CA gene coding sequences (3,607  bp). The panel 
consisted of 64 amplicons with an overall coverage of 
87.9%. Deaminated cytosine residues were removed 
from 20 ng of the sample DNA and the target region was 
amplified using multiplex PCR with the Ion AmpliSeq™ 
HD Library Kit (Thermo Fisher Scientific). The primer 
sequence in the amplicon was partially digested, and the 
library was amplified using primers, to which barcode Ta
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sequences were added using Ion AmpliSeq™ HD Dual 
Barcode Kit (Thermo Fisher Scientific). After purifica-
tion of the library DNA, the concentration and size of 
DNA were checked, and the library was mixed. Emulsion 
PCR was performed to clonally amplify the library DNA 
on beads and then template beads were collected and 
sequencing reactions were performed on the Ion S5™ XL 
system (Thermo Fisher Scientific) using an Ion Chef 550 
Chip Kit (Thermo Fisher Scientific).

Bioinformatics analysis for detection of PIK3CA variant
The quality of the read data was checked, and the adapter 
sequences and poor-quality reads were removed. Then, 
the reads were mapped to reference sequences (hg19) 
using the torrent mapping alignment program of Tor-
rent Suite ver. 5.16.1(Thermo Fisher Scientific) and vari-
ants were detected using Ion Reporter ver. 5.18 (Thermo 
Fisher Scientific). Annotation information was assigned 
to the detected variants. The thresholds for the main 
parameters of Ion Reporter’s variant detection were set 
as follows: Downsample to Coverage: 20,000; Minimum 
Allele Frequency of SNP (single nucleotide polymor-
phism), MNP (multiple nucleotide polymorphism), and 
INDEL (insertion or deletion of nucleotides): 0.05%; Min-
imum Variant Score of SNP and MNP: 6; Minimum Vari-
ant Score of INDEL: 10.

Histology and immunohistochemistry
The serial FFPE Sect.  (5  μm thick) were stained using 
immunohistochemical as well as hematoxylin and 
eosin stains for a lymphatic endothelial marker D2-40 
(#916,606, 1:1,000, BioLegend, San Diego, CA), p-AKT 
(#4060, 1:75; Cell Signaling Technology, Danvers, MA), 
p-mTOR (#2976, 1:100; Cell Signaling Technology), and 
p-4EBP1 (#2855, 1:200; Cell Signaling Technology). The 
expression of D2-40 in endothelial cells was used to diag-
nose LM. Vessels were categorized into three groups 
according to type and/or size: anastomosing vascular 
channels [72], small vessels (0.1–1.0 mm diameter), and 
venules (10–100  μm diameter). Vessels and adipose tis-
sues were evaluated in terms of the cytoplasmic inten-
sity of immunohistochemical stains graded as positive or 
negative by two independent observers. The connective 
tissues surrounding the lesions were used as a control.
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