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Abstract 

Congenital disorders of glycosylation (CDG) are a complex and heterogeneous family of rare metabolic diseases. 
With a clinical history that dates back over 40 years, it was the recent multi-omics advances that mainly contributed 
to the fast-paced and encouraging developments in the field. However, much remains to be understood, with tar-
geted therapies’ discovery and approval being the most urgent unmet need. In this paper, we present the 2022 state 
of the art of CDG, including glycosylation pathways, phenotypes, genotypes, inheritance patterns, biomarkers, disease 
models, and treatments. In light of our current knowledge, it is not always clear whether a specific disease should be 
classified as a CDG. This can create ambiguity among professionals leading to confusion and misguidance, conse-
quently affecting the patients and their families. This review aims to provide the CDG community with a comprehen-
sive overview of the recent progress made in this field.
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Introduction
Congenital disorders of glycosylation (CDG) are a pecu-
liar group of inherited metabolic diseases (IMD). Con-
trary to other IMD families, they are due to defects 
occurring in several cell organelles, mainly the cytosol, 

the endoplasmic reticulum (ER), the ER-Golgi intermedi-
ate compartment, the Golgi, and the sarcolemmal mem-
brane [1]. The defects are associated with glycoprotein 
and glycolipid glycan assembly and remodeling. Since 
glycans are essential for the function of these proteins 
and lipids, defects within glycosylation pathways can usu-
ally impact multiple organs and cause various symptoms 
that can manifest from birth [2]. The most typical CDG 
symptoms are associated with neurological and develop-
mental disabilities [3]. Still, their multisystem nature also 
causes serious hepatic, gastrointestinal, and hormonal 
problems that require close and continuous healthcare 
[4].

The high variety of CDG clinical manifestations and 
biological pathways has led to difficulties in defining a 
clear and universal classification and nomenclature for 
this group of disorders. The first attempt at classifying 
CDG dates back to 1999 [5], and was based on the serum 
transferrin isoelectrofocusing (IEF) pattern (e.g., CDG-
Ia). In 2008, as the number of reported CDG exponen-
tially increased, the first alphabetically and chronological 
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CDG system was replaced by a novel nomenclature sys-
tem comprising the name of the gene of the individual 
CDG diagnosis (e.g. PMM2-CDG) and maintained until 
today [6, 7]. Nevertheless, it is not always clear whether a 
metabolic disorder should be classified as a CDG because 
a number of CDG have several features in common with 
other metabolic diseases [8]. In 2022 it was proposed to 
create an international advisory group of experts in the 
field of CDG to discuss and determine whether a disor-
der should be classified or not as a CDG [9].

So far, 163 known CDG genetic defects encompass 
193 different phenotypes. The heterogeneity of CDG is 
striking from several points of view. The large majority 
(~ 88%) are multisystem diseases [10]. The mono-system 
diseases (~ 12%) affect either the brain, eyes, skin, skele-
ton, skeletal muscles, liver, red blood cells, or neutrophils 
[10–12]. Even though all are rare, for some CDG only sin-
gle digit numbers of patients have been reported, while 
at the other end of the spectrum, there is PMM2-CDG 
with more than one thousand patients diagnosed over 
40 years. The severity of clinical expression extends from 
perinatal death (and probably even miscarriage) to mild 
adult involvement [13]. The heterogeneity is even more 
pronounced since a gene defect can result in multiple 
clinical presentations depending on the involved variant. 
For example, EXT2-CDG is associated either with the 
mono-organ disorder exostoses type 2 (MIM: 133701), 
affecting only the skeleton, or with a multisystem syn-
drome (MIM: 616882) characterized by dysmorphia, 
seizures, scoliosis, and macrocephaly [14]. The same is 
true for POFUT1-CDG, leading to either a skin disorder 
(MIM: 615327) or a multisystem disorder encompassing 
microcephaly and global developmental delay with car-
diac and vascular features [15].

CDG genetic transmission is usually autosomal reces-
sive (AR). Seven percent of the clinical presentations 
have an autosomal dominant (AD) transmission, and 6% 
are X-linked (XL). Epigenetic defect has been reported 
only in XYLT1-CDG. This phenotypic and genetic heter-
ogeneity hampers CDG diagnosis except in the minority 
of patients with a recognizable phenotype (e.g., exostoses 
in EXT1/EXT2-CDG) [10, 16].

Treatment is nearly exclusively symptomatic since 
a more or less efficient and established basic treat-
ment (with mannose) is only available for MPI-CDG, 
a CDG limited to the liver and the intestine. Neverthe-
less, in the last years, research has led to the discovery 
of novel biomarkers and disease models. Currently, there 
are four ongoing observational studies (NCT04201067, 
NCT02089789, NCT04198987, and NCT03404856), 
including two natural history studies (NCT03173300 
and NCT01417533) and four therapeutic clinical tri-
als (NCT04833322, NCT04679389, NCT03404869, and 

NCT03404856) [17]. The fact that most CDG involve the 
brain constitutes a significant barrier to treatment [18].

This paper presents a comprehensive and structured 
overview of all CDG identified until the end of 2022, 
and discusses glycosylation pathways, phenotypes, geno-
types, inheritance patterns, biomarkers, disease models, 
treatments, and dates of first reports of the different phe-
notypes. The main goal of this mini-review is to update 
the CDG community on the progress made over the last 
years.

Materials and methods
For this review, we used a combination of specific key-
words related to the different CDG [e.g., the gene names 
individually or conjugated with CDG; clinical signs and 
symptoms; disease models (mouse, drosophila, yeast, 
zebrafish) and biomarkers] to search the Medline data-
base, using PubMed as the search engine [19]. The 
OMIM database [20] was used to extract the informa-
tion relative to the human genotype–phenotype and 
their characteristics, whereas the Uniprot database [21] 
was consulted to collect information related to the pro-
tein function and biochemical pathway. For each CDG 
recent papers were privileged, particularly those review-
ing the literature and describing large patient cohorts. 
The selected articles were read and the ones matching the 
selection criteria were included.

Inclusion criteria comprised:

(a) Only English-written manuscripts;
(b) Articles reporting biomarkers, in vitro and in vivo 

models, clinical signs, and symptoms;
(c) Recently published reviews.

The exclusion criteria were the following:

(a) Knockdown in vitro models (cellular-based), knock-
in transient cell-based models, and disease models 
exploring the role of glycogenes for other diseases 
(e.g., in cancer).

(b) Models that do not recapitulate a human pheno-
type.

An advisory committee composed of four CDG pro-
fessional experts and one CDG family member provided 
expert guidance during article selection and throughout 
manuscript development.

Results
The primary objective of this concise review is to provide 
the CDG community with an update on the advance-
ments achieved in recent years. All the information, 
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gathered until the end of 2022, is summarized in the 
Additional file  1: Table  S1 and is discussed in the next 
paragraphs.

Over the years, CDG have been classified according 
to the affected glycosylation pathways, namely N-glyco-
sylation, O-glycosylation, glycosylphosphatidylinositol 
(GPI)-anchor synthesis, lipid glycosylation, and other 
(including multiple) glycosylation pathways (Fig. 1). The 
latter category includes defects impairing vesicular trans-
port (e.g., COG defects), activated sugar transport (e.g., 

SLC35C1-CDG, MIM: 266265), monosaccharide synthe-
sis and interconversion (e.g., FCSK-CDG, MIM: 618324) 
and V-ATPase pumps (e.g., ATP6AP2-CDG, MIM: 
301045), among others. The subcellular location of the 
defect can also be used as a complementary CDG classifi-
cation criterion, e.g., N-linked defects are mostly limited 
to the ER, and O-linked defects are mainly located in the 
Golgi [22].

To date, 163 genes have been associated with 193 
disease phenotypes linked to CDG (Fig.  2). N-linked 
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glycosylation disorders (n = 43) are caused by variants 
in 33 genes; the 53 O-linked glycosylation disorders are 
caused by defects in 44 genes; GPI biosynthesis defects 
(n = 25) are due to variants affecting 24 genes, while vari-
ants in 3 genes cause the 3 lipid glycosylation defects. The 
69 disorders affecting other (including multiple) glyco-
sylation pathways described are caused by defects in 59 
genes (Fig. 2).

The majority of CDG have an AR inheritance pattern 
(n = 161) (Table  1). However, other inheritance patterns 
have been described. Autosomal dominant patterns have 
been described in N-linked (n = 6), O-linked (n = 5), 
and other (including multiple) glycosylation pathway 
defects (n = 4). X-linked defects (n = 12), both of domi-
nant (XLD) and recessive (XLR) inheritance, have been 
described in all glycosylation pathways except for lipid 
glycosylation defects. Examples include SLC37A4-CDG 
(AD, MIM: 602672), ALG13-CDG (XL, MIM: 300884), 
and ATP6AP1-CDG (XLR, MIM: 300972). Of note, 
XLD inheritance (n = 1) has only been reported in other 
(including multiple) glycosylation pathway defects (i.e., 
SLC35A2-CDG, MIM: 300896). Additionally, de novo 
variants have been reported in CDG, mainly among 
ALG13-CDG females, Saul-Wilson syndrome and 
SLC35A2-CDG [23–25].

Due to this molecular variety, CDG display high intra- 
and inter-disease clinical heterogeneity. Moreover, as 
is true for other genetic diseases, intrafamiliar variabil-
ity has always to be kept in mind. Variants in the same 
gene presenting different inheritance patterns have been 
linked to different CDG phenotypes. This is the case of 
EXT2, whose AR inherited disease variants lead to sei-
zures, scoliosis, and macrocephaly syndrome (MIM: 
616682), while AD variants cause the multiple exostoses 
phenotype (MIM: 133701). Different variant types [e.g., 
loss and gain-of-function (GOF) variants] have also 
been associated with particular diseases, namely COG4- 
(MIM: 618150) and GNE- (MIM: 269921) CDG. Further-
more, the variant type and location within the gene can 
affect phenotypic severity, with more severe phenotypes 

usually being associated with greater disruption of the 
involved enzyme, transporter or chaperone. This has 
been documented for B3GALT6-CDG (Al-Gazali syn-
drome, MIM: 609465), and CANT1-CDG (Desbuquois 
dysplasia, MIM: 251450), among others [26–28]. Specific 
variants and genotypes have also been linked to particu-
lar CDG phenotypes. Examples are the PIGL p.L176P 
variant that, in compound heterozygosity, causes colo-
bomas, congenital heart defects, migratory ichthyosi-
form dermatosis, intellectual disability, and ear anomalies 
(MIM: 280000) and the GORS2 p.V144L variant which 
produces progressive myoclonic epilepsy 6 (MIM: 
614018). CDG phenotypic diversity and severity can be 
influenced by other determinants. Reported modifiers 
include additional defective glycogenes and mitotic intra-
genic recombination [29, 30].

Most CDG are complex clinical conditions, affecting 
practically all organs and thus leading to a large num-
ber of different symptoms/syndromes [22] as dystrogly-
canopathies, cardiomyopathy, skeletal dysplasia, cutis 
laxa, Ehlers-Danlos syndrome, congenital myasthe-
nia syndromes a.o.. A few mono-organ or pauci-organ 
CDG have been reported, such as DHDDS-CDG (MIM: 
613861), with one phenotype only associated with a 
form of familial retinitis pigmentosa, GNE-CDG (MIM: 
605820) that manifests as a progressive myopathy and 
GANAB-CDG presenting as a polycystic kidney or liver 
diseases (MIM: 600666).

The most affected system across the majority of CDG is 
the central nervous system (CNS; n = 144) (Fig. 3). Com-
mon neurological signs and symptoms include intellec-
tual disability, hypotonia, cerebellar ataxia, nystagmus, 
seizures, dysarthria, and dysphagia. Besides neurologic 
involvement, most CDG patients present with vari-
able dysfunction of other organs and systems, like dys-
morphism (n = 113), and failure to thrive (Fig.  3). After 
the CNS, the skeleton (n = 103) is the most commonly 
affected organ in all CDG groups, except for lipid glyco-
sylation defects. The skeletal muscle (n = 15) and the eyes 
(n = 24) are commonly affected organs among O-linked 

Table 1 CDG inheritance patterns per glycosylation defects

AR Autosomal recessive, AD Autosomal dominant, XL X-linked, XLR X-linked recessive, XLD X-linked dominant, NA Information not available

Glycosylation defects Inheritance patterns

AR AD XL XLR XLD NA

N-linked 30 6 1 3 3

O-linked 45 5 0 2 1

GPI 24 0 0 1 0

Lipid 2 0 0 0 1

Other (including multiple) 60 4 4 1
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glycosylation defects. Among the other (including multi-
ple) glycosylation pathway defects, the eyes (n = 21) and 
the liver (n = 19) are the most affected systems (Fig.  3). 
For both N-linked glycosylation and GPI biosynthesis 

defects, the skeleton, the GI system, and the eyes are the 
most frequently involved (Fig. 3).

In the last years, several biomarkers have been devel-
oped, increasing the chances to identify and discover 

0 10 20 30 40 50 60

CNS

Dysmorphia

Skeleton

Eyes

Skeletal muscles

GI system

Liver

Heart

Skin

Immune System

Kidneys

Number of CDG

N-linked glycosyla�on defects

O-linked glycosyla�on defects

GPI biosynthesis defects

Lipid glycosyla�on defects

Other (including mul�ple) glycosyla�on defects

Fig. 3 Organs involved in the different CDG groups. Legend: CNS—central nervous system; GI—gastrointestinal



Page 6 of 9Francisco et al. Orphanet Journal of Rare Diseases          (2023) 18:329 

novel CDG. One example is the two-dimensional elec-
trophoresis of haptoglobin β glycoforms [31], which has 
been helpful as a complementary biomarker to identify 
novel CDG like SLC37A4-CDG (MIM: 602672) and 
SLC10A7-CDG (MIM: 618363).The analysis of bikunin, 
by western blotting, allowed the identification of some 
linkeropathies [32] like B3GAT3-CDG (MIM: 245600), 
B4GALT7-CDG (MIM: 130070), B3GALT6-CDG 
(MIM: 615349 and 271640), as well as the identification 
of some other (including multiple) glycosylation path-
ways defects such as ATP6V0A2-CDG (MIM: 219200), 
CCDC115-CGD (MIM: 616828), COG5-CDG (MIM: 
613612) and COG7-CDG (MIM: 608779). In addition, 
a more sensitive and specific method was developed 
using flow injection-electrospray ionization-quadru-
pole time-of-flight mass spectrometry (ESIQTOF-MS) 
for serum N-glycan profiling [33], allowing the identifi-
cation of novel characteristics of polymannose changes 
in CDG like DDOST-CDG (MIM: 614507), SSR4-CDG 
(MIM: 300934) and ALG3-CDG (MIM: 601110). Whole 
Exome Sequencing and Whole Genome Sequencing 
techniques have become very powerful tools to diag-
nose CDG. For CDG without known biomarkers, it 
will be the only way to diagnose a patient. Examples are 
defects in B4GALNT1, FCSK, GFUS, GNPNAT1, PIGG, 
POFUT1 (skin presentation), POGLUT1 (skin presen-
tation), SLC35D1, ST3GAL3 and TGDS.

Despite the discovery of several biomarkers and the 
development of several disease models for CDG, very 
few targeted therapies exist for this group of disorders, 
and most available therapies are restricted to symptom 
management. In fact, guidelines for the clinical man-
agement of CDG are only available for MPI-, PMM2-, 
and PGM1-CDG [13, 34, 35]. Currently, effective and 
targeted therapeutics available are mannose supple-
mentation and liver transplantation for MPI-CDG 
(MIM: 602579) [34], heart transplantation for DOLK-
CDG (MIM: 610768) and galactose supplementation 
for PGM1-CDG (MIM: 614921) [18, 35, 36]. To over-
come the lack of targeted therapies for CDG, several 
treatment strategies are being investigated, mainly die-
tary supplementation with sugars and trace elements 
(e.g., vitamin), which is is the case of dietary sugar 
supplementation with fucose (e.g., FUT8-, GFUS- and 
SCL35C1-CDG) or galactose supplementation (e.g., 
TMEM165-, SLC39A8-, SLC35A2-, PGM1-, ALG13- 
and PMM2-CDG), most being administered under 
compassionate and off-label use programs.

Additional therapeutic avenues under investigation are 
drug repurposing, and gene replacement strategies [18, 
37, 38]. One example of drug repurposing is the open-
label, single-patient compassionate study on PMM2-
CDG with epalrestat, an aldose reductase inhibitor used 

for treating diabetic neuropathy [39, 40]. Despite all the 
research being developed for CDG therapies, until 2022, 
most of these treatments have not been approved by reg-
ulatory bodies or are available in the market [31].

Discussion
Disease classification can be a complex process. It can 
suffer from shortcomings such as the lack of a clear dis-
ease-causing mechanism or widespread input from the 
stakeholders involved (researchers, clinicians, patients, 
and their families) [8]. The first CDG classification sys-
tem (sub)classified the N-glycosylation defects alpha-
betically (e.g., CDG-Ia, CDG-IIa, etc.) and was based on 
the serum transferrin pattern obtained by IEF, the gold 
standard screening technique for N-glycosylation defects 
with sialic acid deficiency [6, 7]. However, new research 
studies have unveiled new CDG pathophysiological 
mechanisms leading to the description of new disease 
phenotypes and to the reclassification of already-known 
disorders as CDG [1].Well-known examples of the lat-
ter are the muscular dystrophy-dystroglycanopathies. 
Since the first biochemical and genetic characterization 
of PMM2-CDG in 1995 and 1997, respectively, the num-
ber of described CDG has increased exponentially [41]. 
The development of new techniques for CDG diagno-
sis, namely lipid-linked oligosaccharides by HPLC, gly-
can analysis by mass spectrometry, and whole exome/
genome sequencing, has contributed to an exponentially 
increased detection of variants in more than 160 genetic 
loci for CDG. For example, in the last five years, deficien-
cies have been identified in seven GPI synthesis genes, 
namely GPAA1-, PIGB-, PIGH-, PIGK-, PIGP-, PIGS-, 
and PIGU-CDG. In the same period, 12 N-linked and 13 
multiple glycosylation pathway defects were described. A 
few examples of N-linked glycosylation defects include 
ALG10-CDG, ALG14-CDG (MIM: 616227 and 619036), 
EDEM3-CDG, MAGT1-CDG (MIM: 301031), and more 
recently MAN2A2-CDG. Furthermore, variants in the 
X-linked MAGT1 causing hypoglycosylation led to the 
re-classification of MAGT1 deficiency as a CDG, which 
was previously only associated with a primary immuno-
deficiency with a magnesium transport defect (XMEN) 
[42]. A novel pathogenic variant causing a combined 
immune deficiency, abnormal glycosylation, and lyso-
somal involvement was described as MAN2B2-CDG. 
However, patients present with normal transferrin iso-
electric focusing profiles, and only mild glycosylation 
changes were observed by ESI-QTOF in the blood [43]. 
Some examples of other (including multiple) glycosyla-
tion pathway defects discovered in the last five years are 
ATP6VI1-, GO7- (Congenital myasthenic syndrome), 
GET4-, GFUS- and GNPNAT1-CDG, and most recently 
CAMLG-CDG. Novel variants were also identified in 
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CSGALNACT1 and EXTL3, causing CSGALNACT1-
CDG and EXTL3-CDG, two new disorders affecting the 
O-linked glycosylation pathway, particularly the glycosa-
minoglycan (GAGs) biosynthesis [44, 45].

Molecularly, glycosylation is “the synthesis of fully 
functional glycans and their covalent enzymatic attach-
ment to other molecules including proteins, lipids, and 
small RNA” [39]. However, these functions are performed 
in the presence of various enzymes, donor and acceptor 
substrates, metal ions, and depend also on an adequate 
pH. Hence, CDG are caused by inborn pathogenic (reces-
sive, dominant, or X-linked) or de novo variants in the 
genes encoding proteins involved in the different glyco-
sylation steps but also genes affecting closely linked and 
essential steps in glycosylation as mentioned above [9]. 
In addition, different phenotypes can be caused by differ-
ent inheritance patterns. This is the case for ALG8- and 
ALG9-CDG, in which AR variants are responsible for 
a different phenotype than the one caused by AD vari-
ants. Another cause for differences in the phenotypic 
presentation linked to inheritance patterns is mosaicism. 
This is observed for SLC35A2-CDG, which has a domi-
nant X-linked inheritance pattern and in which the only 
identified affected males were somatic mosaics. The lack 
of non-mosaic-affected males suggests that a wild-type 
SLC35A2 allele is required for survival. Nearly all CDG 
are monogenic disorders caused by pathogenic alleles 
transmitted by a mendelian, monogenic inheritance pat-
tern. This means that most CDG are caused by variants 
affecting only one gene. Some disorders have also been 
reclassified as CDG as the expansion of their patho-
physiological mechanisms has included underlying gly-
cosylation defects (e.g., Saul-Wilson syndrome [COG4], 
Cowden syndrome 7 [SEC23B], ALG5- and ALG9-CDG) 
[41].

Concluding, this paper refers to published data/knowl-
edge as it stands at 2022. There is a steadily increasing 
number of reported CDG. It is not always straightfor-
ward if a specific disease should be classified as CDG. 
This can create confusion and misguidance, impacting 
professionals, patients and their families. During the 
2021 World CDG Conference and the 2021 Scientific 
CDG Symposium, the importance of defining a precise 
CDG nomenclature and nosology was discussed. This 
highlights the essential need to capture the complemen-
tary expertise from the CDG community (researchers, 
health professionals, patients, and caregivers) to discuss 
and define the criteria to include or exclude a disease as 
a CDG.
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