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Abstract
Background Glioblastoma (GBM) is the most aggressive and common malignant primary brain tumor; however, 
treatment remains a significant challenge. This study aims to identify drug repurposing or repositioning candidates for 
GBM by developing an integrative rare disease profile network containing heterogeneous types of biomedical data.

Methods We developed a Glioblastoma-based Biomedical Profile Network (GBPN) by extracting and integrating 
biomedical information pertinent to GBM-related diseases from the NCATS GARD Knowledge Graph (NGKG). We 
further clustered the GBPN based on modularity classes which resulted in multiple focused subgraphs, named 
mc_GBPN. We then identified high-influence nodes by performing network analysis over the mc_GBPN and validated 
those nodes that could be potential drug repurposing or repositioning candidates for GBM.

Results We developed the GBPN with 1,466 nodes and 107,423 edges and consequently the mc_GBPN with forty-
one modularity classes. A list of the ten most influential nodes were identified from the mc_GBPN. These notably 
include Riluzole, stem cell therapy, cannabidiol, and VK-0214, with proven evidence for treating GBM.

Conclusion Our GBM-targeted network analysis allowed us to effectively identify potential candidates for drug 
repurposing or repositioning. Further validation will be conducted by using other different types of biomedical and 
clinical data and biological experiments. The findings could lead to less invasive treatments for glioblastoma while 
significantly reducing research costs by shortening the drug development timeline. Furthermore, this workflow can 
be extended to other disease areas.
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 Background
Glioblastoma (GBM) is a rare, malignant variety of brain 
tumor that develops from astrocyte and oligodendrocyte 
cells. [1] GBM is both the most aggressive and most com-
mon malignant primary brain tumor, making up 54% of 
all gliomas and 16% of all primary brain tumors. [2] The 
incidence of GBM ranges from 0.59 to 5 per 100,000 per-
sons, and this number is rising in many countries. [3] 
GBM patients have a median survival of only 15 months, 
and less than 5% of patients survive 5 years following 
diagnosis. There is currently no cure for GBM. [2] The 
standard of care (SOC) for grades 3 or 4 high-grade glio-
mas (HGGs) including GBM, a grade 4 glioma, currently 
relies on maximally safe surgical resection followed by 
concurrent radiation therapy and temozolomide (TMZ). 
[4] While this SOC has increased the median survival 
time of GBM patients, [2] Stupp et al. [5] has shown that 
the two year survival rate of patients who undergo radio-
therapy plus TMZ treatment is only 26.5%. Moreover, 
Stupp et al. [5] found that concomitant treatment with 
radiotherapy plus TMZ resulted in grade 3 or 4 hemato-
logic toxic effects in 7% of patients.

By April 2022, four drugs besides TMZ were approved 
by the FDA for treating HGGs: lomustine, [6] intrave-
nous carmustine, [7] carmustine implants, [8] and beva-
cizumab, [9]. One device, tumor treatment fields (a cap 
containing electrodes which deliver alternating electric 
fields to a patient’s scalp that disrupt tumor growth), 
was also FDA-approved for the treatment of HGGs. [10] 
Only TMZ, carmustine implants, and tumor treatment 
fields are FDA-approved for new diagnoses (the rest are 
approved for recurrent HGGs). [4] Carmustine wafer 
implants are expensive and have a high complication rate 
(42.7%), whereas tumor treatment fields are expensive, 
inconvenient for patients, and yield marginal survival 
benefits. [4] Toxicity is also a common issue with all cur-
rent therapies. [4] Thus, there is an urgent need for ther-
apy discovery for GBM patients that are both effective 
and less invasive than the current SOC.

Drug repurposing is the practice of repurposing an 
active pharmaceutical ingredient already approved for 
use in the treatment of one condition for the treatment 
of another (we differentiate this from drug repositioning, 
which we will use to refer to the practice of finding a new 
use for drugs that had some other intended purpose in 
clinical trials, but do not have regulatory approval). [11] 
This approach reduces research costs and allows treat-
ments to reach patients more quickly. Repurposed drugs 
seeking approval are 150% more likely to be introduced 
on the market than novel drugs. [12] The exponential 
growth of large-scale, publicly-available biomedical and 
pharmaceutical data combined with advancements in 
high-performance computing have enabled the devel-
opment of various computational drug repurposing 

approaches including data mining, machine learning, 
and network analysis. [13] These in silico strategies, along 
with disease molecular profiles (e.g. associated genes, 
biomarkers, signaling pathways, environmental factors, 
etc.), empower researchers to determine the degree of 
similarity between diseases by their molecular features. 
[11] Network analysis in particular has been used exten-
sively in computational drug repurposing, as networks 
provide an intuitive method of modeling biological and 
biomedical entities and their interactions and relation-
ships to each other. [13] Centrality measures play a vital 
role in network analysis, allowing researchers to iden-
tify important nodes within a network from a structural 
perspective. [14] Though frequently used in social net-
work analysis, centrality measures have been adapted 
as a metric for biological studies since as early as 2001. 
[15] A previous drug repurposing study ranked drugs 
by their centrality scores within networks composed of 
drugs connected based on their side effects and inter-
actions. [16] Another study suggests that the centrali-
ties of drugs in a network of drugs connected based on 
their side-effect similarities may have significant implica-
tion in drug repurposing. [14] Most of those published 
applications mainly leveraged one aspect of drugs, such 
as side effects or interactions; thus nodes in their estab-
lished network were specifically associated with drugs (as 
opposed to other data types such as diseases, phenotypes, 
proteins, etc.). Inspired by these studies, we proposed to 
generate integrative rare disease biomedical profiles with 
heterogenous types of data from our previously devel-
oped NCATS Genetic and Rare Diseases (GARD) Knowl-
edge Graph (NGKG), [17] which contains information 
about diseases, genes, drugs, pathways, cells, etc. pooled 
from forty-three rare disease-related data resources, 
which can be found in the supplemental file named 
“NGKG Resources”. Furthermore, instead of mining the 
entire NGKG, only GBM-associated subgraphs based on 
pre-calculated disease clusters were derived, and multiple 
network analysis techniques, such as centrality measures 
and community detection, were combined and applied to 
generate GBM-focused graphs for identifying high-influ-
ence nodes, which might be potential drug repurposing 
or repositioning candidates.

Materials and methods
In this study, to uncover significant associations relevant 
to GBM for drug repurposing or repositioning, we per-
formed network analysis in three steps: (1) we developed 
a GBM-based Biomedical Profile Network (GBPN) by 
obtaining the GBM-related biomedical data extracted 
from the NGKG, [17] (2) we clustered the GBPN into a 
modularity classes-based network (mc_GBPN) by per-
forming community detection, and (3) we identified 
high-influence nodes as potential candidates for drug 
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repurposing or repositioning for GBM from mc_GBPN 
via various centrality measures. In other words, these 
steps allow us to create a large graph (GBPN) containing 
all information related to GBM from the NGKG, group 
nodes containing similar information into broad catego-
ries (mc_GBPN), and then identify the most “important” 
nodes in each category, respectively. The “importance” of 
each node will be defined by an average of several met-
rics (see Section D), each of which identify nodes that are 
integral to the graph’s structure by different measures. 
Figure 1 shows the study workflow.

NCATS gard knowledge graph (NGKG)[17
The GARD Information Center was managed by the 
NCATS to provide freely accessible consumer health 
information on over 10,000 genetic and rare diseases. 
To expand the use of information from GARD for bio-
medical research in rare diseases, we previously devel-
oped the NGKG, [17] a knowledge graph that integrated 

data from GARD and other well-known rare disease 
related resources including Orphanet, [18] OMIM, [19] 
MONDO, [20] and curated mappings between FDA 
orphan designations to GARD, and information on 
FDA approval status and drug indications from Inxight 
Drugs, [17] using our stitcher [21] software. The full list 
of fourty-three resources in the supplemental file named 
“NGKG Resources”. Stitcher defines edges to link equiv-
alent/relevant concepts from different resources; for 
instance, “N_Name” denotes linked concepts with the 
same concept names, while “I_CODE” denotes linked 
concepts sharing the same external reference. In addi-
tion, stitcher adopts predicates from original resources, 
such as “R_equivalentClass” from MONDO. More exam-
ples are shown in Fig. 2.

GBM-based biomedical profile network (GBPN)
Development To construct the GBPN with GBM-rele-
vant information, we generated a disease cluster pertinent 

Fig. 2 Familial Alzheimer Disease-based subgraph derived from the NGKG. Orange nodes denote diseases, blue nodes denote genes, and purple nodes 
denote drugs. Familial Alzheimer Disease is highlighted in yellow

 

Fig. 1 Workflow for identifying drug repurposing or repositioning candidates for GBM.
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to GBM. This cluster containing GBM and 91 other GBM-
related rare diseases was generated through a modified 
version of DL2Vec [22] applied to data obtained from the 
NGKG and enriched with additional data sources. Spe-
cifically, a focused subgraph of the NGKG was extracted 
containing disease, genes and phenotypes. The subgraph 
was annotated with Gene Ontology [23] and Human 
Phenotype Ontology [24] and then enriched with small 
molecule and pathway data from Pharos [25] and The 
Pathway Commons, [26] respectively. Random walks 
emanating from each rare disease were used to generate 
a corpus from which disease node embeddings were cre-
ated. The disease node embeddings were clustered using 
the k-means algorithm. Detailed description of the dis-
ease clustering procedure has been described in a sepa-
rate submission. [27].

We extracted 92 subgraphs from the NGKG, each an 
ego graph [28] of radius of 3 centered on a node con-
taining one of those 92 GBM-related rare diseases. Fig-
ure 2 shows one subgraph that is centered on the node of 
Familial Alzheimer Disease, one disease from the GBM-
related disease cluster. We then merged the union of 
these subgraphs to create the GBPN.

Optimization The NGKG maintains connections among 
equivalent or relevant concepts from different resources 
via pre-defined edges, e.g. “N_Name” and “I_CODE” or 
those adopted predicates, e.g. “R_equivalentClass” and 
“R_exactMatch”. We optimized the GBPN by merging 
associated diseases, genes, treatments, etc. with those 
aforementioned edges into singular nodes, yielding a 

more condensed graph of nodes with enriched biomedical 
information for efficient network analysis. Specifically, we 
optimized the GBPN via these rules: 1) the attributes of 
merged nodes were concatenated; 2) edges were removed 
if the connected nodes were merged (i.e. if nodes A and B 
merged, all edges between A and B would be removed); 
3) edges were maintained between unmerged and newly-
merged nodes (i.e. if node A and B merged into node AB, 
an edge from A to node C would be reassigned as an edge 
from AB to C). The code used to implement rules 1–3 
is in the supplemental materials. Synonyms were subse-
quently filtered out of name labels within newly merged 
nodes. For instance, if the nodes “Addison’s Disease” and 
“Adrenal aplasia’’ were merged, both of these labels (which 
denote the same disease) would be concatenated within 
the newly merged node. In this case, we would verify that 
“Adrenal aplasia” is a synonym of “Addison’s Disease” 
by querying the NGKG for the “synonyms” attribute of 
the “Addison’s Disease” node and would subsequently 
remove “Adrenal aplasia” from the newly merged node’s 
name label in the GBPN. This process was automated and 
applied to each newly merged node; some other comple-
mentary resources, including the NORD Rare Diseases 
database, [29] GeneCards, [30] the National Library of 
Medicine’s MedlinePlus, [31] PubChem, [32] and the 
National Cancer Institute’s List of Cancer Drugs, [33] 
were applied for this process as well. Figure 3 illustrates 
one merging example.

Fig. 3  A node containing Lafora disease is merged with nodes connected to it by an edge label of “I_CODE”: two Lafora disease related genes, the EPM2A 
gene, the EPM2B gene, and Metformin, a treatment that has been used for Lafora disease. The gray node is one of the merged nodes in the GBPN.
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mc_GBPN development
To group the GBPN into focused subgraphs, we clus-
tered the GBPN into modularity classes (mc_GBPN) 
using community detection [34] available from Gephi 
0.9.6. [35] Gephi is an open source tool for creating and 
exploring interactive network visualizations that includes 
functions for network analysis. Gephi uses the Louvain 
modularity algorithm [36] for community detection, 
which maximizes a modularity score for each community 
and is well-suited to large networks. [37] We set random-
ize to “On” and the resolution to 1.0. Smaller resolution 
values recover more communities (each containing fewer 
nodes), while larger resolution values recover fewer com-
munities (each containing more nodes). [38] While larger 
resolution values may fail to separate distinct communi-
ties, [39] smaller resolution values may produce commu-
nities that are too small to perform meaningful network 
analysis on. In the case of the GBPN, resolution values 
less than 1.0 translated to over half of the communities 
being too small (three nodes or fewer) to analyze. We 
prioritized the mc_GBPN by modularity score and the 
top ten mc_GBPN were applied for further investiga-
tion. Specifically, we sorted mc_GBPN with more than 
three nodes in descending order by modularity score. The 
modularity score of a mc_GBPN is defined as Lc

m
− γ( kc

2m)2

where Lc  is the number of intra-community edges for 
mc_GBPN, kc  is the sum of degrees of the nodes in 
mc_GBPN, m  is the total number of edges across all 
mc_GBPN, and γ  is the resolution parameter (in this 
case, 1.0). [40–41] A mc_GBPN with a higher modularity 
score contains more internal-connections and less exter-
nal-connections, which results in a large number of “hub 
nodes” with high centrality scores and therefore is of 
interest to our investigation for drug repurposing. Thus, 
we sought out mc_GBPN with a high modularity score.

The mc_GBPN were then reviewed and assigned a 
class label based on parent-child relationships denoted in 
the NGKG and Disease Ontology. [42] For example, one 
mc_GBPN containing disease nodes of “Tumor Grade 
1,” “Intracranial Cystic Lesion,” “Hemangioblastoma,” 
“Benign Neoplasm,” etc. was assigned the class label 
“Abnormal Brain Growths,” as the majority of its nodes 
are associated with abnormal growths in the brain.

DDrug repurposing or repositioning candidate 
identification
High-influence node identification We calculated the 
degree, closeness, betweenness, eigenvector, and Pag-
eRank centrality for each node within their respective 
mc_GBPN. Each centrality measure detects the amount 
of influence a given node has over the flow of information 
in the mc_GBPN. Specifically, the degree centrality of a 
node is the number of edges connected to it. [43] Close-
ness centrality measures the average distance between a 

node and all other nodes in its mc_GBPN. [44] Between-
ness centrality of a node is the percentage of shortest paths 
between any other pair of nodes in the graph which include 
the given node. [45–46] Eigenvector centrality measures 
the transitive influence of nodes; edges originating from 
a node with a high eigenvector centrality score contrib-
ute more to the score of the node they target than edges 
originating from a node with a lower eigenvector central-
ity score. Thus, if a node has a high eigenvector central-
ity score, it is connected to many other nodes with high 
eigenvector centrality scores. [47] We used 100 iterations 
in our eigenvector centrality calculations [48] (though we 
note that after experimenting with values ranging from 
50 to 200 iterations, number of iterations had a negligible 
impact on the calculation and particularly did not affect 
the order of nodes from highest to lowest eigenvector cen-
trality score). Finally, PageRank centrality is a subtype of 
eigenvector centrality that uses indegree rather than total 
degree. [49] We used the default probability setting in 
Gephi of 0.85 and the default epsilon setting 0.001 in our 
PageRank centrality calculations. [50] Note that all cen-
trality scores will be greater than zero, and that closeness, 
eigenvector, and PageRank centrality must all be within 
the range of zero to one. [43–45, 48–49] In general across 
all metrics, higher centrality scores indicate a node is con-
nected to a greater number of other nodes and/or is more 
centrally located within the network.

Drug repurposing or repositioning candidate iden-
tification. We ranked the five most influential nodes for 
each top ranked mc_GBPN by the five aforementioned 
centrality measures. We manually reviewed and selected 
the most interesting nodes from prioritized mc_GBPN 
based on their influence as potential candidates for drug 
repurposing or repositioning for GBM.

Results
Results of the GBPN
The NGKG contains 3,819,623 nodes and 84,223,681 
edges from forty-three different biomedical data 
resources. Of these, 4,789 nodes and 177,106 edges 
were extracted and applied to generate the GBPN. After 
optimization, the GBPN contained 1,466 nodes (538 of 
which contained the merged information of two or more 
pre-optimization nodes) and 107,423 edges with aver-
age degree 73.276, defined as the total number of edges 
divided by the total number of nodes. Additional net-
work properties can be found in Table 1.

Results of the mc_GBPN
We performed community detection by Louvain modu-
larity [36] on the GBPN, obtaining forty-one mc_GBPN. 
Brief descriptions including class labels, number of 
nodes/edges and modularity scores for the ten mc_GBPN 
with the highest modularity scores are in Table  2. A 
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full list of forty-one mc_GBPN is in the supplemental 
materials.

We identified the five most influential nodes from 
each of the ten mc_GBPN (Table  2) by each centrality 
measure. The identified high-influence nodes from the 
mc_GBPN with an index of 0 are shown in Fig. 4. Cen-
trality scores were normalized to a 0–1 range using the 
scikit-learn MinMaxScalar preprocessing function fit_
transform method. [54] The full list of the five most influ-
ential nodes by each centrality measure within these ten 
mc_GBPN is in the supplemental materials.

Drug repurposing or repositoning candidate identification
We examined the five most influential nodes from the 
top ten mc_GBPN (Table 2) by their centrality scores as 
potential candidates for drug repurposing or reposition-
ing for GBM. We first normalized the centrality scores 
of the top five nodes by each centrality measure to a 0–1 
range using the fit_transform method of the scikit-learn 
MinMaxScalar preprocessing function. [54] We then 
calculated a total normalized centrality score (TNCS) 

for each distinct node. The TCNS of a node is defined as 
the sum of its normalized centrality scores across degree, 
closeness, betweenness, eigenvector, and PageRank cen-
tralities. The TNCS of a node may range from 0 to 5, as 
there are five centrality measures. The nodes with the 
highest TCNS in each mc_GBPN listed in Table  2 are 
identified in Table 3. Of the nodes in Table 3, six had the 
highest centrality scores across all five centrality mea-
sures within their respective mc_GBPN.

We observed that the most influential nodes in the 
mc_GBPN are associated with central nervous system 
conditions, [42] the main disease category GBM belongs 
to. Many are also genetic disorders and x-linked (e.g. 
x-linked adrenoleukodystrophy, Rett syndrome, [55] and 
some forms of Parkinson’s disease, [56] amyotrophic lat-
eral sclerosis, [57] chorea, [58] and ataxia). [59].

The high-influence nodes in Table  3 shed light on 
drug repurposing or repositioning. For instance, a novel 
COL4A1 gene variant associated with CADASIL syn-
drome was recently found to be associated with GBM. 
[60] Moreover, the NOTCH3 gene (also associated with 
CADASIL syndrome) is a prognostic factor that pro-
motes glioma cell proliferation, migration, and invasion. 
[61] Several drugs were identified as potential candidates 
for GBM, although they have not been clinically admin-
istered for GBM. Riluzole, a treatment for amyotrophic 
lateral sclerosis (ALS), has been shown to be an effective 
pretreatment that sensitizes glioma to radiation therapy. 
It also has synergistic effects in combination with select 
other drugs when used to treat GBM. [62] Cannabidiol, 
another ALS treatment, sensitizes GBM to TMZ in mul-
tiple orthotopic tumor models. [63] Inhalant cannabi-
diol has also been shown to inhibit the progression of 
GBM through regulation of the tumor environment. [64] 
Finally, stem cell therapy has shown potential for treating 
neuron and glial cell damage in the brain or spinal cord 
that results from neurological conditions such as GBM. 
[65] Interestingly, VK-0214 is currently being tested in 
a clinical trial as a treatment for x-linked adrenoleuko-
dystrophy. [66] VK-0214 is a thyroid beta receptor ago-
nist [67] which induces the ABCD2 gene by binding to 
and activating the thyroid beta receptor. [68] In ABCD1 
knockout mice, overexpression of ABCD2 via thyroid 
receptor activation has been shown to decrease the accu-
mulation of very long chain fatty acids (VLCFA). [68] 
Based on these findings, selective thyroid receptor ago-
nists are being evaluated as a novel treatment for X-ALD, 
which is characterized by the accumulation of VLCFA. 
[68] However, inhibition of fatty acid accumulation and 
oxidation has been shown to reduce GBM proliferation, 
[69] growth, [70] and survival [71] as well. The fatty acid 
accumulation-inhibiting effect of VK-0214 may be ben-
eficial in the treatment of GBM. We will perform addi-
tional experimental validation as a next step. The full 

Table 1 Network properties of the GBPN.
Network Property Results
Nodes 1,466
Edges 107,423
Average Degree 73.276
Net Diameter a 10
Average Path Length b 3.751
Graph Density c 0.05
a The net diameter is defined as the maximal distance between all pairs of nodes. 
[51] b The average path length is defined as the average distance between all 
pairs of nodes. [52] cThe graph density is a measure of how close the graph is to 
being complete, and a complete graph contains all possible edges between any 
two nodes and has a density of 1. [53]

Table 2 Descriptions of the ten ranked mc_GBPN with the 
highest modularity score
mc_
GBPN 
Index

Class labels Nodes Edges Mod-
ular-
ity 
Score

0 White Matter-Related Conditions 140 14,176 0.100
12 Movement Disorders 209 12,519 0.083
38 Seizures and Epilepsies 132 7,390 0.060
27 Amyotrophic Lateral Sclerosis and 

Related Conditions
156 5,984 0.052

21 Parkinsonism, Progressive Su-
pranuclear Palsy, Dementia, and 
Related Conditions

94 5,936 0.048

14 Sensory and Motor Conditions 58 4,887 0.039
22 Neurodegeneration with Brain Iron 

Accumulation and Dystonias
65 3,904 0.033

16 Developmental Disorders 61 3,430 0.031
2 Dystonias and Mental Health 

Conditions
52 2,920 0.025

17 Cerebrovascular Conditions 75 2,735 0.024
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list of associations we examined between the nodes in 
Table 3 and GBM is in the supplemental materials.

Discussion
In this study, we introduced an integrative GBM-based 
Biomedical Profile Network (GBPN) by integrating het-
erogeneous types of data, including disease, gene, drug, 
etc. based on their shared concept characteristics. To 
further construct focused subgraphs from the GBPN for 
supporting high-influence node identification for drug 
repurposing or repositioning, we derived modularity 
class-based subnetworks (mc_GBPN) by leveraging com-
munity detection, a form of graph clustering algorithm. 
Through implementing multiple network analysis tech-
niques over the mc_GBPN, we successfully identified 
multiple high-influence nodes as potential drug repur-
posing candidates for GBM, as well as a candidate (VK-
0214) for drug repositioning. This presented framework 
sheds light on supporting drug repurposing or reposi-
tioning in a more effective manner. While integrating 
more data to expand the search space, we organized the 
data in a more manageable scale with consideration of 
their relevance from the network view.

Observations and findings
We applied a rare disease cluster consisting of 92 GBM-
related diseases to construct the GBPN by exploring data 
from the NGKG. We optimized the GBPN for integra-
tive rare disease profile generation by merging associated 

Table 3 The most influential nodes in the mc_GBPN, selected by 
their TNCS across all centrality measures
Mc_
GBPN 
Index

Node Description TNCS

0 • X-linked Adrenoleukodystrophy (X-ALD)
• ABCD1 WT Allele, ABC42, AMN, ACOX1, ECK2921, 
ECK1408 genes
• VK-0214

4.407

12 • Ataxias, Choreas
• SETX, WASF1, GCH1 genes

5

38 • Absence Epilepsy
• CSTB, GABRA1, EC1 genes

3.986

27 • Amyotrophic Lateral Sclerosis (ALS)
• ALS1, ALS2, IGFALS genes
• Riluzole, Cannabidiol, Stem Cell Therapy

5

21 • Parkinson’s Disease
• FBXO7, DCTN1, GBA, PARK1, PARK2, PARK5, PARK6, 
PARK7, PARK8 genes

4.413

14 • Spastic Paraplegia 10 (SPG10)
• KIF5A gene

3.625

22 • Neurodegeneration with Brain Iron Accumulation 
3 (NBIA3)
• FTL gene

5

16 • Rett Syndrome
• MECP2 gene

5

2 • Myoclonus Dystonia (M-D)
• SGCE gene

5

17 • CADASIL and CARASIL Syndromes
• NOTCH3, COL4A1, HTRA1 genes
• Cerebrolysin, Palm Tocotrienol Complex

5

Fig. 4 High-influence nodes identified by degree, closeness, betweenness, eigenvector, and PageRank centrality in mc_GBPN with an index of 0. The 
nodes displayed have a strong relationship to white matter-related conditions (as does GBM). Note that several nodes have high centrality scores across 
multiple measures; these nodes have a higher potential for drug repurposing or repositioning
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diseases, genes, treatments, etc. into singular nodes 
based on their shared concept names or external refer-
ences. This approach allowed us to explore a large scale 
of GBM-relevant data in a concentrated and scalable 
form, which effectively supports drug repurposing or 
repositioning with lower computational burden as dem-
onstrated in the Results section. As shown in Fig. 3, some 
level of inference was introduced during the optimiza-
tion. When we merged Lafora disease, EPM2A, EPM2B 
and Metformin, we declared the new connections 
between Metformin and EPM2A and EPM2B based on 
inference, since there are no existing connections among 
them obtained from the NGKG. Since PME2 shares dif-
ferent degrees of associations (different numbers of 
edges) with EPM2A, EPM2B and Metformin, we inferred 
these four concepts are potentially associated with each 
other, leading to node merging. The findings from Bisulli 
et al. [72] proved the inference introduced for this partic-
ular case. In the future study, we will attach relevant ref-
erences gathered from the previously developed scientific 
annotation knowledge graph, [73] to the merged nodes, 
as scientific evidence enrichment.

After GBPN optimization, we generated focused sub-
graphs of the GBPN by performing community detection 
as a graph clustering algorithm, resulting in a network 
partitioned into modularity classes (mc_GBPN). mc_
GBPN as a set of subgraphs (i.e., clusters) derived from 
the GBPN were ranked by their modularity scores, which 
allowed programmatically upgrade those top prioritized 
clusters for further investigation and downgrade those 
with lower priority. Our experiments showed that such 
a strategy did not lose any important information com-
pared to the GBPN, instead more high-influence nodes 
were exposed in the top ranked clusters for easy extrac-
tion. For instance, nine distinct top high-influence nodes 
derived from the GBPN appear in the top five most influ-
ential node lists from their respective mc_GBPN. We 

calculated the five most influential nodes by each central-
ity measure in the GBPN and found that seven of the ten 
most-influential nodes (see Table 4) were included in the 
resulting list. The remaining nodes (i.e., Spastic Paraple-
gia 10, Rett syndrome, Myoclonus Dystonia) were pres-
ent exclusively in the lists of high-influence nodes derived 
from the mc_GBPN. The complete lists of the five most 
influential nodes by each centrality measure in the GBPN 
and in each modularity class of the mc_GBPN are in the 
supplemental materials.

Limitations of this study
Due to lack of standardization across the biomedi-
cal resources, integrating information from different 
resources with a high level of precision proved to be a 
significant challenge. While we optimized the GBPN by 
merging nodes with closely associated information into 
a singular node, we were not able to fully automate this 
process because the data was not represented in a stan-
dard form and the nature of the NGKG that does not 
contain predefined data models, instead a rule-based 
semi-automatic approach. A more sophisticated harmo-
nization process will be proposed when we obtain data 
to build the GBPN. For instance, rare diseases from dif-
ferent resources will be harmonized and standardized by 
using GARD ID, genes with HGNC ID, etc. Additionally, 
during the step of high-influence node identification, we 
manually searched for scientific evidence to support our 
findings. In the future study, we will programmatically 
query the rare disease-based scientific annotation knowl-
edge graph [73] for evidence collection. In the future 
study, we will adopt/extend the strategy of network opti-
mization to apply on the datasets with well-defined data 
models underneath, then we will be able to generate 
highly condensed graphs by merging nodes/relationships 
by different concept types.

Table 4 The top five nodes in mc_GPBN #0 ranked by five centralities
Degree Closeness Betweenness Eigenvector PageRank

1 X-linked Adreno-
leukodystrophy; ABCD1 WT;
VK-0214

Abnormal Eye X-linked Adreno-
leukodystrophy; ABCD1 WT; 
VK-0214

X-linked Adreno-
leukodystrophy; ABCD1 
WT; VK-0214

X-linked Adreno-
leukodystrophy; 
ABCD1 WT; VK-0214

2 Autosomal Dominant Leukodys-
trophy with Autonomic Disease; 
LMNB1

X-linked Adreno-
leukodystrophy; ABCD1 
WT; VK-0214

Autosomal Dominant Leuko-
dystrophy with Autonomic 
Disease; LMNB1

Attention Deficit Hyper-
activity Disorder (ADHD)

Paraparesis

3 Muscle Spasticity Autosomal Dominant 
Leukodystrophy with 
Autonomic Disease; 
LMNB1

Paraparesis Vision impairment or 
loss

Facial Abnormality

4 Paraparesis Progressive Disorder Muscle Spasticity Hearing Impairment Autosomal Domi-
nant Leukodystro-
phy with Autonomic 
Disease; LMNB1

5 Cognitive Decline/
Impairment

Muscle Spasticity Cerebro-medullospinal 
Disconnection

Dementias, Amentia ABCD1 Gene
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As a feasibility study, our aim is to prove the capabil-
ity of our presented computational approach for sup-
porting drug repurposing or repositioning. The findings 
were examined with published scientific evidence. For 
instance, we identified indirect evidence discussed in the 
section of Drug Repurposing Candidate Identification, to 
support that the fatty acid accumulation inhibiting effect 
of VK-0214 may be beneficial in the treatment of GBM. 
Experimental validation is out of scope of this study, 
which is planned as a next step.

Future directions
We presented a preliminary analysis of GBM-related 
data that allowed us to identify potential candidates for 
drug repurposing and repositioning to treat the condi-
tion. Although scientific evidence has been identified to 
support our initial findings, experimental validation is 
necessary to determine whether these candidates would 
be effective in treating GBM patients in practice. Clini-
cal observations/efficacy regarding those candidates 
administered for patients with GBM, derived from Elec-
tronic Medical Records (EMR) can serve as another layer 
of validation. We propose to mine clinical data from 
National COVID Cohort Collaborative (N3C) and the 
Biomedical Translational Research Information System 
(BTRIS) at NIH for clinical evidence identification. Our 
pipeline is modularized as shown in Fig. 1, thus we pro-
pose to extend the use of each module. We will expand 
to other disease areas by starting with other disease 
clusters and generating corresponding GBPN. We also 
propose to explore other clustering algorithms besides 
Louvain community detection for focused subgraph gen-
eration (e.g. Leiden [74] community detection), as each 
algorithm will have different conditions for what defines 
a cluster and may therefore unearth different candidate 
nodes (or return a more refined list). Besides the appli-
cation of drug repurposing we started with, we believe 
mc_GBPN as a collection of rare disease profiles provid-
ing a complete picture of direct and indirect associations 
to the target disease can be a valuable source to help us 
understand the etiology of rare diseases.

Conclusion
In this study we presented a preliminary network analy-
sis-based approach to drug repurposing and reposition-
ing for GBM. We successfully identified several potential 
candidates.

via centrality and community detection calculations, 
and substantiated the connections between these candi-
dates and GBM. We reinforced the findings of emerging 
studies into some treatments and also identified a new 
candidate, VK-0214, that could be potentially repur-
posed to treat GBM. These findings can guide future 
experimental validation, which could lead to new, more 

effective treatments that extend the lifespan of patients 
living with GBM.
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