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Abstract 

Background  Early diagnosis of Gaucher disease (GD) allows for disease-specific treatment before significant symp-
toms arise, preventing/delaying onset of complications. Yet, many endure years-long diagnostic odysseys. We report 
the development of a machine learning algorithm to identify patients with GD from electronic health records.

Methods  We utilized Optum’s de-identified Integrated Claims-Clinical dataset (2007–2019) for feature engineer-
ing and algorithm training/testing, based on clinical characteristics of GD. Two algorithms were selected: one based 
on age of feature occurrence (age-based), and one based on occurrence of features (prevalence-based). Performance 
was compared with an adaptation of the available clinical diagnostic algorithm for identifying patients with diag-
nosed GD. Undiagnosed patients highly-ranked by the algorithms were compared with diagnosed GD patients.

Results  Splenomegaly was the most important predictor for diagnosed GD with both algorithms, followed by geo-
graphical location (northeast USA), thrombocytopenia, osteonecrosis, bone density disorders, and bone pain. Overall, 
1204 and 2862 patients, respectively, would need to be assessed with the age- and prevalence-based algorithms, 
compared with 20,743 with the clinical diagnostic algorithm, to identify 28 patients with diagnosed GD in the inte-
grated dataset. Undiagnosed patients highly-ranked by the algorithms had similar clinical manifestations as diag-
nosed GD patients.

Conclusions  The age-based algorithm identified younger patients, while the prevalence-based identified patients 
with advanced clinical manifestations. Their combined use better captures GD heterogeneity. The two algorithms 
were about 10–20-fold more efficient at identifying GD patients than the clinical diagnostic algorithm. Application 
of these algorithms could shorten diagnostic delay by identifying undiagnosed GD patients.
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Background
Rare inherited lysosomal storage disorders (LSDs) are a 
heterogeneous group of about 70 monogenic disorders 
characterized by defects in lysosomal function [1, 2]. 
These disorders affect multiple organs and systems, lead-
ing to a broad range of progressive clinical manifestations 
that are often highly debilitating and shorten lifespans. 
However, manifestations are highly variable depending 
on the location and extent of lysosomal storage, both 
within and between disorders [3]. Those with LSDs often 
need lifelong care, though early diagnosis can crucially 
allow treatment of some LSDs before significant symp-
toms arise, preventing or delaying onset of complications 
[3, 4].

Gaucher disease (GD) is an LSD caused by deficiency 
in the lysosomal enzyme glucocerebrosidase [5, 6]. Glu-
cocerebrosidase deficiency results in progressive gluco-
sylceramide accumulation predominantly in the spleen, 
liver, and bone marrow, although other organs may also 
be affected, leading to a wide range of symptoms, includ-
ing hepatosplenomegaly, anemia, thrombocytopenia, 
bone lesions/symptoms, and neurological impairment 
[5]. GD is categorized into three phenotypes: type 1 or 
non-neuronopathic; type 2 or acute neuronopathic; and 
type 3 or chronic neuronopathic, which differ by the 
presence or absence, extent, and rate of progression of 
neurodegeneration [7, 8]. GD affects about 1 in 40,000–
100,000 live births in the general population but occurs at 
a higher frequency (1 in 500–1000) among those of Ash-
kenazi Jewish descent [9]. The National Organization for 
Rare Disorders estimates that there are about 6000 indi-
viduals with GD in the USA [10], but estimates as high 
as 20,000 individuals have also been suggested [11]. The 
incidences of GD, and LSDs in general, are likely under-
estimated because of limited disease awareness, leading 
to many patients remaining undiagnosed, or misdiag-
nosed and receiving inappropriate investigations and/or 
interventions [12–14].

GD is a heterogeneous disease, and each patient is 
unique regarding age of onset and range of symptoms, 
rate of disease progression, and comorbidities. Early GD-
specific features tend to reflect hematological aspects 
of the disorder, with many patients initially referred to 
hematologists [15]. Often, among those presenting with 
the classic GD symptoms (cytopenia, hepatospleno-
megaly, bone pain) to hematologists/oncologists, initial 
misdiagnoses include leukemia, lymphoma or multiple 
myeloma [14]. Thus, patients often have long diagnostic 
journeys over many years involving various specialists 
and tests [15], worsening outcomes. Early recognition 
of symptoms and treatment may reduce the incidence 
of severe and irreversible long-term sequelae of GD 
[16]. Widespread genetic screening of newborns for 

rare diseases will help avoid the diagnostic odyssey and 
improve outcomes for those identified, but is not yet 
widely available for many rare diseases [17]. Furthermore, 
there is a need to identify undiagnosed adult patients, 
including those with less severe forms of GD, that could 
benefit from treatment later in life.

A clinical diagnostic algorithm is available for GD [18]. 
Although effective, its usefulness in practice relies on 
physician awareness of the disorder, knowledge of the 
clinical diagnostic algorithm, as well as verification of 
numerous clinical characteristics, including differential 
diagnoses. The development of algorithms using machine 
learning to identify patients who are highly suspected of 
having rare disorders can alleviate some of the limita-
tions by reducing the a priori deduction required to apply 
the clinical diagnostic algorithms. Indeed, the ability of 
machine learning algorithms to incorporate a wide array 
of clinical characteristics can enhance the diagnostic 
abilities of clinicians to identify individuals with complex 
presentations of rare diseases.

Here, we report on the development of two algorithms 
using machine-learning techniques to identify highly sus-
pected patients with GD in Optum’s de-identified Inte-
grated Claims-Clinical dataset.

Methods
Data source
We utilized Electronic Health Records (EHRs) contained 
within Optum’s de-identified Integrated Claims-Clinical 
dataset (2007–2019) for exploratory analysis, feature 
engineering, feature selection, and algorithm training, 
tuning, selection, and testing. Optum® Integrated data-
base aggregates de-identified EHR data from providers 
across the continuum of care. It is derived from dozens of 
US healthcare provider organizations, that include > 700 
hospitals and > 7000 clinics, treating > 102 million 
patients. This study did not require oversight by an inde-
pendent institutional review board since only de-identi-
fied patient data were used.

Study populations
GD cohort
The GD cohort was defined as patients with at least two 
instances of GD diagnoses (ICD-10 code E75.22) or at 
least one record of a GD-specific treatment (Table  S1) 
in the integrated database. The index date was set as the 
first day of the initial diagnosis or receipt of treatment. 
The look-back period for patients with GD was defined as 
the duration of coverage prior to the index date.

Patient records were excluded if they had incoherent 
diagnosis or treatment timelines in relation to the index 
date (e.g. reported first date of activity after index date, 
reported last date of activity before index date, or death 
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before index date). Patient records with other LSDs (such 
as Fabry, Pompe, Niemann-Pick, Tay-Sachs or mucopoly-
saccharidosis) were also excluded due to the potential for 
coding errors in patients with different LSDs.

Control cohort
The control cohort was selected from the remaining 
records of patients who did not meet the GD inclusion 
criteria, subject to the same exclusion criteria, except for 
the presence of another LSD. The index date for the con-
trols was set at the median look-back period for the GD 
cohort.

Feature identification and definitions
We identified four categories of features to use in the 
model: (1) clinical characteristics of GD based on a 
review of the scientific literature, including information 
from the Genetic and Rare Diseases Information Center 
(GARD) [19]—80 clinical characteristics of GD were 
identified and grouped into organ classes (Additional 
file 1: Fig. S1); (2) three demographic features, compris-
ing race (African American, Asian, Caucasian, other/
unknown), US region (midwest, south, west, northeast, 
other/unknown) and gender (male, female); (3) informa-
tion on 16 interactions with healthcare system “provid-
ers” (specialists visited [primary care, medical genetics, 
neurology, hematology, oncology, rheumatology, oph-
thalmology, internal medicine, general practice, orthope-
dic surgery, hepatology, gastroenterology, pediatrics, pain 
medicine, radiology, family medicine]) by “visits” (type 
of patient visit [emergency, inpatient, outpatient]) and 
“encounter” (all patient interaction types [such as home 
visits, imaging]); (4) eight data-driven features derived to 
include features prevalent in the GD cohort that were not 
captured by the scientific literature review.

To assess data-driven features, Cramer’s V test was 
used to identify features that were more, or less, fre-
quently associated with the GD cohort than controls. A 
separate control cohort was identified for this exercise 
(control patients selected for algorithm training were not 
considered for this step), using an exact matching (1:100 
GD/control ratio) without replacement based on years 
of coverage. This created a similar control population to 
the GD cohort. Expert clinical opinion was used to trim 
features that are likely false associations and/or irrelevant 
to the clinical picture. Features selected were those with 
Cramer’s V coefficients > 0.1 threshold and p values < 0.05 
using a Chi-square test.

Once the features were determined, we defined each 
feature using information from the de-identified EHR. 
Four data sources within the EHR were used to define the 
features: (1) diagnosis codes, specifically International 
Classification of Diseases 9th and 10th Revisions (ICD-9 

and ICD-10) diagnosis codes; (2) procedures, specifi-
cally ICD-9 and ICD-10 procedure codes; (3) laboratory 
measurements; (4) pre-extracted Signs/Disease/Symp-
toms (SDS) terms using natural language processing from 
providers’ notes. Additional file 1: Fig. S2 illustrates how 
information from these data sources was combined to 
define the features.

Two ways of encoding features were defined: age at 
first occurrence (or if not presented, censured beyond 
a reasonable human lifetime at 200  years) (age-based) 
or binary presence/absence of the feature (prevalence-
based). Features of healthcare interactions were also 
encoded by frequency of encounters. Treatments were 
only derived with binary flags (presence/absence).

Algorithm selection, training and assessment
To ensure appropriate patients would be used to train 
the algorithm, hierarchical agglomerative clustering was 
used to identify non-representative patients with GD 
with a paucity of information for removal from algorithm 
training [20, 21]. The GD cohort identified for algorithm 
training was restricted to those with at least 1 year cover-
age. Events across the study period (i.e. before and after 
the index date) were considered for training to account 
for disease evolution after diagnosis, with exceptions for 
events expected to be biased after diagnosis (e.g. visits).

Light Gradient Boosting Machine (LightGBM) [22] was 
used to develop the algorithms to predict the likelihood 
of GD using all the features described above. The algo-
rithms were trained on a 1:10 GD to control training ratio 
(training cohort). Random sampling was performed to 
select 10 patients without GD among a cohort composed 
of 500 patients without GD for 1 patient with GD.

The trained algorithms were evaluated on a popula-
tion containing both patients with GD and controls in a 
1:10,000 GD to control ratio (test cohort); 100 patients 
with GD and 1 million controls independent from the 
training cohort were randomly picked based on the cri-
teria previously defined. The trained algorithms were 
applied on the test dataset with no censoring of any event 
during the observation period, to assess how the algo-
rithm would perform in conditions close to the real-life 
application (i.e. no information censored).

Algorithm performance was evaluated using the area 
under the precision and recall curve (AUPRC), a stand-
ard approach for imbalanced dataset classification [23]. 
Hyper-parameter tuning and optimization was per-
formed on the AUPRC through a 10-folds cross valida-
tion, with a ratio of 1 patient with GD to 10 controls. 
Bootstrapping on controls was performed to limit sample 
bias during random selection. The cross-validation was 
performed 10 times, by selecting each time 10 controls 
for 1 patient with GD from the training dataset initially 
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composed of 500 controls for 1 patient with GD. Con-
trols were unique (no replacement) in each bootstrap, 
but could be selected in several bootstraps (selection 
with replacement between bootstraps). The distribution 
of the 10 best AUPRC (one for each bootstrap) was ana-
lyzed to ensure the robustness of the algorithm. The final 
algorithm was a randomly picked bootstrap among the 
10 choices (i.e. a training dataset at 1 patient with GD to 
10 control ratio and its associated best hyper-parameters 
determined with cross-validation).

The Shapley additive explanations (SHAP) method 
was utilized to understand the role each feature played 
in the algorithm predictions. The SHAP method assigns 
each feature an importance value for its contribution to 
a particular prediction probability [24], i.e. GD in our 
study. The larger the SHAP value, the higher the feature’s 
importance in prediction of the outcome. The predic-
tion probability value of each algorithm for each patient 
and the sum of the algorithm values were used to rank 
patients as the most highly suspected of having GD. In 
order to assess the results, we chose a ≥ 0.95 prediction 
probability threshold to define the “highly suspected 
population”. In addition, we adapted the filter criteria 
from an existing clinical decision tool for the identifica-
tion of patients with GD [18], to the integrated database 
using diagnostic/procedure codes and other identifiers 
(Additional file 1: Fig. S3) as an alternate method of iden-
tifying patients highly suspected of having GD.

The patient groups of interest (including the “highly 
suspected population”) were characterized with descrip-
tive statistics by age distribution, prevalence of clinical 
characteristic or visits, age at first occurrence of clini-
cal characteristics or visits, prevalence of treatments, 
and percentage of patients who received GD treatment 
or who had a differential diagnosis. The performance of 
the algorithms was compared with the clinical diagnostic 
algorithm by determining the number of patients needing 
diagnostic testing to find a given number of patients with 
GD [18]. The demographic and clinical characteristics of 
the GD “highly suspected population” identified by the 
age- and prevalence-based algorithms, as well as those 
(1) identified using the clinical diagnostic algorithm, and 
(2) the entire diagnosed GD cohort were described.

Results
Gaucher disease and control population
Patients
The diagnosed GD cohort  comprised  829 patients (207 
with ≥ 2 GD diagnoses, 248 with ≥ 1 GD treatment, and 
374 with ≥ 2 GD diagnoses and ≥ 1 GD treatment). Of 
these, 14 were excluded: 2 died before the index date; 
3 had missing age or gender information; and 9 were 
also diagnosed with other LSDs, indicating potential 

misdiagnosis. The final diagnosed GD cohort com-
prised 815 patients; of these, 100 were randomly selected 
and set aside for the test cohort. Of the remaining 715 
that could be used to train the algorithm, 59 were not 
included because they had < 1-year coverage; thus, 656 
were used for algorithm training. Therefore, a total of 756 
patients with diagnosed GD were included in the training 
and testing of the algorithms. These were matched with 
328,000 controls (500 controls for 1 patient with GD) to 
form the training cohort, and 1,000,000 controls (10,000 
controls for 1 patient with GD) to form the test cohort, 
respectively, for a total of 1,328,000 controls. A summary 
of the demographics of the diagnosed GD and control 
cohorts utilized in our study is presented in Table 1.

Clinical characteristics and visits to specialists
The clinical characteristics of the diagnosed GD and con-
trol cohorts are presented in Table 2; the diagnosed GD 
cohort had a higher prevalence of most clinical charac-
teristics including anemias, thrombocytopenia, bone 
density disorders, osteoarthritis, dysphagia, abdominal 
pain, fever, splenomegaly, pulmonary fibrosis, and res-
piratory failure (all p < 0.001, Chi-square and T test). In 
addition, the proportion who had visited the various spe-
cialists was also consistently higher in the diagnosed GD 
cohort (Table 3). The most significant specialists visited 
by diagnosed GD patients by visit or by age were oncolo-
gists (both p < 0.001, Chi-square and T test) or ophthal-
mologists (p < 0.001, Chi-square; p < 0.01, T test).

Training and test cohorts
The distributions of the characteristics among the train-
ing and test cohorts were assessed to verify whether bias 
was introduced between the two cohorts due to the dif-
ferent cohort sizes, which would cause the algorithm to 
behave differently during testing compared to training.

The diagnosed GD cohort assigned to the training (656 
patients) and the test datasets (100 patients) had on aver-
age the same age (44 years), the same coverage (7 years) 
and a similar number of symptoms (5 symptoms). How-
ever, by chance, those in the training dataset appeared 
to have lower prevalence of visits than those in the test 
dataset. For example, patients with GD from the training 
dataset had fewer visits to an internal medicine specialist 
(25% vs. 58%, 2 visits vs. 48 visits on average), a neurolo-
gist (25% vs. 47%, with 3.8 visits on average vs. 47 visits 
on average) and a radiologist (16% vs. 46%).

The control training (328,000 patients) dataset over-
all appeared to have more severe symptoms than those 
in the control test (1,000,000 patients) dataset but had 
fewer visits due to post-index date censorship. Those in 
the training dataset had a higher coverage period (aver-
age 7 ± 3 vs. 6 ± 3 years), were more symptomatic (average 
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Table 1  Demographics of the diagnosed GD and control cohorts

Diagnosed with GD N = 756 Controls N = 1,328,000 p value#

Age at index (years)  < 0.001

 Mean (SD) 44 (22) 40 (24)

 Min 0 0

 Median (Q1–Q3) 45 (27–61) 39 (21–58)

 Max 87 89

Age in class  < 0.001

 0–9 58 (7.7%) 175,841 (13.2%)

 10–19 57 (7.5%) 133,630 (10.1%)

 20–29 93 (12.3%) 181,418 (13.7%)

 30–39 107 (14.2%) 174,281 (13.1%)

 40–49 114 (15.1%) 167,545 (12.6%)

 50–59 121 (16.0%) 188,475 (14.2%)

 60–69 110 (14.6%) 148,014 (11.1%)

 70–79 72 (9.5%) 102,493 (7.7%)

 80–89 24 (3.2%) 56,303 (4.2%)

Race  < 0.001

 African American 29 (3.8%) 128,439 (9.7%)

 Asian 2 (0.3%) 28,957 (2.2%)

 Caucasian 624 (82.5%) 830,948 (62.6%)

 Other/unknown 101 (13.4%) 339,656 (25.6%)

Ethnicity  < 0.001

 Hispanic 37 (4.9%) 84,613 (6.4%)

 Not Hispanic 621 (82.1%) 877,906 (66.1%)

 Unknown 98 (13.0%) 365,481 (27.5%)

Region  < 0.001

 Midwest 193 (25.5%) 565,677 (42.6%)

 Northeast 345 (45.6%) 189,864 (14.3%)

 South 133 (17.6%) 352,187 (26.5%)

 West 61 (8.1%) 137,904 (10.4%)

 Other/unknown 24 (3.2%) 82,368 (6.2%)

Death
 0 716 (94.7%) 1,258,157 (94.7%)

 1 40 (5.3%) 69,843 (5.3%)

Coverage (years)  < 0.001

 Mean (SD) 7 (3) 5 (4)

 Min 0.17 0

 Median (Q1–Q3) 7 (4–10) 4 (0–8)

 Max 12.75 12.82

Look-back period (years)  < 0.001

 Mean (SD) 3 (3) 2 (2)

 Min 0 0

 Median (Q1–Q3) 2 (1–5) 1 (0–2)

 Max 12.36 7.19

Look-back period
 At least 6 months 573 (75.8%) 727,800 (54.8%)

 At least 12 months 513 (67.9%) 638,042 (48.0%)

 At least 18 months 452 (59.8%) 638,042 (48.0%)

 At least 24 months 404 (53.4%) 481,827 (36.3%)

 At least 36 months 325 (43.0%) 249,674 (18.8%)
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number of symptoms 5 [± 4] vs. 2 [± 2]), and had a higher 
prevalence of anemias (54% vs. 39%) and abdominal pain 
(22% vs. 15%) than the test dataset.

Algorithm selection
Two final algorithms to predict the likelihood of GD were 
retained, one where feature encoding was defined by age 
at first occurrence (age-based algorithm) and the other 
where feature encoding was binary presence/absence 
(prevalence-based algorithm). The AUPRC was 0.66 for 
both algorithms. AUPRC can range from 0 to 1, where 
the baseline (equivalent to a random classifier) is equal 
to the fraction of positives [25]. In our case, the baseline 
AUPRC would be 0.1 given the 1:10 GD to control ratio 
in the training set. Therefore, the performance of both 
algorithms is 6.6 times better in predicting the likelihood 
of GD than a baseline classifier.

Patients identified with suspected GD by the algorithms 
and the currently available clinical diagnostic algorithm
The demographics and clinical characteristics of the 
“highly suspected population” with GD identified by the 
two algorithms, as well as their visits to the specialist, 
are summarized in Additional file 1: Tables S2–S4, along 
with those identified using the currently available clini-
cal diagnostic algorithm as having suspected GD, and the 
entire diagnosed GD cohort.

In general, the two algorithms identify different types 
of patients. Those identified with the age-based algorithm 
were younger than those identified with the prevalence-
based algorithm (mean age, 36 vs. 52 years) (Additional 
file 1: Table S2), and those identified by the latter tended 
to have more clinical features present but with first 
occurrence appearing at a later age (Additional file  1: 
Table S3). Although those identified with the prevalence-
based algorithm also generally had higher prevalence of 

visits to specialists than those identified by the age-based 
algorithm, they tended to have fewer mean visits (Addi-
tional file 1: Table S4).

In comparison to both the age- and prevalence-based 
algorithms, those identified using the clinical diagnostic 
algorithm (Additional file 1: Fig. S3) were older patients 
(mean 61 years), tended to have more symptoms, and the 
mean age of symptom onset was generally later than with 
the two algorithms (Additional file  1: Table  S2 and S3). 
However, they had a lower prevalence of organomegaly 
(Additional file 1: Table S3) and their first visit to the spe-
cialist was at an older age (Additional file 1: Table S4).

Feature importance
The top GD prediction drivers in the age- and preva-
lence-based algorithms are summarized in Fig. 1. The top 
four most important features and their relative impor-
tance ranking were the same across both algorithms; 
these were splenomegaly, the patient being located in the 
northeast region, thrombocytopenia and osteonecrosis; 
all increased the probability of predicting GD. Bone den-
sity, bone pain and frequency of visits to the neurologist 
were among the top ten most important features, which 
also increased the probability of predicting GD, though 
their relative importance ranking differed between the 
two algorithms. Fever, the patient’s location as the mid-
west region and abdominal pain were also among the 
top ten most important features, but these decreased the 
probability of predicting GD.

Assessing algorithm performance—comparison with real 
world application of the available clinical diagnostic 
algorithm
The number of patients with diagnosed GD identi-
fied by both algorithms (among the “highly suspected 
population”) in relation to each other, and among those 

# Chi-square and T test for categorical and continuous variables, respectively.

Table 1  (continued)

Diagnosed with GD N = 756 Controls N = 1,328,000 p value#

Number of distinct symptoms  < 0.001

 Mean (SD) 5 (4) 2 (2)

 Min 0 0

 Median (Q1–Q3) 4 (2–7) 1 (0–2)

 Max 19 25

GD treatment
 Untreated 0%

 Treated 0%

Rare disease history  < 0.001

 0 756 (100.0%) 1,327,978 (100.0%)

 1 0 (0%) 22 (0%)
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Table 2  Clinical characteristics of the diagnosed GD and control cohorts

Features Diagnosed with GD Controls Chi-square T test

N = 756 N = 1,328,000

N % Age at 1st event; 
years, mean (SD)

N % Age at 1st event; 
years, mean (SD)

Anemia
 Anemias 614 81.22 43 (21) 567,739 42.75 44 (22) *** ***

Blood disorder
 Coagulation defects 31 4.1 49 (25) 6922 0.52 56 (20) ***

 Pancytopenia 32 4.23 44 (25) 3794 0.29 62 (18) ***

 Thrombocytopenia 300 45.73 43 (22) 26,644 8.12 57 (21) *** ***

Bone disorder
 Arthralgia 19 2.51 48 (18) 12,932 0.97 56 (18) ***

 Arthrogryposis 9 1.19 68 (11) 9882 0.74 53 (19)

 Avascular necrosis 31 4.1 48 (18) 926 0.07 55 (18) ***

 Bone density disorders 229 30.29 54 (17) 49,065 3.69 67 (13) *** ***

 Bone pain 65 8.6 43 (18) 2958 0.22 50 (21) ***

 Chondropathies 10 1.32 52 (24) 8913 0.67 48 (20) *

 Delayed skeletal maturation 11 1.46 48 (22) 3908 0.29 56 (20) ***

 Erlenmeyer flask deformity 0 0 827 0.06 45 (20)

 Joint dislocation 2 0.26 58 (5) 3013 0.23 43 (21)

 Kyphosis 15 1.98 43 (29) 3709 0.28 62 (22) *** *

 Osteoarthritis 150 19.84 60 (15) 112,928 8.5 63 (14) *** ***

 Osteolysis 5 0.66 66 (7) 203 0.02 58 (19) ***

 Osteonecrosis 50 6.61 47 (18) 1464 0.11 56 (17) ***

 Osteopenia 77 10.19 48 (19) 11,140 0.84 66 (12) ***

 Osteoporosis 58 7.67 58 (15) 13,119 0.99 68 (13) ***

 Pathological fracture 11 1.46 53 (18) 2283 0.17 65 (19) ***

 Spine deformation 0 0 136 0.04 40 (29)

Cerebral/nervous system disorder
 Ataxia 10 1.32 51 (29) 4534 0.34 62 (19) ***

 Bradykinesia 4 0.53 62 (11) 359 0.03 70 (13) ***

 Cranial nerve disorders 1 0.13 84 267 0.02 55 (20)

 Developmental regression 51 6.75 36 (29) 34,475 2.6 39 (31) *** **

 Dysphagia 57 7.54 50 (27) 34,106 2.57 58 (21) *** ***

 Extrapyramidal disorder 5 0.66 53 (15) 1660 0.13 52 (21) ***

 Gaze palsy 1 0.13 46 77 0.01 49 (27) *

 Hearing impairment 66 8.73 55 (23) 57,555 4.33 53 (25) *** **

 Hemiplegia/hemiparesis 7 0.93 55 (22) 6215 0.47 63 (19) *

 Hydrocephalus 6 0.79 60 (29) 2078 0.16 50 (28) ***

 Laryngeal spasm 3 0.4 29 (41) 468 0.04 40 (27) ***

 Muscle hypotonia 7 0.93 3 (2) 587 0.04 9 (17) ***

 Myoclonic seizure 1 0.13 17 144 0.01 30 (19)

 Nerve root compression 0 0 419 0.03 56 (17)

 Oculomotor apraxia 4 0.53 28 (36) 286 0.02 39 (29) ***

 Opticokinetic nystagmus 5 0.66 26 (32) 1126 0.08 40 (26) ***

 Paralytic strabismus 1 0.13 15 676 0.05 28 (26)

 Parkinson 22 2.91 64 (11) 3434 0.26 73 (11) ***

 Tonic clonic seizure 1 0.15 9 159 0.05 42 (23)

Development disorders
 Delayed puberty 1 0.13 13 292 0.02 16 (9)
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Table 2  (continued)

Features Diagnosed with GD Controls Chi-square T test

N = 756 N = 1,328,000

N % Age at 1st event; 
years, mean (SD)

N % Age at 1st event; 
years, mean (SD)

 Growth retardation 6 0.79 15 (13) 219 0.02 11 (14) *** **

 Short stature 7 0.93 11 (4) 1908 0.14 11 (11) ***

Eye disorder
 Corneal disorders 7 0.93 49 (32) 2396 0.18 58 (20) ***

 Non diabetic retinopathy 3 0.4 61 (26) 2232 0.17 50 (28)

General signs
 Abdominal pain 217 28.7 47 (22) 227,908 17.16 42 (22) *** ***

 Elevated CRP 5 0.66 52 (16) 2204 0.17 50 (21) **

 Fatigue 222 29.37 47 (19) 111,605 8.4 51 (21) *** *

 Fever 143 18.92 41 (23) 171,634 12.92 34 (25) *** ***

 Gingival bleeding 2 0.26 51 (32) 230 0.02 42 (28) ***

 Muscle atrophy 4 0.53 77 (12) 120 0.01 61 (16) ***

 Tremor 27 4.12 53 (22) 4153 1.27 56 (20) ***

 Vitamin D deficiency 116 17.68 50 (19) 20,321 6.2 54 (18) *** *

Heart disorder
 Valve calcification 9 1.37 72 (14) 1740 0.53 69 (14) **

Hepatic disorders
 Cirrhosis 14 1.85 46 (16) 5889 0.44 60 (13) ***

 Hepatic fibrosis 6 0.79 48 (29) 514 0.04 55 (15) ***

 Hepatitis 19 2.51 49 (23) 4761 0.36 54 (17) ***

 Portal hypertension 13 1.72 38 (22) 2734 0.21 59 (13) ***

Immunology
 Polyclonal gammopathy 4 0.53 60 (19) 308 0.02 52 (22) ***

Kidney disorder
 Acute kidney disease 31 4.1 66 (14) 4214 0.32 56 (20) ***

 Hematuria 74 9.79 53 (21) 61,349 4.62 52 (21) *** *

 Proteinuria 34 4.5 53 (22) 18,060 1.36 53 (21) ***

Malignancy
 Liver neoplasm 3 0.4 55 (26) 1452 0.11 63 (14)

 Malignant melanoma 5 0.66 63 (7) 3092 0.23 62 (15) *

 Multiple myeloma 7 0.93 61 (10) 1213 0.09 67 (13) ***

 Non Hodgkin Lymphoma 8 1.06 61 (27) 1738 0.13 65 (16) ***

 Other malignant neoplasms 2 0.26 38 (46) 150 0.01 56 (21) ***

 Pancreatic cancer 2 0.26 55 (15) 1381 0.1 67 (13)

 Uncertain neoplasms 41 6.25 58 (16) 1259 0.38 60 (19) ***

Organomegaly
 Hepatomegaly 134 17.72 35 (22) 6230 0.47 52 (18) *** **

 Splenomegaly 238 36.28 39 (21) 2036 0.62 52 (19) *** ***

 Ventriculomegaly 2 0.3 74 (0) 15 0 58 (26) ***

Perinatal disorders
 Hydrops fetalis 1 0.13 2 34 0 21 (15) ***

 Ichthyosis 0 0 221 0.02 44 (27)

Psychiatric disorders
 Dementia non-senile 19 2.51 69 (16) 17,888 1.35 78 (10) ** ***

 Depression 159 21.03 50 (20) 165,339 12.45 46 (20) *** **
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identified using the clinical diagnostic algorithm is sum-
marized in Fig. 2. Overall, 1204 and 2862 patients would 
be required to be assessed with the age- and prevalence-
based algorithms, respectively, versus 20,743 with the 
clinical diagnostic algorithm, to identify 28 patients with 
diagnosed GD.

Discussion
We used real-world data to develop two algorithms to 
identify patients with a high likelihood of GD, who would 
be appropriate candidates for confirmatory diagnostic 
testing. As expected, the top drivers for prediction of 
GD in both the age- and prevalence-based algorithms 
included splenomegaly and thrombocytopenia, which 
are among the ‘hallmarks’ of GD. Although splenomegaly 
and thrombocytopenia could also be attributed to infec-
tious diseases such as HIV, we preferred not to include 
differential diagnoses in the algorithm training. Indeed, 
since several signs and symptoms are common between 
GD and HIV (e.g. splenomegaly and thrombocytopenia), 
HIV could be mistaken by the algorithm as being associ-
ated with GD. Therefore, HIV was excluded from train-
ing, but kept as descriptive information of the cohorts. If 
the algorithm was applied, this could be done as a post-
filtering step. Of note, the northeast region was also a 
top predictor of GD with both algorithms. The northeast 
region has the highest Jewish population in the USA (44% 
of the Jewish population reside in the northeast region 
[26]), and the GD mutation is more prevalent within the 
Ashkenazi Jewish population [18]. In contrast, despite 
the west region being the region with the second highest 
Jewish population, this was not, in this case, identified as 
a predictor of GD; the limited number of patients with 
GD from the west region (61 [8.1%]) in our study may 
partially account for this observation.

Although the diagnosis of GD could not be con-
firmed beyond the EHR in the real-world dataset, the 

characteristics of patients with diagnosed GD in Optum’s 
de-identified Integrated Claims-Clinical dataset appear 
consistent with those identified in registries, patient-
chart reviews, and population-based cohorts [27–30]: 
patients with GD had a high prevalence (≥ 15% preva-
lence in our study) of anemias, thrombocytopenia, sple-
nomegaly, hepatomegaly, bone density disorders, and 
osteoarthritis. Other common general signs identified 
included abdominal pain, fatigue, fever, and vitamin D 
deficiency, as well as depression. Therefore, we are confi-
dent the algorithms were trained on appropriate patients.

Both the age- and prevalence-based algorithms devel-
oped were more efficient in identifying patients with 
diagnosed GD in the integrated dataset than the clinical 
diagnostic algorithm (1204 and 2862 patients assessed, 
respectively, vs. 20,743 to identify 28 with diagnosed GD), 
supporting their use in identifying likely candidates for 
confirmatory diagnostic testing. Patients identified with 
the clinical diagnostic algorithm tended to have more 
comorbidities compared to the two algorithms devel-
oped by machine learning, which were not all related to 
or hallmarks of GD, but possibly associated with older 
age. For example, they had a much higher prevalence of 
osteoarthritis and hearing impairment. However, they 
had much lower prevalence of splenomegaly, an impor-
tant GD hallmark. In general, the age- and prevalence-
based models appear to identify younger patients, with 
profiles closer to the entire GD cohort than the clinical 
diagnostic algorithm. This was clear in the description of 
the “highly suspected population” with GD, where those 
identified with the age-based algorithm were younger 
than the entire GD cohort and those identified  with 
the  prevalence-based algorithm had more pronounced 
disease manifestations.

Joint application of the age- and prevalence-based algo-
rithms maximizes the identification of patients with GD. 
Although the implementation of the clinical diagnostic 

Table 2  (continued)

Features Diagnosed with GD Controls Chi-square T test

N = 756 N = 1,328,000

N % Age at 1st event; 
years, mean (SD)

N % Age at 1st event; 
years, mean (SD)

Respiratory disorder
 Interstitial pulmonary abnormality 7 0.93 44 (36) 2600 0.2 67 (16) *** **

 Pulmonary fibrosis 13 1.72 63 (20) 6865 0.52 67 (15) *** ***

 Pulmonary hypertension 33 4.37 58 (20) 11,173 0.84 69 (17) ***

 Respiratory failure 35 4.63 57 (29) 27,676 2.08 63 (20) *** ***

*p value < 0.05

**p value < 0.01

***p value < 0.001
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algorithm also would help identify more patients with 
GD, a substantially higher number of patients would 
need to be assessed, and as such would require extensive 
resources for additional testing, which would not benefit 
a large number. In addition, rule-based filtering classifica-
tion algorithms such as the clinical diagnostic algorithm 
are of limited use with data containing missing values 
[31], and real-world medical datasets typically suffer 
from such missing data [32]. In contrast, machine learn-
ing algorithms, such as those developed here, have the 
ability to recognize relevant characteristic disease pat-
terns from existing individual patients’ histories despite 
incomplete/missing data.

Our study has some limitations due to the nature of 
EHR data. Although we included earliest age at diagno-
sis, it was not possible from the integrated database to 
precisely determine the first date diagnosis, which could 
bias the age of diagnosis toward higher values. Other 
limitations inherent to use of EHR datasets include 

0 0.5 1

RACE Asian

Treatment:  ACE inhibitor

Female

Symp: osteopenia

RACE: African American

Symp: acute kidney disease

Prov: Oncology

Symp: pulmonary hypertension

Symp: dysphagia

RACE: Caucasian

Prov: Neurology

Symp: abdominal pain

REG: Midwest

Symp: fever

Symp: bone pain

Symp: bone density disorders

Symp: osteonecrosis

Symp: thrombocytopenia

REG: Northeast

Symp: splenomegaly

Feature importance (Arbitrary unit)

0 0.5 1

RACE:  African American

Prov: Gastroenterology (freq)

Symp: pulmonary hypertension

Symp: dysphagia

RACE:  Other/Unknown

Symp: acute kidney disease

Symp: hearing impairment

Prov: Pediatrics (freq)

RACE:  Caucasian

Symp: osteoarthri�s

Symp: abdominal pain

Symp: fever

Symp: bone density disorders

REG: Midwest

Prov: Neurology (freq)

Symp: bone pain

Symp: osteonecrosis

Symp: thrombocytopenia

REG: Northeast

Symp: splenomegaly

Feature importance (Arbitrary unit)

a) b)

Black = features that had a posi�ve influence towards the GD diagnosis; grey = features that had 
a nega�ve influence on GD diagnosis; REG = region; Prov = provider; Symp = symptom

Fig. 1  Comparison of top drivers of GD prediction: a age and b prevalence algorithms. The feature importance presented is the average influence 
from all patients identified; splenomegaly was the most important feature and was set at an arbitrary value [AV] of 1, from which all the other 
feature relative importance values were calculated

Fig. 2  Numbers of patients with diagnosed GD identified 
by the algorithms, among those identified as a “highly 
suspected population” with GD (threshold > 0.95) 
by the age- and prevalence-based algorithms, and those identified 
using the clinical diagnostic algorithm as having suspected GD. 
The numbers shown outside the circles are those identified 
by the respective models who had a GD diagnosis already (in blue) 
and as the “highly suspected population” with GD (in grey)
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information and selection bias as a result of missing/vari-
able information including inequities in healthcare access 
across socioeconomic status and race, and/or changes in 
data recording overtime. The accuracy of ICD-10 code 
E75.22 for GD in EHR databases is unknown, although 
we required at least 2 codes to reduce biases due to cod-
ing errors. Our strict case definition, restricted to those 
diagnosed with GD or on a GD-specific treatment, and 
exclusion of those with < 1-year coverage, likely reduced 
the size of the GD cohort compared to the expected gen-
eral prevalence and may limit generalizability. EHR data-
bases may not fully capture the clinical manifestations 
and complications of GD over time. For example, some 
symptoms such as Erlenmeyer flask deformity were not 
as prevalent as expected, which may be related to difficul-
ties in capturing such signs in an EHR database.

Ideally, an algorithm(s) would be able to identify undi-
agnosed patients with GD (e.g. among controls in our 
study since they had no GD diagnosis). We analyzed de-
identified data to develop the algorithms, and as such, we 
were unable to contact those highly suspected of having 
undiagnosed GD for further diagnostic testing to assess 
how well the algorithms identify such patients. Therefore, 
we can only assess the algorithms’ performance based on 
identification of diagnosed GD patients, and similarity of 
highly-suspected patients to the diagnosed GD popula-
tion. Planned future applications of the age- and preva-
lence-based algorithms in healthcare systems will remove 
this limitation.

Although the diagnosed GD cohort in the training 
and test datasets were both representative of the GD 
cohort overall, since only 100 patients were included 
in the test dataset, some dissimilarities may emerge 
due to the small sample size which could impact algo-
rithm performance. In addition, the construction of the 
algorithm and features during training affects the infor-
mation favored by the algorithm to separate the distri-
bution of patients with GD and controls. For example, 
the prevalence-based algorithm, which included patient 
features as flags (presence/absence), used clinical char-
acteristics such as hepatomegaly, splenomegaly and 
thrombocytopenia that had a high prevalence differ-
ence between the diagnosed GD and control cohorts 
to make predictions. It also favored those with an accu-
mulation of symptoms, and thus, biased the algorithm 
towards older patients. To avoid the bias towards older 
patients with more disease manifestations, we did not 
match controls on age with the diagnosed GD cohort so 
as to teach the algorithm the difference between GD-
related morbidity and age-related morbidity. The age-
based algorithm favored symptoms with different age of 
onset between the diagnosed GD and control cohorts. 
Thus, the age-based algorithm favored patients with 

earlier onset of GD, i.e. younger patients. Nonetheless, 
both algorithms performed equivalently in terms of 
AUPRC, and may be considered complementary since 
they identify patients across the spectrum of heteroge-
neity of GD. The use of both algorithms would better 
capture the heterogeneity inherent to GD, but more 
research would be needed to compare results between 
the GD phenotypes (Types 1, 2 and 3).

Conclusions
Both the age- and prevalence-based algorithms devel-
oped are more efficient in identifying patients with 
diagnosed GD than the existing clinical diagnostic algo-
rithm as applied to a US EHR dataset. These algorithms 
could shorten diagnostic delay by identifying patients 
who are appropriate candidates for GD diagnostic test-
ing (e.g. patients highly suspected of GD by the algo-
rithms who do not already have a GD diagnosis).
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