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Abstract 

Background In biomedicine, machine learning (ML) has proven beneficial for the prognosis and diagnosis of dif‑
ferent diseases, including cancer and neurodegenerative disorders. For rare diseases, however, the requirement 
for large datasets often prevents this approach. Huntington’s disease (HD) is a rare neurodegenerative disorder caused 
by a CAG repeat expansion in the coding region of the huntingtin gene. The world’s largest observational study 
for HD, Enroll‑HD, describes over 21,000 participants. As such, Enroll‑HD is amenable to ML methods. In this study, we 
pre‑processed and imputed Enroll‑HD with ML methods to maximise the inclusion of participants and variables. With 
this dataset we developed models to improve the prediction of the age at onset (AAO) and compared it to the well‑
established Langbehn formula. In addition, we used recurrent neural networks (RNNs) to demonstrate the utility of ML 
methods for longitudinal datasets, assessing driving capabilities by learning from previous participant assessments.

Results Simple pre‑processing imputed around 42% of missing values in Enroll‑HD. Also, 167 variables were retained 
as a result of imputing with ML. We found that multiple ML models were able to outperform the Langbehn formula. 
The best ML model (light gradient boosting machine) improved the prognosis of AAO compared to the Langbehn 
formula by 9.2%, based on root mean squared error in the test set. In addition, our ML model provides more accu‑
rate prognosis for a wider CAG repeat range compared to the Langbehn formula. Driving capability was predicted 
with an accuracy of 85.2%. The resulting pre‑processing workflow and code to train the ML models are available to be 
used for related HD predictions at: https:// github. com/ Jaspe rO98/ hdml/ tree/ main.

Conclusions Our pre‑processing workflow made it possible to resolve the missing values and include most par‑
ticipants and variables in Enroll‑HD. We show the added value of a ML approach, which improved AAO predictions 
and allowed for the development of an advisory model that can assist clinicians and participants in estimating future 
driving capability.
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Background
Huntington’s disease (HD) is a rare disease that causes 
progressive degeneration of the brain and is inherited 
in an autosomal dominant manner. On average, the 
age at onset (AAO) for HD is around 45 years [1]. HD 
causes involuntary movements, cognitive impairments, 
psychiatric and behavioural problems, and progres-
sive weight loss [2]. The genetic cause of the disease 
is a CAG repeat expansion in the coding region of the 
huntingtin gene (HTT;ENSG00000197386), which is 
translated into an expanded stretch of glutamine amino 
acids in the huntingtin protein (HTT) [1]. This mutant 
protein is the main cause of neuropathology in HD [3]. 
Despite its discovery in 1993 [4], we still lack treat-
ments that can prevent, delay, or cure the disease [5].

Enroll-HD [6] is a worldwide longitudinal study of 
HD that has collected observational data from HD 
patients for about 20 years. As a result, Enroll-HD has 
become a large and high quality dataset, describing 
over 20,000 participants of which 16,000 are Hunting-
ton’s disease gene expansion carriers. The Enroll-HD 
dataset provides cross-sectional and longitudinal 
observational information regarding HD patients’ 
symptoms, such as the CAG repeat length and family 
history of HD. In addition, Enroll-HD records informa-
tion about participants’ nutrition, medication, medical 
history, as well as the assessments and care received at 
each visit to their healthcare providers. One of the lat-
est versions of Enroll-HD (PDS5) includes 21,116 par-
ticipants and 55,975 visits, where each participant can 
have up to 20+ healthcare visits [7]. Previous work on 
the application of machine learning (ML) models on 
Enroll-HD include evaluating the frequency and fac-
tors associated with psychosis in HD [8], predicting 
the development of suicidal ideas in HD patients [9], 
and predicting the size of the CAG expansion based 
on phenotypic data [10]. However, these studies used 
earlier versions (PDS2 or PDS3) of the Enroll-HD data-
set, which described only around 4000–8000 partici-
pants. Also little information was provided regarding 
the pre-processing steps in each study. Another more 
recent study by Mohan et  al. [11], used a probabilistic 
ML model to define stages of the disease. In addition, 
a study by Ghazaleh et al. [12] applied a random forest 
(RF) algorithm to identify the relative contribution of 
certain Enroll-HD variables to clinical disease progres-
sion. Another study by Ko et al. [13] applied K-Means 
clustering and trained a ML model (XGBoost) to pre-
dict the disease trajectory cluster. However, they still 
omitted details regarding the pre-processing steps and 
the Enroll-HD variables included in the analysis.

Pre‑processing enroll‑HD
In this work, we focus on the importance of the pre-
processing steps to maximise the number of partici-
pants and variables included in the analysis. Missing 
values, outliers and a lack of standardisation in data 
collection can hamper accurate predictions and must 
be addressed before any modelling and analysis. Here, 
we describe systematic and reproducible methods for 
pre-processing and imputation of missing values with 
ML. The pre-processed data can be used for additional 
studies, and future studies can reuse our workflow to 
pre-process and impute future releases of Enroll-HD 
in a similar fashion. We further demonstrate the utility 
of ML in HD for improving the estimation of the AAO 
and for continuous patient assessment using longitudi-
nal data.

Predicting the age at onset (AAO)
The AAO is one of the most important variables in the 
Enroll-HD dataset. It describes when an individual 
with a prolonged CAG-repeat in the HD causing range 
develops symptoms of the disease [14]. The length of 
the CAG repeat is inversely correlated to the AAO [15] 
and is the largest contributing factor for estimating the 
AAO [16]. Current models for AAO prediction use the 
length of the CAG repeat as the main predictor vari-
able, which explains only around 70% of the observed 
variability in AAO [17]. Cases where HD patients have 
precisely the same CAG repeat length, but start to 
exhibit symptoms at different ages, indicate that there 
is more at play than just the CAG repeat. For example, 
additional variations in the genetic code between indi-
viduals affect the AAO, as demonstrated by studies on 
genetic modifiers of HD [18–20].

Currently, the Langbehn formula [15] is used to esti-
mate the AAO, which is only based on the CAG repeat 
size. The formula was evaluated on CAG repeat sizes 
between 41 and 56. However, individuals can develop 
HD with a smaller or larger CAG repeat size. Therefore, 
there is a need for a model that can better explain the 
variability between the AAO and make better predic-
tions regarding the AAO of Huntington’s disease gene 
expansion carriers. The accurate prediction of the AAO 
will become more important for upcoming clinical tri-
als, which will investigate new (targeted) therapies to 
slow down disease progression, or even prevent disease 
onset. [21]. Here, more accurate AAO estimation could 
prevent unnecessarily starting therapy years too early. 
In this study, we aim to improve the AAO prediction, 
compared to the Langbehn formula, by training sev-
eral multivariate ML models on a broader CAG repeat 
range.
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Assessing driving capability
Also, we explored the longitudinal properties of the 
Enroll-HD dataset and the advantages of using ML meth-
ods for continued assessment and monitoring. Currently, 
a patient’s driving capability is recorded in Enroll-HD 
as a binary indicator. However, in a complex neurode-
generative disease like HD, with motor, cognitive, and 
behavioural factors, which can all influence the driv-
ing capability over time, it is hard to estimate when an 
individual’s driving capability will be impaired. Making 
use of ML models involving all these aspects, that can 
learn from previous assessments to improve current and 
future assessments, could help clinicians in advising their 
patients. Here, we applied Recurrent Neural Networks 
(RNNs) on the longitudinal Enroll-HD dataset to learn 
from previous assessments and provide a personalised 
and future trajectory on driving capability.

Methods
Here we describe the steps required to pre-process 
Enroll-HD and to train ML models for the prediction of 
the AAO and driving capability. Firstly, the inclusion cri-
teria, pre-processing steps, and the imputation of miss-
ing data is explained. After these steps the development 
of the ML models for AAO prediction and assessing the 
driving capability is described. The complete workflow 
is shown in Fig. 1 and described below. A more detailed 
workflow is available in Additional file 1.

Cohort
Data used in this work were generously provided by the 
participants in the Enroll-HD study and made avail-
able by CHDI Foundation, Inc. Enroll-HD is a global 
clinical research platform designed to facilitate clinical 
research in Huntington’s disease. Core datasets are col-
lected annually from all research participants as part of 
this multi-center longitudinal observational study. Data 
are monitored for quality and accuracy using a risk-based 
monitoring approach. All sites are required to obtain and 
maintain local ethical approval.

Enroll-HD version PDS5 was used for this study, which 
originated from the Enroll-HD electronic data capture 
database on October 31, 2020 at 23:00 UTC. The data is 
collected from 171 sites across 20 countries and describes 
baseline and longitudinal variables for 21,116 partici-
pants, see Fig. 1a [7].

Enroll‑HD inclusion criteria
Participants with an AAO or rater’s estimated AAO 
(sxrater) lower than 21 and a CAG repeat size above 
59 were excluded to remove juvenile HD patients from 

the cohort. Also, participants with a CAG repeat size 
below 36 were excluded. This resulted in a dataset of 
11,397 participants, with 36,980 study visits to health-
care facilities, see Fig. 1b. All variables in the cohort are 
described in Additional file 2 and online in the data dic-
tionary of Enroll-HD [22].

Pre‑processing
The pre-processing of the Enroll-HD dataset is 
explained in the following sections and shown in 
Fig. 1c.

Fig. 1 The workflow of the cohort selection, pre‑processing, 
imputation, and ML model training steps. a Selected version 
and tables of Enroll‑HD. b Inclusion criteria of our study. c 
Pre‑processing steps for the reduction of the number of missing 
values in the cohort. d Imputation of the remaining missing values 
using ML models. e Prediction steps. For the AAO prediction two 
cohorts are created one for the narrow CAG size (41–56) and another 
for the wide CAG size (36–59) to fit and evaluate the ML models 
and the Langbehn formula. For the driving capability the GRUs are 
fitted and evaluated with multiple hyperparameters
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Filtering variables
Firstly, variables with a high percentage of missing val-
ues (>  69%) were excluded from the analysis. Secondly, 
variables that were redundant were also filtered out. For 
example, the variable ‘sit‘ indicates whether the stroop 
test was completed during a visit. However, this can be 
deduced from the results saved in the variables ‘sit1‘ (total 
correct), ‘sit2‘ (total errors), and ‘sit3‘ (total self-corrected 
errors). Thirdly, some variables which have been used to 
create a derived variable, that represents the data stored 
in the used variables better, are excluded. For example, 
the maternal AAO (momagesx) and the paternal AAO 
(dadagesx) are excluded, because they are used to cre-
ate the parent’s AAO variable (parentagesx). Fourthly, 
variables which are considered not to have any valuable 
information are excluded e.g. the variable ‘xbsp’ which 
describes if there is additional biosample data available 
for the participant. Finally, some variables are excluded 
for other reasons, which require more elaboration, and 
are therefore explained in later sections. All variables fil-
tered out from the dataset are listed in Additional file 3 
with a category and description explaining the reason for 
filtering.

Filtering numerical values
The approach proposed by Cousineau et al. [23] was used 
to detect numerical errors in continuous variables. This 
approach detects values that fall outside the mean range 
( µ ) plus four times the standard deviation ( σ ). The val-
ues detected outside this range were evaluated manually 
to establish if they indicated an incorrect annotation. All 
values were found to be correct and were kept. The distri-
bution of the detected variables are shown in Additional 
file 4.

Calculating derived variables
Two variables were created by combining multiple vari-
ables. The first derived variable is the “Parent AAO” vari-
able. The Parent AAO records either the maternal AAO 
(momagesx) or paternal AAO (dadagesx). However, the 
AAO of the parent with the youngest AAO was used 
if both were recorded, which was only the case in five 
participants.

The second derived variable was the CAG age prod-
uct (CAP) variable, a variable created by Penney et  al. 
[24] and was found to reflect the progression of striatal 
pathology. The CAP score estimates the disease state of 
a patient. A CAP score of 100 indicates that the patient 
has reached the expected AAO of motor symptoms. The 
score can also be seen as the exposure to the toxic effects 
of the mutant HTT protein. The CAP score (C) was cal-
culated as described by Warner et  al. [25]. This score 

uses the current age (A) of the participant, the larger 
CAG allele repeat length (R), and two constants L and K, 
which were set to 30 and 6.27 respectively, as proposed 
by Warner et al., in [25].

Inferring missing values
Many missing values represented occasions where val-
ues were not recorded for a particular healthcare visit 
due to three main reasons. Firstly, baseline variables were 
recorded as missing in the follow-up visits. These are only 
recorded at the first visit in case of the Medical History 
variables. Here values from the first visit were used to 
impute the values in the follow-up visits. Secondly, Gen-
eral Variable Items II variables were only recorded when a 
variable’s value changed in comparison to the latest visit. 
Here values from the latest visit were used to impute the 
values in the follow-up visits. Thirdly, variables not appli-
cable to a participant also contain many missing values. 
For example, if a participant has never smoked, the vari-
ables that record smoking habits, tobcpd (cigarettes pet 
day) and tobyos (years of smoking), were missing. In such 
cases, the values of those variables were replaced with a 
zero. Finally, if a participant’s value for the AAO (hddi-
agn) was not clinically diagnosed yet, it was replaced by 
the rater’s estimate of the AAO (sxrater), if available. This 
was deemed sufficient since the AAO had a significantly 
high Pearson correlation ( r > 0.9; p < .01 ) with the esti-
mated AAO ( r = .937 ). In addition, the estimated AAO 
is accompanied by a confidence variable. Here, a high 
correlation was also found for an unknown ( r = .939 ), 
lower ( r = .916 ), or higher ( r = .944 ) confidence of esti-
mated AAO, see Additional file 5 for more details.

Filtering AAO of symptoms
There were a lot of variables recording age of symptom 
onset that did not have an estimated value e.g., AAO of 
motor symptoms (ccmtrage). Each age of symptom onset 
variables has a related variable which indicates whether 
the onset of a particular symptom has begun, e.g. ccmtr 
for the AAO of motor symptoms. If so, the related vari-
able records a one, if not a zero, and if it is unknown a 
missing value (NaN). All the age of symptom onset vari-
ables and associated related variables are shown in Addi-
tional file 6. Missing values in the age of symptom onset 
variables can only be imputed if the related variable 
recording the symptom onset has the value of one. In all 
other cases (zero or NaN) no assumptions can be made 
whether the onset of a symptom has begun. If more than 
20% of the related variable record a 0 or NaN the age of 
symptom and related variable are excluded, since exclud-
ing the participant instead would drastically shrink the 

C = A× (R− L)× K
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dataset. Therefore, only the variables parentagesx (Parent 
AAO), sxsubj (initial symptom noted by patient), sxfam 
(initial symptom noted by family), ccmtrage (AAO of 
motor symptoms) are kept. For these variables, partici-
pants with a missing value (NaN) are excluded since it is 
unknown whether the variables should be imputed. The 
exact percentages of missing values, including the reason 
why they are missing, are shown in Additional file 7.

One‑hot encoding
Another important pre-processing step, which is used 
on all nominal values, is dummy encoding. This encod-
ing transforms a nominal value into C boolean variables 
referring to the presence of the categorical value, where 
C is the number of categories described in the nominal 
value [26]. All one-hot encoded variables are shown in 
Additional file 8.

Imputation of missing values with machine learning
After pre-processing 486 variables were available in the 
dataset. The remaining missing values were imputed by 
applying and evaluating ML algorithms for each variable 
with a missing value. All variables used for imputing are 
listed in see Additional file 9. To create a training set for 
variable (v) only rows were selected with no missing val-
ues in v. Any other variables with missing values would 
be discarded for the imputation of v. Variables with con-
tinuous values were predicted using regression models 
and evaluated using the R2 score. Ordinal and nominal 
variables were clipped and rounded to the appropri-
ate range and categories, and were evaluated using the 
weighted F1 score.

Models were created for linear regression, logistic 
regression, random forest, and K-nearest neighbors 
(Knn), from the sklearn package v1.1.2 [27], and were 
trained and evaluated using 10-fold cross-validation.

The models were trained using 10-fold cross-validation 
and the variables were imputed sequentially and ordered 
by their R2 or F1 scores (highest to lowest). After each 
imputation of a variable, new models were trained to 
allow for the addition of more data for the next variables. 
However, the initial model was used if it outperformed 
subsequent models. The complete imputation workflow 
is shown in Fig. 1d.

Composite variables were not imputed but recalcu-
lated by the imputed variables that composed them. 
These were in total 11 variables that included total motor 
score (motscore), total functional score (tfcscore), func-
tional assessment score (fascore), current packyears i.e., 
lifetime exposure to tobacco (packy), historic packyears 
(hxpacky), and the PBA scores: depression (depscore), 
irritability aggression (irascore), psychosis (psyscore), 

apathy (aptscore), executive (exfscore), and disoriented 
behaviour (dbscore).

Evaluation metrics
Multiple metrics were used to evaluate the ML models 
for imputation and prediction. To evaluate the classifica-
tion models for imputation and driving capability pre-
dictions, metrics based on the true positive (TP), false 
positive (FP), true negative (TN), and false negative (FN) 
were used. These include the accuracy, F1 score, and the 
area under the receiver operating curve (AUROC) or area 
under the curve (AUC) for short. Evaluation of regres-
sion models for imputation and AAO prediction are 
based on metrics using the predicted outcome ( ̂y ) and 
the actual outcome (y). These include the mean absolute 
error (MAE), root mean squared error (RMSE), and the 
R2 score.

Predicting AAO
The performance of the Langbehn formula to predict the 
AAO was compared to linear regression, linear support-
vector machine (SVM), RF, Knn, multi layer perceptron 
(MLP) [27], eXtreme gradient boosting (XGBoost) v1.5.1 
[28], CatBoost v1.0.6 [29] and Light Gradient Boosting 
Machine (LGBM) v3.3.2 models [30]. These ML models 
were selected to see whether AAO was better predicted 
by linear or non-linear patterns and/or different strate-
gies. All models were trained and evaluated using 10-fold 
cross-validation. The variables used to train the ML 
models are also listed in Additional file  10 and include 
the smaller and larger CAG allele repeat size (caglow & 
caghigh), gender (sex), parent AAO (parentagesx), and 
whether there was a family history for HD (fhx).

The Langbehn formula (see equation below) was ini-
tially developed for predicting the AAO of patients with a 
CAG repeat range of 41–56. However, our dataset included 
a wider range of CAG repeats of 36–59. Therefore all ML 
algorithms were fitted on participants with a wider CAG 
repeat range of 36–59 and on participants with a narrower 

Accuracy =
TP + TN

TP + TN + FP + FN

F1 score =
2TP

2TP + FP + FN

MAE =

n
i=1

|yi − ŷi|

n

RMSE =

n
i=1

(yi − ŷi)2

n

R2 score = 1−

n
i=1

(yi − ŷi)
2

n
i=1

(yi − ȳ)2
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CAG range of 41–56 to be consistent with the initial devel-
opment of the Langbehn formula.

Aside from evaluating the Langbehn formula, the for-
mula was also refitted on the Enroll-HD dataset to draw a 
more direct comparison with the ML models. The follow-
ing Langbehn formulas were evaluated:

• The Langbehn formula evaluated on the imputed data-
set using the narrow CAG repeat size range (41–56), 
see equation below.

• Langbehn formula refitted on the imputed dataset 
using the narrow CAG repeat size range (41–56).

• Langbehn formula refitted on the imputed dataset 
using the wider CAG repeat size range 36–59.

All the models described above were trained and evalu-
ated only on participants with a clinically diagnosed 
AAO. For example, participants in which the clini-
cally diagnosed AAO was missing and therefore it was 
replaced with the rater’s estimated AAO (sxrater) were 
discarded. The refitted Langbehn formula’s weights were 
set according to the initial weights of the Langbehn for-
mula and were then fitted using the curve fit function 
from Scipy v1.9.0 [31]. Finally, the refitted Langbehn for-
mulas were fitted on the whole dataset. The workflow for 
predicting the AAO is shown in Fig. 1e.

Predicting driving capability
A RNN with gated recurrent units (GRUs), as described in 
Cho et al. [32] was used, to predict driving capability longi-
tudinally. The model was trained using 141 variables, listed 
in Additional file  10, to predict for each visit the current 
driving capability i.e., when the participant is at the clinic 
and the driving capability of the participant for the visit in 
the next year.

The data was reshaped to train the RNN for longitudi-
nal predictions. Participants had between 1 and 5 visits 
recorded in the dataset, approximately one year apart. Con-
sequently, the data was reshaped to a maximum of five vis-
its that are one year apart. This was achieved by calculating 
the index of each existing visit using the equation below, 
where vpi is the new visit index of visit i for participant p, d 
is the number of days from the baseline visit (visdy), and t is 
the desired number of days between each visit. Here t is set 
to 365 to ensure that all participants have the first visit and 
that subsequent visits are around one year apart.

Langbehn = 21.54 + exp (9.556− (0.146× CAG))

vpi = ⌊(dpi − dp0)/t⌉

The remaining missing visits were masked by filling the 
visit vector with an arbitrary mask value, which the RNN 
detects and skips using a masking layer, making training 
faster.

The holdout strategy was used to create the subsets to 
train and test the model. Here the dataset was split into 
two by randomly selecting 80% of participants for the 
training set, with the remaining 20% assigned to the test 
set. The split was done on groups which were defined by 
the number of missing visits for each participant. This 
ensured that the training and test sets had a similar num-
ber of missing visits per participant. Continuous input 
variables were scaled to a range of − 1 to 1 using the Min-
MaxScaler from the sklearn package [27].

During training, class weights were used to account for 
imbalance in the label distribution. The weight of a class 
( wc ) was calculated based on the total samples (n) divided 
by the number of unique classes (C) times the number 
of samples of a class ( nc ), excluding imputed labels, see 
equation below.

In addition, sample weights were calculated to account 
for missing labels which could be caused by missing visits 
or visits with imputed labels. In such cases, the sample 
weight was set to 0. All other sample weights were set to 
the associated class weight.

The RNN was tuned with a learning rate of 1e−5 using 
three and five GRU layers with a hidden size of 128, 256, 
and 512. In addition, three different L2 regularization val-
ues were tested, namely 1e−7, 1e−5, and 1e−3. The work-
flow of predicting driving capability is shown in Fig. 1e.

Results
Pre‑processing
Pre-processing of the cohort data resulted in a significant 
increase in completeness of all variables in the cohort, 
from 48.56 to 93.2%. Here pre-processing included: fil-
tering variables which are redundant or have a high 
percentage of missing values, filtering numerical values, 
calculating derived variables, inferring missing values, 
filtering AAO of symptoms which could not be imputed, 
and one-hot encoding, see Fig.  1c. The completeness of 
the dataset, before and after pre-processing, is demon-
strated in Fig. 2. The figure shows the completeness per 
form, where a form describes multiple variables related 
to each other. There were three strategies that we applied 
in order to improve the completeness per form, by reduc-
ing the amount of missing data. The forms that benefited 
the most from these strategies were MHX, Var Items I, 
Var Items II and C-SSRS. Firstly, forms MHX and Var 
Items II mostly contained missing values in the follow-up 

wc =
n

C × nc
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visit which could be inferred from the baseline visit or 
latest visit respectively. Secondly, the form Var Items I 
contained many categorical variables which are trans-
formed using one-hot dummy encoding or because some 
variables could be inferred from other variables. Thirdly, 
the form C-SSRS contained many variables above the 
missing value threshold of 69%, which were excluded. 
The form which was reduced in completeness is the 
WPAI-SHP form, because it mostly contained variables 
with 90% missing values, which were excluded.

Imputation performance
After pre-processing we used three models to impute the 
remaining 6.8% missing values. For each type of variable 
(continuous, ordinal, and categorical) the models RF, lin-
ear regression and Knn were evaluated. The performance 
of the best imputation model per variable is shown in 
Fig. 3 depicted as R2-scores or F1-scores (highest mean 
R2 or F1 score). All the scores are visualized in Fig. 3 and 
their corresponding best model and best round of impu-
tation are available in Additional file  11. RF performed 

the best to impute the variables on 114 occasions and lin-
ear regression on 38 occasions. Knn on the other hand 
performed the worst, imputing only one variable.

Continuous variables were generally predicted with 
an R2 score greater than 0.6 (Fig. 3a). Some continuous 
variables were predicted with an R2 score between 0 and 
0.6. 81% of ordinal and categorical variables were pre-
dicted with an F1 score of 0.6 or greater, see Fig. 3b and 
c. However, there were also some (19) ordinal variables 
predicted with a lower F1 score (0.4–0.6).

AAO prediction
To predict the AAO, we used several ML models and 
compared them to the Langbehn formula. We com-
pared the models on two subsets, one subset which 
only included participants with a narrow range of CAG 
repeats (41–56) and another subset which included a 
wider CAG repeat range (36–59), encompassing all par-
ticipants in our cohort. Firstly, the models were trained 
on participants with a narrower CAG repeat size (41–56), 
since the Langbehn formula was developed to predict the 
AAO of participants within that range. The performance 
of all models on the narrower CAG repeat size, indicated 
by an “n”, is shown in Table 1. In this ‘n’ range we observe 
that the refitted Langbehn formula outperformed the 
original model, which was also outperformed by the 
majority of the ML models (CatBoost,LGBM, XGBoost, 
MLP, linear regression). The LGBM model performed the 
best with an R2 of 0.60, MAE of 5.26 and RMSE of 6.87 
indicating that this model can improve the estimation of 
AAO predictions while keeping the error margin lower 
than any of the models tested.

Secondly, we tested the aforementioned models on the 
participants with a wider CAG range (36–59), indicated 
by a ‘w’, see Table 1. As previously, the LGBM model per-
formed the best among all the models with a R2 score of 
0.63, a MAE of 5.46 and RMSE of 7.16. Although, a direct 
comparison between the different subsets ‘n’ and ‘w’ can-
not be made, we do however observe that the R2 of the 
LGBM model was higher but the MAE and RMSE were 
slightly increased.

In summary, the ML model LGBM outperformed the 
Langbehn formula, in both cases with the narrower and 
wider CAG repeat range. In addition, the LGBM model 
not only had a better performance but achieved a lower 
error in both cases as well, than the Langbehn formula. 
This shows that the LGBM model has a better perfor-
mance and works for a broader CAG repeat range com-
pared to the Langbehn formula.

Model performance driving capability
The longitudinal nature of Enroll-HD can be exploited 
by ML models that can learn temporal dynamic 

Fig. 2 The completeness percentage of each form in the Enroll‑HD 
dataset before and after pre‑processing. Here the blue bars 
represents the completeness of the original Enroll‑HD data. The green 
bars represent the completeness of the data after pre‑processing, see 
Fig. 1a

Fig. 3 The mean R2 and F1 scores of the best performing imputation 
models. This is shown for each variable in each data type, namely a 
continuous, b ordinal, and c categorical. The trained models were: 
random forest (RF), linear/logistic regression (Linear), and K‑nearest 
neighbours (Knn)
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behaviour. We used a RNN with GRUs to predict the 
driving capability for the coming and next year for 
each time-step available per individual participant. In 
total 18 combinations of hyperparameters were tested 
to predict driving capability. The model with the high-
est AUC and F1 on the test set resulted in an AUC of 
0.929, an accuracy of 0.852, and a F1 score of 0.819. The 
evaluation metrics and the hyperparameters for all the 
models are shown in Additional file 12.

The error matrix of the best model is shown in Fig. 4. 
83.45% of the positive samples (1: status is driving) are 
predicted as positive and 86.42% of the negative sam-
ples (0: status is not driving) are predicted as negative. 
Indicating that the GRU model is better at predicting 
negative samples, possibly due to the higher number of 
training samples for the negative label in the dataset.

Personalized predictions for driving capability
We applied the GRU model to perform predictions for 
each participant at each time step. An example of a pre-
diction on a single participant is shown in Fig.  5. The 
recorded driving status in Enroll-HD in this plot is binary 
(blue line), either zero or one, and the predicted driving 
status (orange line) by our model can range from zero 
to one. A value above the threshold of 0.5 (dashed black 
line) corresponds to a positive advice to drive and a value 
below the threshold corresponds to a negative advice to 
drive. For every prediction an accuracy score is provided 
in the range of zero to one in ten bins with a step size 
of 0.1. These bins are depicted as different rows/bands 
in the heat map of Fig. 5. The boundaries of these bands 
are depicted by the tick marks on the y-axis. The accu-
racy score is calculated by taking all samples from the test 
set that were predicted within that particular band and 
calculating the accuracy for the predicted samples within 
that band. This results in an accuracy score for each band 
to make the prediction more interpretable. The accuracy 
of the predicted value is higher, around 90%, when it is 
near zero or one, and less accurate, around 60%, when it 
is near the threshold.

The personalized prediction in Fig.  5 shows that in 
time step/visit 4 the model’s assessment (orange line) is 
different from the participant’s driving status (blue line), 
recorded in the Enroll-HD dataset. This indicates that a 
participant could possibly still drive at that time point. 
However, the prediction accuracy is near the advisory 
threshold (dashed black line), which may indicate either 
a miss-classification or an incorrect assessment. Either 
way, this points to further exploration of the driving skills 
of this participant.

In addition, our model provides a future prediction 
(dashed orange line) for the driving capability, by learning 

Table 1 The performance of the Langbehn formulas and the ML models to predict the AAO using participants with a narrow (n: 
41–56) and wider (w: 36–59) CAG repeat size (caghigh)

Model MAE RMSE R2

n w n w n w

LGBM 5.26 5.46 6.87 7.16 0.60 0.63

CatBoost 5.29 5.49 6.91 7.20 0.60 0.62

Linear regression 5.45 5.77 7.07 7.50 0.58 0.59

Langbehn refitted 5.38 5.74 7.09 7.57 0.58 0.58

MLP 5.46 5.77 7.14 7.55 0.57 0.58

XGBoost 5.48 5.65 7.15 7.41 0.57 0.60

Langbehn 5.57 5.91 7.23 7.88 0.56 0.55

Linear SVM 5.68 5.96 7.35 7.75 0.55 0.56

Random forest 5.85 6.03 7.63 7.89 0.51 0.55

Knn 6.18 6.37 8.11 8.37 0.45 0.49

Fig. 4 The error matrix for predicting driving capability in the test 
set. Here the percentages refer to the percentage of positive samples 
(able to drive) predicted as a positive (TP) and the percentage 
of positive samples predicted as a negative (TN). The same is true 
for the negative samples (unable to drive)
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from data from previous time points. The future predic-
tion is shown as the fifth time point in Fig.  5. Here the 
model predicts that the participant is advised not to drive 
anymore in the next year.

The ROC curve in Fig.  6 shows the model’s perfor-
mance on the test data. The figure shows that the ROC 
curve (blue line) is above the simulated random model 
(dashed green line). This indicates that the model is cor-
rectly distinguishing the negative class (unable to drive) 
from the positive class (able to drive). The default thresh-
old is set to 0.5, which results in a true negative rate 

(TNR), the rate at which the model correctly identifies 
participants not able to drive, of 0.87 (TNR = 1 − FPR). 
In addition, the model achieves a true positive rate (TPR), 
the rate at which the model correctly identifies partici-
pants able to drive, of 0.83. Finally, an AUC of 0.929 is 
achieved which indicates that the model can almost per-
fectly seperate the two classes using this threshold. How-
ever, when the threshold is set to 0.06 the TPR becomes 
0.99. This shows that a predicted driving capability below 
0.06 is very likely to be actually negative. On the other 
hand, the threshold can be set to 0.91. This results in a 
TNR of 0.99, which indicates that a predicted driving 
capability above 0.91 is very likely to be actually positive.

Discussion
In this paper we show the utility of applying ML models 
to pre-process and analyse the extensive, longitudinal 
data collection from Enroll-HD. Our models outper-
formed a leading prediction approach (Langbehn for-
mula) for the estimation of the AAO. We also made 
use of the longitudinal information through GRUs to 
assess driving capability and accurately predict future 
time points. We were able to make these improvements 
through the application of simple pre-processing meth-
ods and further ML imputation, maximising the num-
ber of participants and variables included in our study. 
In addition, we provided a complete list of the variables 
included in this analysis, details on pre-processing steps 
of all variables and a workflow deposited in an online 

Fig. 5 An example of a personalized prediction of the driving capability of an Enroll‑HD participant. The blue line indicates the clinical assessment 
and the orange line indicates the assessment of the ML model. The dashed orange line indicates a prediction over a future time point (time point 
5) for this particular individual. The two distributions, clinical assessment and model assessment, do not align at time point 4, which indicates 
that a patient might have been wrongly assessed by the clinic at that time point, as the model predicted a value around 0.6

Fig. 6 The ROC curve calculated on the test set for the driving 
capability. The ROC curve (blue line) is shown with a simulated 
random model (dashed green line) and multiple advisory thresholds 
(T), indicated by the blue dots. The thresholds 0.91 and 0.06 show 
that a predicted value above 0.91 and below 0.06 results in a correct 
prediction for the positive class and negative class respectively in 99% 
of the test cases. The default threshold of 0.5 shows that an AUC 
of 0.929 is achieved and a TPR of 0.84 and FPR of 0.13
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repository to increase the reproducibility of our results 
and the reusability of our workflow.

Pre‑processing and imputation
In order to reduce missing values, the selected cohort 
was pre-processed, increasing the completeness of the 
dataset from 48.56 to 93.2%. This was a crucial step, as 
ML algorithms need complete data to make predictions. 
In this process we found that most missing values do 
not necessarily indicate an unknown value and could be 
inferred by other variables in the dataset.

The increase in completeness of the data can partially 
be attributed to the excluded variables, listed in Addi-
tional file  3. However, some of these excluded variables 
might have been relevant for either the AAO or driv-
ing capability prediction. For the AAO model, the lat-
est study site region of the participant’s visit (region) 
variable could possibly reveal additional information. 
For example, it could provide insights into biases of the 
assessments of AAO in the different regions. For the 
driving capability model the excluded AAO of symptoms 
could have possibly been predictive. These include onset 
of psychosis (ccpsyage), onset of aggressive behaviour 
(ccvabage), onset of perseverative obsessive behaviour 
(ccpobage), onset of apathy (ccaptage), onset of irritabil-
ity (ccirbage, and onset of depression (ccdepage). These 
variables would indicate the beginning of decline in a 
specific symptom, which could indicate a future decline 
in driving capability, and therefore improve the predic-
tion accuracy. In the future machine learning could be 
applied on a subset of Enroll-HD participants which have 
complete data on the assessments regarding the AAO 
of the symptoms. It would be interesting to investigate 
whether the inclusion of these variables has an impact on 
the model’s performance.

After pre-processing the remaining 6.8% missing values 
were imputed using ML models. Most of the variables 
could be imputed with a relatively high accuracy score, 
but also those with a lower score we decided to impute 
them nonetheless. The continuous variables were kept, 
since the ML models outperformed the more traditional 
imputation approach by imputing variables with the 
mean. This was the case, since all variables were imputed 
with a R2 score above 0. Regarding the ordinal and cat-
egorical variables, these were associated with a very small 
fraction of the imputed variables (up to 17% out of the 
6.8% of the missing values), lowering the risk to influence 
the predictive performance of our model. Also, keeping 
these variables increases the number of predictive input 
variables and visits in the dataset.

The current imputation models (RF, linear/logistic 
regression, and Knn) were chosen because of their low 
computational cost, as the current imputation involved 

many (167) variables. However, future studies should 
consider testing and evaluating a wider variety of ML 
models for imputation, in terms of complexity, in order 
to improve the accuracy of the imputation.

Using ML to predict AAO
The Langbehn formula, developed for the most fre-
quently occurring CAG repeat lengths (41–56) has been 
the best available model for AAO prediction. However, 
we were able to improve on this by using multivariate 
data and more complex ML models to find more pre-
dictive patterns. In addition, we also used the full dis-
tribution of the participants’ CAG repeats (36–59) that 
was recorded in the Enroll-HD data, to test the broader 
applicability of the Langbehn formula and to evaluate the 
performance of the ML models on this CAG repeat size 
range.

A more precise AAO estimation could support upcom-
ing clinical studies that develop therapies that can modify 
or delay the AAO by selecting the right HD population, 
without unnecessarily including participants too early or 
too late. The LGBM model showed the largest improve-
ment in AAO estimation for both the narrow and wider 
CAG repeat range. Although the wider CAG range is not 
as common, it is still an HD causing CAG range, and is 
therefore relevant. We demonstrated that a better per-
formance could be achieved by including more informa-
tion, so we speculate that future studies, including both 
observational and genetic information from pre-manifest 
patients, would lead to more accurate AAO estimations.

Overall, the difference in error and performance 
between the ML models and the Langbehn formula indi-
cate that analysing large datasets, such as Enroll-HD, 
with more complex ML models and adding only a few 
more variables can provide better estimations of the clin-
ical AAO.

Using ML to advise driving capability
Clinicians involved in the care of HD patients are often 
asked for advice regarding functional capabilities, based 
on clinical characteristics. Such advice is, for example, 
the ability for a patient to drive their car after symptoms 
onset. Assessing this adequately can impact the patient’s 
quality of everyday life and in some countries can result 
in revocation of a driver’s license. However, this is dif-
ficult to assess since HD involves many different symp-
toms; motor, cognitive, and behavioural, which change 
over time and can all influence driving capability.

To assist clinicians in this task, we created an advi-
sory model. This model complements the clinician’s 
experience-based decision-making with a data-driven 
assessment of driving capability. Our model can be ben-
eficial in cases where the clinician is uncertain of a HD 
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patient’s driving capabilities. The model provides the 
clinician with a prediction of driving capability for the 
coming five years based on 142 clinical characteristics, 
see Fig.  5. Therefore, our driving capability model is a 
tool to provide additional information to help clinical 
decision-making processes. However, it is not designed 
to replace decision-making on driving capability. In some 
cases, additional assessments are necessary to determine 
driving capability. For instance, an examination by an 
occupational therapist or on- and off-road driving assess-
ments such as the DriveSafe DriveAware app [33]. This 
app measures the driver’s awareness of the environment 
and awareness of the patient’s driving ability to predict if 
the patient requires an on-road assessment.

Aside from current driving capability, our model pro-
vides a trajectory of the driving capability one year ahead 
serving as a prognostic tool to further support driving 
capability assessment. The trajectory can give an indica-
tion to the patient that even though it still might be safe 
to drive, the situation is likely to change in the coming 
year. With this information the patient could take pre-
cautions and take decisions regarding their every-day life.

Our advisory model provides a prediction value 
between 0 and 1 together with an accuracy score. This 
combination means that when a prediction value is close 
to the classification threshold (0.5) it corresponds to a 
low accuracy score of around 0.5–0.7, which indicates 
that it might be unsafe for the participant to drive.

It is important to note that our advisory model for driv-
ing capability is not a generalized model, but a model that 
is tailored to the Enroll-HD study. For example, any newly 
enrolled participant in Enroll-HD could get a prediction 
value for their driving capability. Other HD cohorts could 
build on our workflow to pre-process their data and train 
their own model. If possible, cohorts can be combined to 
train the model on more data, which could improve the 
model’s accuracy.

In the future, the model’s predictive performance could 
be increased by evaluating the predictive power of the 
variables, with for example the SHAP algorithm [34]. 
Using this information, only the most predictive variables 
would be included. Thus, reducing the complexity this 
would also make the model more interpretable.

Another important note is that our advisory model 
is trained to predict the driving capability based on the 
driving status of the participant, instead of their actual 
capability. This means that the driving prediction can 
be influenced by how the HD patient assesses their own 
driving capability or how their family assesses them, 
which the model cannot take into account. This could 
affect the model to either prioritize the quality of life of 
the patient, by giving a more positive advice, or the safety 
for other road users, by giving a more negative advice. If 

necessary the classification threshold (Fig. 5 can be tuned 
to prioritize a positive or negative advice.

In the future, this work can be extended by predicting 
symptom trajectories and many other daily living activi-
ties that patients need to be advised on.

Conclusions
ML is a promising approach for analyzing large heteroge-
neous observational data such as Enroll-HD. The appli-
cation of ML for data pre-processing led to a significant 
reduction of missing values in the dataset, increasing 
its completeness by including more variables and par-
ticipants. The pre-processing workflow is available to the 
public and was extensively described to increase repro-
ducibility and adoption of ML in Enroll-HD. ML mod-
els achieved a higher performance, while maintaining 
a lower error rate, in estimating the AAO of Enroll-HD 
participants in comparison to the Langbehn formula. 
Finally, ML was also applied to create a model to assist 
clinicians in advising and providing a future trajectory 
regarding the driving capability for HD patients. ML 
might be a promising approach to facilitate personalized 
patient care for assisting with daily activity assessment 
and symptom trajectory prediction.
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