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Abstract 

Pulmonary alveolar microlithiasis (PAM) is a rare autosomal recessive lung disease caused by variants in the SLC34A2 
gene encoding the sodium-dependent phosphate transport protein 2B, NaPi-2b. PAM is characterized by deposi-
tion of calcium phosphate crystals in the alveoli. Onset and clinical course vary considerably; some patients remain 
asymptomatic while others develop severe respiratory failure with a significant symptom burden and compromised 
survival. It is likely that PAM is under-reported due to lack of recognition, misdiagnosis, and mild clinical presentation. 
Most patients are genetically uncharacterized as the diagnostic confirmation of PAM has traditionally not included 
a genetic analysis. Genetic testing may in the future be the preferred tool for diagnostics instead of invasive meth-
ods. This systematic review aims to provide an overview of the growing knowledge of PAM genetics. Rare variants in 
SLC34A2 are found in almost all genetically tested patients. So far, 34 allelic variants have been identified in at least 68 
patients. A majority of these are present in the homozygous state; however, a few are found in the compound het-
erozygous form. Most of the allelic variants involve only a single nucleotide. Half of the variants are either nonsense 
or frameshifts, resulting in premature termination of the protein or decay of the mRNA. There is currently no cure for 
PAM, and the only effective treatment is lung transplantation. Management is mainly symptomatic, but an improved 
understanding of the underlying pathophysiology will hopefully result in development of targeted treatment options. 
More standardized data on PAM patients, including a genetic diagnosis covering larger international populations, 
would support the design and implementation of clinical studies to the benefit of patients. Further genetic charac-
terization and understanding of how the molecular changes influence disease phenotype will hopefully allow earlier 
diagnosis and treatment of the disease in the future.
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Background
Pulmonary alveolar microlithiasis (PAM) (OMIM 
#265100) is an autosomal recessive lung disease where 
calcium-phosphate concretions (microliths) are formed 
in the alveoli [1–3]. PAM was first named by the Hun-
garian physician Ludwig Puhr in 1933 [4]. It is caused by 
variants in the SLC34A2 gene (Entrez Gene ID 10568) 
encoding the sodium-dependent phosphate transport 
protein 2B, NaPi-2b [5–7]. The protein belongs to the 
sodium-transporter family SLC34, which is involved in 
the inorganic phosphate (Pi) homeostasis [8]. The inci-
dence of PAM is unknown. Less than 1200 patients are 
described in the literature, and most descriptions are 
from Asia and Europe. Both familial and sporadic cases 
are reported. In almost all families with PAM, trans-
mission is reported to be horizontal. In the rare case of 
vertical transmission, this has always been a result of 
consanguinity [9]. Although almost all patients in the lit-
erature who have been genetically evaluated have path-
ogenic variants in SLC34A2, genetic testing is not part 
of the routine diagnostic evaluation. However, genetic 
investigation is increasingly recommended [1]. This 
review will provide an overview of PAM with a specific 
focus on underlying genetic aspects.

Search strategy
A structured literature search for the genetic part of the 
review was performed according to preferred report-
ing items for systematic reviews and meta-analyses 
(PRISMA) 2009 guidelines [10]. The following online ref-
erence databases were used: Embase, PubMed, SCOPUS, 
Cochrane, and Web of Science. Searches were carried out 
in August 2022. The search terms used were ’pulmonary 
alveolar microlithiasis’ AND ’SLC34A2’. Additionally, a 
search in The Human Gene Mutation Database (HGMD) 
Professional was performed in August 2022 (HGMD Pro-
fessional 2022.2) [11]. Furthermore, additional articles 
were identified from reference lists of studies included in 
this review and from existing reviews.

Study selection process
The literature search yielded a total of 287 citations. 
Removal of duplicates, resulted in a total of 115 cita-
tions for possible inclusion. Titles and abstracts of these 
citations were screened by one reviewer to remove obvi-
ously irrelevant studies. One Japanese report with no 
abstract in English, French, or German was excluded. A 
conference abstract with a subsequent publication from 
the same authors regarding the same patients was also 
excluded. A total of 34 studies, including 29 original 
reports and five abstracts (four conference abstracts and 
one English abstract of a Chinese-language study), were 
included in the genetic part of the review (Fig. 1).

Diagnosis, clinical characteristics and treatment
Currently, PAM is diagnosed based on the typical radi-
ographic appearance and detection of characteristic 
microliths in the bronchoalveolar lavage (BAL) fluid or 
a lung biopsy [1, 2, 9]. The microliths are comprised of 
calcareous concentric, laminated bodies typically less 
than 1  mm in diameter and predominantly formed of 
calcium and phosphorus [2]. Additional accompany-
ing features are inflammation, fibrosis, and calcification 
of the lung interstitium [9, 12]. The pathophysiology of 
PAM is not yet fully understood. It has been proposed 
that the deposition of the microliths in the alveolus is 
caused by accumulation of phosphate from degraded sur-
factant phospholipids [6, 13]. Normally, phosphate will 
be cleared from the alveolar space by transport via NaPi-
2b located in the apical membrane of the alveolar type II 
cell. When the transporter does not work properly, this 
leads to an excess of phosphate in the alveolar lumen 
with subsequent precipitation of extracellular calcium 
(Fig. 2) [5, 6, 13].

Although PAM is diagnosed at all ages, most patients 
are diagnosed between 10 and 30 years of age [9]. Many 
patients are diagnosed incidentally or in connection with 
familial investigations. Dyspnoea, dry cough, fatigue, 
and chest pain are frequent complains in symptomatic 
patients. Pneumothorax, clubbing, haemoptysis, hypoxia, 
and cyanosis have been reported [2, 3, 9, 14–16]. Lung 
function is usually normal or has a restrictive pattern 
[2]. PAM is generally slowly progressing, but a milder 
or more aggressive course might be observed [9]. The 
radiographic appearance is often pronounced and dis-
proportionate to the clinical severity [15, 17]. A chest 
X-ray typically shows a sand-like pattern correspond-
ing to calcifications with bilateral basal and middle zone 
predilection. Numerous miliary calcified nodules distrib-
uted throughout the lungs are seen on high-resolution 
computed tomography (HRCT) (Fig. 3) [1, 2]. The radi-
ographic appearance is very characteristic, and in cases 
with typical HRCT findings, a lung biopsy is not needed 
to establish the diagnosis [18].

Extrapulmonary calcifications have been reported in 
PAM and may reflect a syndrome rather than a restricted 
lung disease [2, 3, 19–28]. Although the frequency of 
extrapulmonary manifestations is unknown, it is reason-
able to hypothesize that this is not an uncommon finding 
as SLC34A2 is expressed in tissues other than lung tissue 
[23, 29–31].

To date, no effective treatment exists except lung 
transplantation [9]. A few case studies report beneficial 
effects of the bisphosphonate, etidronate, while oth-
ers report no benefit of the treatment [2, 32–35]. Use 
of systemic corticosteroids is generally not considered 
to be effective, although symptomatic improvement has 
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been reported in a few cases [24, 36–38]. Besides, ther-
apeutic BAL has proven ineffective, although sympto-
matic improvement has been described in one case [36, 
39–41]. Supplemental oxygen therapy should be con-
sidered in hypoxic patients. Long-term follow-up data 
in PAM are sparse and the prognosis is thus unknown. 
However, current data indicate a poor long-term prog-
nosis [42]. Several environmental factors such as smok-
ing, inhalation of snuff, repetitive lung infections, and 

cold weather have been proposed to negatively influ-
ence course of the disease [3, 5, 43, 44].

Etiology
SLC34A2: genetic aspects
SLC34A2 is located on the short arm of chromosome 4 
(4p15.2). It contains 13 exons, of which the first seems 
to exist in several alternative versions, all non-coding. 
SLC34A2 encodes a protein (NaPi-2b) of 690 amino 
acids. The gene is highly conserved in bony vertebrates 
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Fig. 1 Flow diagram of inclusion of literature. A structured literature search for the part of the review concerning the spectrum of allelic variants in 
SLC34A2 was performed according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2009 guidelines [10]
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and variants are therefore likely to affect the protein 
functionally [7, 45–47]. The expression at the pro-
tein level has mainly been investigated in animals. In 
addition to lung tissue, the expression at the protein 
level has also been found in tissues such as the small 
intestine, the mammary glands, the liver, the bile duct, 
and in the epididymis [48–52]. In addition, SLC34A2 
is expressed on the surface of different cancer types, 
and is a known ROS1 (ROS proto-oncogene 1, receptor 
tyrosine kinase) fusion partner in non-small cell lung 
cancer [53–55].

The sodium‑phosphate transporter NaPi‑2b
NaPi-2b (NP_006415) is a member of the transporter 
family SLC34, which includes the protein isoforms 
NaPi-2a (encoded by SLC34A1) and NaPi-2c (encoded 
by SLC34A3). This protein family is essential for main-
taining Pi homeostasis in the human body where regu-
lation is mediated by the intestine (NaPi-2b) and kidney 
(NaPi-2a, NaPi-2c) [8, 56]. NaPi-2a and NaPi-2b are 
both electrogenic co-transporters with a 3:1  (Na+:  Pi) 
stoichiometry, whereas NaPi-2c is electroneutral with 
a 2:1  (Na+:  Pi) stoichiometry [57]. The crystallographic 
structure has not been determined for any of the family 
members, not even the bacterial homologs. Thus, the 
present knowledge of structure and function is mainly 
based on indirect studies on wild-type and designed 
variants with different biophysical and biochemical 
methods [8]. The SLC34 group of eukaryotic transport-
ers is presumed to have identical transmembrane (TM) 
topology [58–60]. The predicted topological model 
of the isoforms consists of 12 TM domains includ-
ing two inverted repeated regions, a large extracellu-
lar loop with two N-glycosylation sites and a disulfide 
bridge linking the two halves of the protein, and with 
both C- and N-terminal regions located intracellu-
larly. The TM domains 3–4 and 8–9 are presumed to 
form a substrate coordination site. Important areas for 
regulation and targeting are located at the C-terminal 
region and in the area between TM domain 10 and 11. 
A critical region for electrogenicity is located between 
TM domain 4 and 5 [8]. Recently, a three-dimensional 
structural model has been developed of the human 
NaPi-2 with the topology of the bacterial dicarboxylate 
co-transporter VcINDY as a template [61, 62].

Regulation of NaPi‑2b expression
NaPi-2b expression is regulated by several factors 
(reviewed in Hernando et  al. 2018 [63]). The expres-
sion in the intestine depends on dietary Pi levels with an 
increased level of expression in the intestinal epithelia 
when the dietary levels decrease [64, 65]. Interestingly, 
the expression of NaPi-2b in the alveolar type II cells is 
seemingly not influenced by dietary intake of phosphate 
[48]. In the intestine, NaPi-2b expression is up-regulated 
by estrogen, vitamin  D3, and during metabolic acidosis, 
and the expression is suppressed by glucocorticoids, epi-
dermal growth factor (EGF), and when the vitamin D 
receptor (VDR) is lacking [64, 66–70]. In addition, dex-
amethasone has been shown to down-regulate mRNA 

Fig. 2 Presumed pathophysiology of PAM. Alveolar type II cell in the 
alveolus of the lung. Dysfunctional sodium-phosphate co-transporter 
(NaPi-2b) in the apical membrane leading to a decreased cell 
uptake of phosphate from the alveolar space and deposition of 
calcium-phosphate stones (microliths) due to chelation

Fig. 3 High-resolution computed tomography (HRCT) showing 
classical findings suggestive of pulmonary alveolar microlithiasis. A. 
Multiple microcalcifications, axial plane. B. Multiple microcalcifications 
and septal thickening (arrow), coronal plane
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expression of NaPi-2b and decrease the uptake of phos-
phate in cultured alveolar type II cells from rats [71]. 
Contrary to this, NaPi-2b in rat lung was found not to 
be regulated at the mRNA level by the vitamin D analog 
ED-71 (1α, 25-dihydroxy-2ß-(3-hydroxypropoxy) vitamin 
 D3) [72].

The spectrum of allelic variants in PAM
In 2006, variants in SLC34A2 were initially identified 
as causative for PAM [5, 6]. Since then, 34 allelic vari-
ants have been documented in the literature in at least 
68 patients (49 families) [2, 3, 5, 6, 35, 43, 73–94] (Fig. 4, 
Table  1). Only around 5% of the patients reported have 
been genetically investigated. However, pathogenic allelic 
variants in SLC34A2 were found in more than 95% of 
these patients or families. In three siblings with PAM, a 
variant was reported in exon 2 within a sequence that, to 
the best of our knowledge, is not located in the coding 
regions of SLC34A2 [102]. Thus, this variant is not fur-
ther included in this review. Genetically unresolved cases 
have been reported and reports have been published on 
a few patients without variants in SLC34A2 [103–105]. 
In one of these patients, only one pathogenic variant on 
a single allele was reported [105]. In addition, a cytoge-
netic study in a patient with myelofibrosis revealed a 
rearrangement of the long arms of chromosomes 4 and 
5; this patient was subsequently diagnosed with PAM 
[106]. More efforts must be made to clarify which genetic 
alterations contribute to disease in these patients as the 
method chosen to analyse SLC34A2 may not have been 
sufficient. If the genetic region sequenced is restricted 

only to the coding part and intron–exon boundaries, 
variants in introns or in the promoter region may be 
overlooked. In addition, the detection of larger deletions 
requires another analytic approach.

We performed an evaluation of the allelic variants 
previously reported in several standard computational 
prediction tools [97–101]. All analyzable variants were 
predicted to be deleterious by at least one prediction tool, 
which further supports the pathogenicity of the vari-
ants (Table 1). Five larger deletions are reported includ-
ing whole gene deletion, a deletion spanning exon 2–6, 
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Fig. 4 Allelic variants in SLC34A2 in PAM patients reported in the literature [2, 3, 5, 6, 35, 43, 73–94]. Red small squares represent the number of 
families in which the individual variants are found. Narrow box for non-coding exon and wider box for coding exon. Exons, introns, and deletions 
are not drawn to scale. Variants are present in homozygous form unless otherwise stated

Fig. 5 Types of allelic variants reported in PAM. Splice site 9% (3 
variants), nonsense 24% (8 variants), missense 29% (10 variants), 
large deletion 15% (5 variants), in-frame deletion 3% (1 variant), and 
frameshift 21% (7 variants)
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a deletion including exon 5, a deletion spanning the 
last part of intron 5 and the first third of exon 6, and a 
186-nucleotide deletion involving the promoter and 

exon 1. In addition, three splice site variants have been 
found in intron 5, 9 and in intron 11, respectively. Splice 
site variants and larger deletions most likely lead to loss 

Table 1 Summary of 49 families/68 patients carrying pathogenic variants in SLC34A2 and variant properties

btw. between, Het compound heterozygous, EC extracellular, Hom homozygous, IC intracellular, Id. patient identification, Int. intron, NA not applicable, Ref. reference, 
TMD transmembrane domain. *A model of NaPi-2b was made by superimposing NaPi-2b on rat NaPi-2a predicted topology, modified from Forster et al. 2013 [8] and 
Virkki et al. 2007 [96] was used to predict the protein locations of the variants (Fig. 6), †Variants were predicted to be disease causing, possibly or probably damaging 
or deleterious by at least one of following: Mutation Taster [97], PANTHER [98], Polyphen-2 [99], PROVEAN [100], and Human Splicing Finder [101]. ‡Originally reported 
as p.Asn71IlefsX25 [74], §Prediction by PANTHER: "probably benign", lAssumed critical area for electrogenicity, **Originally reported as IVS8 + 1G>A [6], ††Prediction by 
Human Splicing Finder: "alteration of the WT acceptor/donor site, most probably affecting splicing". ‡‡Originally reported as p.Trp552AlafsTer109 [90]. SLC34A2 DNA ref 
sequence: Ensembl Transcript ID ENST00000382051.8 (GRCh38.p13 assembly)

Id Allele state Exon Nucleotide change Protein change Localisation in  protein* Pathogenic
in silico 
 predictions†

Refs

1–6 Hom 1 c.-6773_-6588del p.? Involving promoter region and Ex. 1 NA [5]

7 Hom 2–6 ∼ 5.5 kb deletion p.? N-terminal to small IC-loop btw. TMDs 
4–5

NA [73]

8–9 Hom 3 c.114delA p.Asp39IlefsTer7 N-terminal Yes [5]

10 Hom 3 c.212_224del p.Asn71IlefsTer27‡ N-terminal NA [74]

11–16 Hom 3 c.226C>T p.Gln76Ter N-terminal Yes [5, 35, 75]

17–18 Hom 4 c.316G>C p.Gly106Arg TMD 1 Yes [5, 76]

19 Het
Het

4
11

c.316G>A
c.1238G>A

p.Gly106Arg
p.Trp413Ter

TMD 1
TMD 7

Yes
Yes

[3]

20–21 Hom 5 c.380-345_ c.523+659del p.? Small EC-loop btw. TMDs 1–2 to part 
of TMD 3

NA [86]

22 Het
Het

5
Int. 5

c.448G>A
c.524-1G>C

p.Gly150Arg
p.?

TMD 2
Acceptor-splice site

Yes
Yes††

[94]

23–24 Hom Int. 5-Ex. 6 c.524-18_559del p.? TMDs 3–4 NA [87, 92]

25 Hom 6 c.560G>A p.Gly187Glu TMD 4 Yes [3]

26–28 Hom 6 c.575C>A p.Thr192Lys TMD 4 Yes [43]

29–31 Hom 6 c.593T>C p.Ile198Thr TMD 4 Yes§ [77, 95]

32 Hom 7 c.646G>T p.Gly216Ter Small IC-loop btw. TMDs 4–5 l Yes [3]

33–34 Hom 8 c.857_871delins19 p.Ile286LysfsTer29 Large EC-loop NA [6]

35 Hom 8 c.893_897delTTGTC p.Leu298GlnfsTer14 Large EC-loop NA [78]

36 Hom 8 c.906G>A p.Trp302Ter Large EC-loop Yes [3]

37–42 Hom 8 c.910A>T p.Lys304Ter Large EC-loop Yes [80, 83, 88]

43 Het
Het

8
12

c.910A>T
c.1363T>C

p.Lys304Ter
p.Tyr455His

Large EC-loop
Small IC-loop btw. TMDs 8–9

Yes
Yes

[81]

44–47 Hom Int. 9 c.1048+1G>A** p.? Donor-splice site Yes†† [6]

48 Het
Het

Int. 9
12

c.1048+1G>A
c.1390G>C

p.?
p.Gly464Arg

Donor-splice site
TMD 9

Yes††

Yes
[79]

49 Hom 10 c.1136G>A p.Cys379Tyr TMD 6 Yes [3]

50 Hom 11 c.1238G>A p.Trp413Ter TMD 7 Yes [3]

51–52 Hom 11 c.1327delC p.Leu443Ter TMD 8 Yes [3]

53–54 Hom 11 c.1328delT p.Leu443ArgfsTer6 TMD 8 Yes [5, 89]

55 Hom Int. 11 c.1333+1G>A p.? Donor-splice site Yes†† [3]

56 Hom 12 c.1342delG p.Val448Ter TMD 8 Yes [5]

57–58 Hom 12 c.1342_1361del p.Val448LeufsTer209 TMD 8 NA [85, 91]

59–60 Hom 12 c.1390G>C p.Gly464Arg TMD 9 Yes [3]

61–63 Hom 12 c.1402_1404delACC p.Thr468del TMD 9 Yes [2, 3]

64 Hom 12 c.1456C>T p.Gln486Ter Small EC-loop btw. TMDs 9–10 Yes [82]

65–66 Hom 13 c.1493G>T p.Gly498Val TMD 10 Yes [93]

67 Hom 13 c.1653_1660del p.Trp552AlafsTer80‡‡ Small EC-loop btw. TMDs 11–12 NA [90]

68 Hom 1–13 Whole gene deletion NA NA NA [84]
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of function or truncation of the protein with a decreased 
protein activity. Most variants (15/34) are either non-
sense or frameshifts (Fig. 5), resulting in premature ter-
mination of the protein or probable decay of the mRNA, 
subsequently without any protein formation. The variants 
are distributed throughout the entire gene. Half of the 
missense variants and an in-frame deletion are located in 
presumably functionally important areas of the protein, 
likely leading to protein damage (Fig. 6).

Exon 12 is most frequently involved, and almost one-
third (10/34) of the allelic variants are found in the same 
genomic area within 129 nucleotides in exons 11–12 
and intron 11. Two variants (c.1402_1404delACC and 
c.1390G>C) are located in or nearby four 3-nucleotide 
(ACC) tandem repeats, which may predispose replica-
tion errors. Furthermore, two allelic variants (c.316G>C 
and c.316G>A) result in the same change at the protein 
level (p.Gly106Arg), and two variants (c.1327delC and 
c.1328delT) affect another amino acid (Leu443). The 
amino acid positions 106 and 443 may therefore repre-
sent other hot spots for pathogenic variants in NaPi-2b.

In almost all patients, the identified variants were in 
the homozygous state. Only four cases are described 

with variants in the compound heterozygous state (com-
bining c.316G>A and c.1238G>A, c.448G>A and c.524-
1G>C, c.910A>T and c.1363T>C, and c.1048 + 1G>A 
and c.1390G>C) [3, 79, 81, 94]. Strikingly, these combina-
tions of variants consist of a missense variant with either 
nonsense or a splice site variant on the other allele. Some 
of these variants have previously been described in a 
homozygous state in several patients [3, 6, 80, 83, 109]. A 
patient was reported with only one pathogenic allelic var-
iant [105], which alone is unlikely to explain the genetic 
cause of the disease since PAM is considered to follow a 
recessive inheritance pattern and disease has never been 
reported in carriers.

So far, the majority (22/34) of the allelic variants have 
only been reported in a single patient or in one family. 
Four variants (c.226C>T, c.910A>T, c.1048 + 1G>A, and 
c.1402_1404delACC) have been described in three to 
five unrelated patients/families (Fig.  4, Table  2). So far, 
c.226C>T is only found in patients of Middle Eastern 
origin, c.910A>T in Chinese patients, c.1048 + 1G>A in 
Japanese patients, and c.1402_1404delACC in patients of 
European origin.

Fig. 6 Allelic variants in SLC34A2 in the literature marked on a model of NaPi-2b. Splice site variants and larger deletions (c.-6773_-6588del, the 
5.5 kb deletion involving exons 2–6, c.380-345_ c.523+659del, c.524-18_559del, and the whole gene deletion) are not included in the figure. All 
variants are shown in the figure as dots. Light blue: missense variant, red: nonsense variant, dark blue: frameshift variant, yellow: in-frame deletion. 
The transmembrane (TM) domains with red color (TM domains 3–4 and 8–9) form the substrate coordination site. Areas for electrogenicity, 
regulation and targeting are found in the area between TM domains 4–5, 10–11, and at the C-terminal region [8, 107]. The model is made by 
superimposing human NaPi-2b on rat NaPi-2a predicted topology and is modified from Forster et al. 2013 [8] and Virkki et al. 2007 [96]. The protein 
sequences used for alignment in Clustal Omega version 1.2.4 [108]: Ensembl Transcript ID ENST00000382051.8 (Human (GRCh38.p13) assembly) and 
Ensembl Transcript ID ENSRNOT00000033749.6 (Rat (Rnor_6.0) assembly)
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Table 2 Demographics, symptoms, and smoking status in patients with SLC34A2 variants

SLC34A2 variant Patients Sex, Age (yrs.) 
in  report*/at 
diagnosis

Origin Cons Symptoms
(Age at debut of 
symptoms)

Smoking Other Refs

c.-6773_-6588del† 1 (uncle)

2 (sib 1/2)
3 (sib 2/2)
4 (sib 1/3)
5 (sib 2/3)
6 (sib 3/3)

M, 34/25

M, 17/7
M, 13/3
M, 17/11
M, 15/9
M, 11/5

TUR Yes Gradual decrease in exercise 
tolerance and dyspnoea (25)
Yes, not specified (7) 
Yes, not specified (3)
No
No
No

Yes

Yes
No
No
No
No

[5, 110]

5.5 kb  deletion† 7 F, 56/56 JAP Yes Progressive dyspnoea (−) – PH [73]

c.114delA† 8 F, 20/9 TUR – Growth retardation as child. 
No clinical findings at age 
20 (9)

No [5, 32]

9 F, 38/– TUR – No No [5]

c.212_224del† 10 F, 58/58 ITA Yes No No Sister with 
PAM

[74]

c.226C>T† 11 F, 35/– TUR – Yes, not specified (29) No [5]

12 (twin 1)
13 (twin 2)

F, 5/5
F, 5/5

CAN Yes No
No

–
–

Middle-East-
ern desc

[75]

14 (sib 1)
15 (sib 2)
16 (sib 3)

M, 11/11
F, 4/4
F, 4/4

TUR –
–
–

No
–
–

–
–
–

[35]

c.316G>C† 17 F, 27/3.5 TUR No Fatigue, cough, and exer-
tional dyspnoea as child 
(~ 2.5). Normal physical find-
ings and exercise capacity 
at age 27

No [5, 32, 
111]

18 F, 43/43 TUR – Exertional dyspnoea, cough 
(−)

– Suspicious 
familial his-
tory of PAM

[76]

c.316G>A‡ + c.1238G>A‡ 19 F, 39/22 USA Yes Dyspnoea, chest pain (−) No [3]

c.380-345_c.523+659del† 20 (sib 1)
21 (sib 2)

F, 40/40
F, (adult)§/ –

CHI Yes Progressive dyspnoea (37)
No

No
–

[86]

c.448G>A + c.524-1G>C 22 M, 8/ – CHI No No – [94]

c.524-18_559del† 23 M, 1/1 UGA Yes Progressive dyspnoea devel-
oping to severe respiratory 
distress and hypoxaemia 
(2 mos.)

– Adopted [87]

24 F, 16/16 EAF – Recurrent dizziness, occa-
sional cough upon physical 
stress and epigastric pain (−)

– [92]

c.560G>A† 25 F, 9/5 SPA Yes No – [3]

c.575C>A† 26 (sib 1)
27 (sib 2)
28 (sib 3)

M, 53/–
M, 40/–
F, 49/–

CHI Yes No
No
Dyspnoea, irritable cough 
(−)

No
No
No

PH [43]

c.593 T>C† 29 (sib 1)
30 (sib 2)
31 (sib 3)

M, 41/41
M, 23/23
M, 23/23

LIB – No
No
No

No
–
–

[77, 95]

c.646G>T† 32 F, –/66 ITA – Dyspnoea, cough, asthenia 
(−)

No PH, PAM in 
relatives

[3]

c.857_871delins19† 33 F, – JAP Yesl – – PAM in family 
members

[6]

34 F, 43/10 JAP – Dyspnoea, anorexia (−) – Deceased [6, 112]
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Table 2 (continued)

SLC34A2 variant Patients Sex, Age (yrs.) 
in  report*/at 
diagnosis

Origin Cons Symptoms
(Age at debut of 
symptoms)

Smoking Other Refs

c.893_897delTTGTC † 35 M, 38 ISR – Exertional dyspnoea, cough, 
haemoptysis (35) 

Yes [78]

c.906G>A† 36 F, 40/34 FRA No Dyspnoea (−) No Moroc-
can desc., 
siblings with 
PAM

[3]

c.910A>T† 37 (sib 1)
38 (sib 2)

–, –
–, –

CHI – –
–

–
–

[83]

39 M, > 55/25 CHI Yes Exertional dyspnoea, cough 
(33) 

No Sisters with 
PAM

[80]

40 F, 42/20 CHI No Exertional dyspnoea (in her 
40s)

No [80]

41 (sib 1)
42 (sib 2)

F, 52/–
F, 39/–

CHI Yes Both sisters had recurrent 
cough, progressive dysp-
noea (−)

No
No

[88]

c.910A>T‡ + c.1363T>C‡ 43 M, 43/43 CHI No Dyspnoea, chest tightness 
(42)

Yes PH [81]

c.1048+1G>A† 44 (sib 1)
45 (sib 2)

F, –
F, – (adult)

JAP Yes –
–

–
–

Deceased [6, 113]

46 M, - JAP Yes – – PAM in family 
members

[6]

47 F, – JAP – – – Deceased, 
PAM in family 
members

[6]

c.1048+1G>A‡ + c.1390G>C‡ 48 F, 28/27 JAP No No – [79]

c.1136G>A† 49 M, 54/46 ITA No No No [3]

c.1238G>A† 50 F, 37/– USA Yes Dyspnoea, cough (−) – [3]

c.1327delC† 51 (sib 1)

52 (sib 2)

F, 47/20

F, 52/23

NOR No Dyspnoea, chest pain, 
asthenia (−)
Dyspnoea, cough, chest 
pain, asthenia (−)

ES

ES

PH, deceased [3]

c.1328delT† 53 M, 24/– TUR – Yes, not specified (21) No Deceased [5]

54 F, 27/27 MOR Yes Exertional dyspnoea, cough 
(22)

– [89]

c.1333+1G>A† 55 M, 58/19 USA – Dyspnoea, cough (−) ES PH [3]

c.1342delG† 56 M, 39/– TUR – Yes, not specified (26) No [5]

c.1342_1361del† 57** –, – – – – – [85]

58 M, 9/1 MOR – Acute respiratory episodes, 
decreased chest expansion, 
exercise-induced dyspnoea, 
chest pain (4 mos.)

– Adopted [91]

c.1390G>C† 59 (sib 1)
60 (sib 2)

F, 14/5
M, 9/9 mos

SPA No Both siblings had pneumo-
nias and broncho-obstruc-
tive crises until age 4 yrs., 
asymptomatic hereafter

–
–

[3]

c.1402_1404delACC † 61 M, 32/16 DEN – Dyspnoea, cough, chest 
pain, asthenia (−)

Yes [2, 3]

62 M, 62/50 DEN No Dyspnoea, asthenia (−) Yes [2, 3]

63 F, 69/51 USA – Dyspnoea, cough, asthenia 
(−)

ES PH, Italian 
desc

[3]
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Demographics and clinical data in patients with SLC34A2 
variants
Generally, patients reported with SLC34A2 variants pre-
sent with typical features of PAM, including e.g., vari-
ability in age, symptoms, and clinical findings, although 
detailed clinical data are missing in many reports. Table 2 
summarizes patient demographics, symptoms, and 
smoking status. Patients reported with variants come 
from countries all over the world, and most were adults 
(Fig.  7). The age span was 9  months to 69  years with a 
slight female predominance. The presence of variants was 

a consequence of consanguineous marriages in 63% of 
the families. This may be an underestimation as there was 
no information on consanguinity in approximately 40% 
of the families.

Twenty-two patients were children at time of diag-
nosis, and they were most often diagnosed in a famil-
ial setting or incidentally, and the diagnosis was almost 
exclusively based on BAL or biopsy. Approximately half 
of the children (9/19) were asymptomatic with normal 
lung function (60% (9/15)). Radiological abnormalities 
were reported in all children, but only around half of 

Table 2 (continued)

SLC34A2 variant Patients Sex, Age (yrs.) 
in  report*/at 
diagnosis

Origin Cons Symptoms
(Age at debut of 
symptoms)

Smoking Other Refs

c.1456C>T† 64 F, 12/12 TUR Yes No – Sister with 
PAM

[82]

c.1493G>T 65 (sib 1)

66 (sib 2)

M, 23/23

F, 18/18

BAR No Fever and productive cough 
of 2-day duration (23) 
No

No

–

[93]

c.1653_1660del 67 F, 45/45 UK Yes Dry cough (−) – [90]

Whole gene  deletion† 68 F, 20 MOR Yes Exertional dyspnoea (−) No [84]

CAN Canada, CHI China, Cons. Consanguinity, DEN Denmark, UK United Kingdom, desc. descent, ES Ex-smoker, FRA France, ISR Israel, ITA Italy, JAP Japan, LIB Libya, MOR 
Morocco, NOR Norway, PH Pulmonary hypertension, TUR  Turkey, sib sibling, SPA Spain, U Uncertain, UGA  Uganda, EAF East Africa, BAR Bahrain,—Not stated or not 
relevant. *Age in the latest report if patient is reported in more than one paper. †Homozygous. ‡Heterozygous. §Assumed as being adult as her sister was 40 yrs old. 
lHuqun et al. assumed the presence of consanguinity. **Number of patients in the original report is not stated. SLC34A2 DNA reference sequence: Ensembl Transcript 
ID ENST00000382051.8 (GRCh38.p13 assembly)

Fig. 7 Documented PAM cases with known SLC34A2 variants [2, 3, 5, 6, 43, 73, 74, 77–82, 84–86, 88–94]. *In one American report, no information 
was available regarding country of origin and number of patients [85]. The thickness of the arrows is proportional with the number of patients
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the reports described calcifications. Among the reports 
including information on age, 68% (26/38) of the adults 
were symptomatic. Almost 90% (22/25) of the adults had 
abnormal lung function. All reported radiological find-
ings were typical for PAM and in around 20% (7/32), the 
diagnosis was based on radiographic findings only.

Genotype–phenotype correlation
It remains to be explored whether there is a genotype–
phenotype correlation in PAM. Functional studies explor-
ing the effect of human SLC34A2 variants are sparse, and 
there is no standardized criterion for clinical classifica-
tion. In our recent report including 14 PAM patients, 
an association between disease and variant severity was 
found. Although an association was found, we highlight 
the challenge of proper classification of disease and vari-
ants and the need for confirmation in a larger number of 
patients [3]. Only a few case reports have been published 
describing patients and families with recurrent variants 
(Table 2). Generally, it is difficult to compare the clinical 
data in the case reports as the descriptions are not stand-
ardized. Furthermore, the age of the patients varied con-
siderably and asymptomatic children and young adults 
may develop symptoms later in life, which complicates 
the phenotype evaluation in these patients. Even though 
data are scarce, smoking might be associated with more 
severe disease [3, 5, 78, 81].

Functional studies of SLC34A2 variants
Two SLC34A2 variants identified in six Japanese 
patients (c.1048 + 1G>A (p.?) and c.857_871delins19 
(p.Ile286LysfsTer29) were found to impair phosphate 
transport in the presence of sodium when expressed in 
Xenopus laevis oocytes [6]. Recently, our group inves-
tigated four SLC34A2 variants previously reported in 
PAM patients (c.910A>T (p.Lys304Ter), c.1328delT 
(p.Leu443ArgfsTer6), c.1402_1404delACC (p.Thr468del), 
and c.1456C>T (p.Gln486Ter)). NaPi-2b mutant con-
structs were expressed in Xenopus laevis oocytes, and 
transport function was investigated with a 32Pi uptake 
assay. All mutants were found non-functional [114]. 
Interestingly, two previous studies of the rat and the 
human NaPi-2a expressed in Xenopus laevis oocytes 
included mutants at the same amino acid positions as 
c.1390G>C (p.Gly464Arg) and c.1402_1404delACC 
(p.Thr468del), which was later described in PAM patients 
[62, 115]. Amino acid substitutions with cysteine, using 
the substituted cysteine accessibility method (SCAM) 
[115] or alanine substitution [62] revealed non-functional 
mutants, except when the threonine corresponding to 
Thr467 in human NaPi-2b was substituted with cysteine. 
In addition, the variant c.575C>A (p.Thr192Lys) found 

in a Chinese family was investigated in human alveolar 
epithelial cells (A549 cells) and revealed signs of reduced 
phosphate transport function compared to normal con-
trols [116]. Generally, data from these reports support 
the underlying dysfunction of NaPi-2b in PAM.

Animal models in PAM
Several conditional Slc34a2 knock-out (KO) models have 
been developed and have provided important knowl-
edge of possible compensatory mechanisms of lost active 
 Na+-dependent phosphate transport [51, 52, 117, 118]. 
In a study with a conditional Slc34a2 KO mouse model 
in the lung epithelium, a PAM phenotype with progres-
sive radiographic lung manifestations including microlith 
accumulation, inflammation, and fibrosis was reported. 
The Slc34a2 KO mice showed no clear compensatory up-
regulation of other sodium-phosphate co-transporters. 
However, expression of the sodium-dependent phosphate 
transporter Pit-1 (Slc20a1) was found slightly increased 
in alveolar type II cells of Slc34a2 KO mice on a low-
phosphate diet. There was also evidence of microlith 
burden reduction in the mice during phosphate-restric-
tive diet. When measuring levels of calcium, phosphate, 
total protein, SP-D, and saturated phosphatidylcholine, 
which is a major component of pulmonary surfactant, 
all the parameters were increased in the BAL fluid of 
Slc34a2 KO mice compared to normal mice. Further-
more, serum SP-D and inflammatory mediating cytokine 
MCP-1 (monocyte chemotactic protein 1) were higher 
in NaPi-2b deficient mice compared to control mice, 
and it increased with the progression of microlith depo-
sition. A month after microliths from Slc34a2 KO mice 
were instilled into the lungs of normal mice, the micro-
calcifications cleared completely, without any evidence 
of inflammation or fibrosis. The serum level of MCP-1 in 
these mice reached baseline at the end of the time-period 
suggesting MCP-1 as a potential biomarker of disease 
burden. Based on data from this study, the authors con-
cluded that gene editing of NaPi-IIb expression in the 
lung may be a promising future therapeutic strategy in 
PAM [118].

Current gaps in understanding of PAM
The discovery of SLC34A2 as the causative gene in 
PAM has brought us a step closer to understand this 
heterogeneous disease, although the pathophysiology is 
not yet clear.

Further studies, including investigations of pathogenic var-
iants in SLC34A2 in cells and animal models, are needed to 
explore the basic mechanisms of the disease. Investigation of 
underlying factors, including possible compensatory mecha-
nisms such as mediation of phosphate by other transporters 
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in the alveolar type II cell, is necessary and possible involve-
ment of environmental factors should be explored. Further-
more, the few patients without SLC34A2 variants should be 
further evaluated to identify alternative genetic causes.

Except for lung transplantation, no cure or effective treat-
ment is currently available in PAM. Neither variant-specific 
therapy involving e.g., systemically, or locally administered 
agents that could increase the quantity and the function of 
NaPi-2b in the lungs nor gene therapy, either via gene addi-
tion or clustered regularly interspaced short palindromic 
repeats (CRISPR)-based gene editing, has been tested in 
patients with PAM. In patients without advanced disease, 
gene therapy could possibly cure the patients as it is expected 
to be persistent in the whole lifespan of the recipient cells. 
You could speculate that patients with a high disease burden 
may not benefit from gene therapy to the same extent. In any 
case, detailed knowledge about the molecular consequences 
of the different variants identified in patients with PAM 
is required to be able to treat successfully based on these 
techniques.

To be able to develop a molecular classification, 
genetic testing should be performed in more patients, 
and the spectrum of variants should be evaluated for 
distinct function and distribution patterns. It is essen-
tial to explore and characterize variants in patients 
and compare these findings to careful clinical charac-
terization of patients. A systematic detailed description 
of patient data in case reports is recommended and 
should, in addition to symptoms and clinical findings, 
include disease course, medical history, and presence 
of extrapulmonary calcifications, family history, con-
sanguinity, smoking status and other possible triggers. 
It would indeed be desirable to have a validated dis-
ease severity classification, which would be helpful to 
assess disease burden, stratify patients, and to perform 
research. Clinical research would also benefit from an 
international PAM database including de-identified 
clinical, genetic, and demographic data.

Genetic counseling
Genetic counseling of patients with PAM is recom-
mended. This will provide useful information for patients 
and their families including the possibility of genetic 
testing of other family members and if relevant, the pos-
sibility of prenatal/preimplantation genetic diagnostics. 
In extended consanguineous families with a genetically 
proven case of PAM, other related couples and fam-
ily members could benefit from genetic counseling. 
Although no cure or effective treatment is currently 
available except for lung transplantation, diagnosis in 
childhood or adolescence permits early family education 
and genetic counseling. In addition, it will be possible to 
initiate more intensive supportive care earlier, including 

e.g., pneumococcal and influenza vaccinations, and to 
plan for future transplantation.

Conclusions
PAM is a rare genetic lung disease with a varying clini-
cal course. The genetics of PAM, including the presence 
of a possible genotype–phenotype association, remains 
to be explored. Variants in SLC34A2 are found in almost 
all patients undergoing genetic evaluation. So far, 34 
allelic variants are reported in at least 68 patients, with 
most variants described in only a single patient. The 
occurrence of consanguinity is significant. We recom-
mend a thorough systematic clinical description together 
with a genetic investigation in all new cases. A clinical 
grade system would be useful, and clinical studies and 
functional and experimental studies of the variants are 
needed to explore future treatment strategies. Finally, 
since the proportion of patients with SLC34A2 variants 
seems to be very high, the genetic characterization may 
in some cases be the preferred diagnostic tool to invasive 
investigations, especially in the diagnostics of children.
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